Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.474
Filter
1.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971770

ABSTRACT

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurogenesis , Neuroprotective Agents , Receptor, trkB , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Neurogenesis/drug effects , Receptor, trkB/metabolism , Receptor, trkB/agonists , Receptor, trkB/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
2.
Acta Oncol ; 63: 542-551, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967220

ABSTRACT

BACKGROUND: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers. Using the Auria Biobank in Finland, we aimed to identify and characterize patients with these gene fusions, and describe their clinical and tumor characteristics, treatments received, and outcomes. MATERIAL AND METHODS: We evaluated pediatrics with any solid tumor type and adults with colorectal cancer (CRC), non-small cell lung cancer (NSCLC), sarcoma, or salivary gland cancer. We determined tropomyosin receptor kinase (TRK) protein expression by pan-TRK immunohistochemistry (IHC) staining of tumor samples from the Auria Biobank, scored by a certified pathologist. NTRK gene fusion was confirmed by next generation sequencing (NGS). All 2,059 patients were followed-up starting 1 year before their cancer diagnosis. RESULTS: Frequency of NTRK gene fusion tumors was 3.1% (4/127) in pediatrics, 0.7% (8/1,151) for CRC, 0.3% (1/288) for NSCLC, 0.9% (1/114) for salivary gland cancer, and 0% (0/379) for sarcoma. Among pediatrics there was one case each of fibrosarcoma (TPM3::NTRK1), Ewing's sarcoma (LPPR1::NTRK2), primitive neuroectodermal tumor (DAB2IP::NTRK2), and papillary thyroid carcinoma (RAD51B::NTRK3). Among CRC patients, six harbored tumors with NTRK1 fusions (three fused with TPM3), one harbored a NTRK3::GABRG1 fusion, and the other a NTRK2::FXN/LPPR1 fusion. Microsatellite instability was higher in CRC patients with NTRK gene fusion tumors versus wild-type tumors (50.0% vs. 4.4%). Other detected fusions were SGCZ::NTRK3 (NSCLC) and ETV6::NTRK3 (salivary gland cancer). Four patients (three CRC, one NSCLC) received chemotherapy; one patient (with CRC) received radiotherapy. CONCLUSION: NTRK gene fusions are rare in adult CRC, NSCLC, salivary tumors, sarcoma, and pediatric solid tumors.


Subject(s)
Receptor, trkA , Receptor, trkC , Humans , Finland/epidemiology , Male , Child , Female , Adult , Middle Aged , Adolescent , Receptor, trkA/genetics , Child, Preschool , Young Adult , Receptor, trkC/genetics , Aged , Biological Specimen Banks , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Fusion , Sarcoma/genetics , Sarcoma/pathology , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Receptor, trkB/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Infant , Oncogene Proteins, Fusion/genetics , Neoplasms/genetics , Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , High-Throughput Nucleotide Sequencing , Membrane Glycoproteins
3.
CNS Neurosci Ther ; 30(7): e14855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38992889

ABSTRACT

BACKGROUND: G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE: To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS: This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS: The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION: G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Mitochondria , Receptors, Estrogen , Receptors, G-Protein-Coupled , Stress Disorders, Post-Traumatic , Synapses , Animals , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/prevention & control , Stress Disorders, Post-Traumatic/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Mice , Male , Mitochondria/drug effects , Mitochondria/metabolism , Receptors, Estrogen/metabolism , Synapses/drug effects , Synapses/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Mice, Inbred C57BL
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000303

ABSTRACT

Two cases of complicated pain exist: posterior screw fixation and myofascial pain. Intramuscular pulsed radiofrequency (PRF) may be an alternative treatment for such patients. This is a two-stage animal study. In the first stage, two muscle groups and two nerve groups were subdivided into a high-temperature group with PRF at 58 °C and a regular temperature with PRF at 42 °C in rats. In the second stage, two nerve injury groups were subdivided into nerve injury with PRF 42 °C on the sciatic nerve and muscle. Blood and spinal cord samples were collected. In the first stage, the immunohistochemical analysis showed that PRF upregulated brain-derived neurotrophic factor (BDNF) in the spinal cord in both groups of rats. In the second stage, the immunohistochemical analysis showed significant BDNF and tropomyosin receptor kinase B (TrkB) expression within the spinal cord after PRF in muscles and nerves after nerve injury. The blood biomarkers showed a significant increase in BDNF levels. PRF in the muscle in rats could upregulate BDNF-TrkB in the spinal cord, similar to PRF on the sciatica nerve for pain relief in rats. PRF could be considered clinically for patients with complicated pain and this study also demonstrated the role of BDNF in pain modulation. The optimal temperature for PRF was 42 °C.


Subject(s)
Brain-Derived Neurotrophic Factor , Pulsed Radiofrequency Treatment , Receptor, trkB , Spinal Cord , Up-Regulation , Animals , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Rats , Spinal Cord/metabolism , Pulsed Radiofrequency Treatment/methods , Male , Rats, Sprague-Dawley , Pain Management/methods , Sciatic Nerve/metabolism , Sciatic Nerve/injuries , Pain/metabolism , Pain/etiology
5.
J Manag Care Spec Pharm ; 30(7): 672-683, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950155

ABSTRACT

BACKGROUND: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are rare oncogenic drivers prevalent in 0.3% of solid tumors. They are most common in salivary gland cancer (2.6%), thyroid cancer (1.6%), and soft-tissue sarcoma (1.5%). Currently, there are 2 US Food and Drug Administration-approved targeted therapies for NTRK gene fusions: larotrectinib, approved in 2018, and entrectinib, approved in 2019. To date, the real-world uptake of tyrosine receptor kinase inhibitor (TRKi) use for NTRK-positive solid tumors in academic cancer centers remains largely unknown. OBJECTIVE: To describe the demographics, clinical and genomic characteristics, and testing and treatment patterns of patients with NTRK-positive solid tumors treated at US academic cancer centers. METHODS: This was a retrospective chart review study conducted in academic cancer centers in the United States. All patients diagnosed with an NTRK fusion-positive (NTRK1, NTRK2, NTRK3) solid tumor (any stage) and who received cancer treatment at participating sites between January 1, 2012, and July 1, 2023, were included in this study. Patient demographics, clinical characteristics, genomic characteristics, NTRK testing data, and treatment patterns were collected from electronic medical records and analyzed using descriptive statistics as appropriate. RESULTS: In total, 6 centers contributed data for 55 patients with NTRK-positive tumors. The mean age was 49.3 (SD = 20.5) years, 51% patients were female, and the majority were White (78%). The median duration of time from cancer diagnosis to NTRK testing was 85 days (IQR = 44-978). At the time of NTRK testing, 64% of patients had stage IV disease, compared with 33% at cancer diagnosis. Prevalent cancer types in the overall cohort included head and neck (15%), thyroid (15%), brain (13%), lung (13%), and colorectal (11%). NTRK1 fusions were most common (45%), followed by NTRK3 (40%) and NTRK2 (15%). Across all lines of therapy, 51% of patients (n = 28) received a TRKi. Among TRKi-treated patients, 71% had stage IV disease at TRKi initiation. The median time from positive NTRK test to initiation of TRKi was 48 days (IQR = 9-207). TRKis were commonly given as first-line (30%) or second-line (48%) therapies. Median duration of therapy was 610 (IQR = 182-764) days for TRKi use and 207.5 (IQR = 42-539) days for all other first-line therapies. CONCLUSIONS: This study reports on contemporary real-world NTRK testing patterns and use of TRKis in solid tumors, including time between NTRK testing and initiation of TRKi therapy and duration of TRKi therapy.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptor, trkA , Receptor, trkB , Receptor, trkC , Humans , Female , Male , Retrospective Studies , Middle Aged , United States , Neoplasms/genetics , Neoplasms/drug therapy , Receptor, trkC/genetics , Aged , Receptor, trkA/genetics , Adult , Protein Kinase Inhibitors/therapeutic use , Receptor, trkB/genetics , Academic Medical Centers , Membrane Glycoproteins/genetics , Oncogene Proteins, Fusion/genetics , Cohort Studies , Pyrimidines/therapeutic use , Pyrazoles/therapeutic use , Benzamides/therapeutic use , Young Adult , Indazoles/therapeutic use
6.
Acta Neuropathol Commun ; 12(1): 118, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014476

ABSTRACT

Background Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are found in 1% of gliomas across children and adults. TRK inhibitors are promising therapeutic agents for NTRK-fused gliomas because they are tissue agnostic and cross the blood-brain barrier (BBB). Methods We investigated twelve NGS-verified NTRK-fused gliomas from a single institute, Seoul National University Hospital. Results The patient cohort included six children (aged 1-15 years) and six adults (aged 27-72 years). NTRK2 fusions were found in ten cerebral diffuse low-grade and high-grade gliomas (DLGGs and DHGGs, respectively), and NTRK1 fusions were found in one cerebral desmoplastic infantile ganglioglioma and one spinal DHGG. In this series, the fusion partners of NTRK2 were HOOK3, KIF5A, GKAP1, LHFPL3, SLMAP, ZBTB43, SPECC1L, FKBP15, KANK1, and BCR, while the NTRK1 fusion partners were TPR and TPM3. DLGGs tended to harbour only an NTRK fusion, while DHGGs exhibited further genetic alterations, such as TERT promoter/TP53/PTEN mutation, CDKN2A/2B homozygous deletion, PDGFRA/KIT/MDM4/AKT3 amplification, or multiple chromosomal copy number aberrations. Four patients received adjuvant TRK inhibitor therapy (larotrectinib, repotrectinib, or entrectinib), among which three also received chemotherapy (n = 2) or proton therapy (n = 1). The treatment outcomes for patients receiving TRK inhibitors varied: one child who received larotrectinib for residual DLGG maintained stable disease. In contrast, another child with DHGG in the spinal cord experienced multiple instances of tumour recurrence. Despite treatment with larotrectinib, ultimately, the child died as a result of tumour progression. An adult patient with glioblastoma (GBM) treated with entrectinib also experienced tumour progression and eventually died. However, there was a successful outcome for a paediatric patient with DHGG who, after a second gross total tumour removal followed by repotrectinib treatment, showed no evidence of disease. This patient had previously experienced relapse after the initial surgery and underwent autologous peripheral blood stem cell therapy with carboplatin/thiotepa and proton therapy. Conclusions Our study clarifies the distinct differences in the pathology and TRK inhibitor response between LGG and HGG with NTRK fusions.


Subject(s)
Protein Kinase Inhibitors , Pyrazoles , Receptor, trkB , Humans , Male , Female , Child , Child, Preschool , Adult , Adolescent , Middle Aged , Aged , Infant , Receptor, trkB/genetics , Receptor, trkB/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrazoles/therapeutic use , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Glioma/genetics , Glioma/pathology , Glioma/drug therapy , Pyrimidines/therapeutic use , Oncogene Proteins, Fusion/genetics , Benzamides/therapeutic use , Membrane Glycoproteins/genetics , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Indazoles
7.
PeerJ ; 12: e17427, 2024.
Article in English | MEDLINE | ID: mdl-38827289

ABSTRACT

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Hippocampus , Lacticaseibacillus rhamnosus , Mice, Inbred C57BL , Probiotics , Sepsis , Animals , Sepsis/complications , Sepsis/therapy , Sepsis/microbiology , Sepsis/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Brain-Derived Neurotrophic Factor/metabolism , Female , Mice , Hippocampus/metabolism , Probiotics/pharmacology , Probiotics/administration & dosage , Probiotics/therapeutic use , Disease Models, Animal , Receptor, trkB/metabolism , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/pathology , Sepsis-Associated Encephalopathy/diet therapy , Phosphorylation
8.
Signal Transduct Target Ther ; 9(1): 153, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937446

ABSTRACT

Epidermal growth factor receptor (EGFR) is reportedly overexpressed in most esophageal squamous cell carcinoma (ESCC) patients, but anti-EGFR treatments offer limited survival benefits. Our preclinical data showed the promising antitumor activity of afatinib in EGFR-overexpressing ESCC. This proof-of-concept, phase II trial assessed the efficacy and safety of afatinib in pretreated metastatic ESCC patients (n = 41) with EGFR overexpression (NCT03940976). The study met its primary endpoint, with a confirmed objective response rate (ORR) of 39% in 38 efficacy-evaluable patients and a median overall survival of 7.8 months, with a manageable toxicity profile. Transcriptome analysis of pretreatment tumors revealed that neurotrophic receptor tyrosine kinase 2 (NTRK2) was negatively associated with afatinib sensitivity and might serve as a predictive biomarker, irrespective of EGFR expression. Notably, knocking down or inhibiting NTRK2 sensitized ESCC cells to afatinib treatment. Our study provides novel findings on the molecular factors underlying afatinib resistance and indicates that afatinib has the potential to become an important treatment for metastatic ESCC patients.


Subject(s)
Afatinib , Drug Resistance, Neoplasm , ErbB Receptors , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Protein Kinase Inhibitors , Receptor, trkB , Humans , Afatinib/pharmacology , Afatinib/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Female , Male , Middle Aged , Aged , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptor, trkB/genetics , Receptor, trkB/antagonists & inhibitors , Cell Line, Tumor , Adult , Gene Expression Regulation, Neoplastic/drug effects , Membrane Glycoproteins
9.
Nat Commun ; 15(1): 5449, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937456

ABSTRACT

Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.


Subject(s)
Aging , Bleomycin , Endothelial Cells , Lung Injury , Lung , Pulmonary Fibrosis , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Aging/pathology , Bleomycin/toxicity , Humans , Mice , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Lung/pathology , Lung/metabolism , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/etiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , YAP-Signaling Proteins/metabolism , Male , Single-Cell Analysis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Disease Models, Animal
10.
J Ethnopharmacol ; 333: 118448, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38871009

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rehmannia glutinosa Libosch. (RGL) is a famous ethnic medicine contained in antidepressant Chinese medicine formulas and is traditionally clinically used for depression. We have recently confirmed that RGL enhanced synaptic plasticity in a mouse model of Chinese medical syndrome and that catalpol may be the representatively pharmacological component responsible for its improvement in synaptic plasticity and treatment of depression. Impaired synaptic plasticity is closely linked to major depression. Tyrosine kinase receptor B (TrkB) signaling has recently been discovered as a key pathway for synaptic plasticity improvement and antidepressant discovery. However, to date, it is unknown whether the target of catalpol to improve synaptic plasticity involves TrkB and whether its antidepressant mechanism involves synaptic plasticity mediated by TrkB signaling. AIM OF STUDY: This study aims to elucidate the potential antidepressant target and mechanisms of catalpol, the main active compound of RGL, through TrkB signaling-mediated synaptic plasticity. MATERIALS AND METHODS: We have recently predicted through molecular networking strategy (including network pharmacology, molecular docking, and molecular dynamics simulation) that catalpol may exert its antidepressant effects by regulating TrkB signaling and thus modulating essential synaptic plasticity proteins. Then, this study used classic behavioral tests, targeted diagnostic reagents, Nissl and Golgi staining, immunohistochemical analysis, immunofluorescence analysis, Western blot, enzyme-linked immunosorbent assay, and Real-time PCR to confirm the potential target and signaling of catalpol to improve synaptic plasticity for the treatment of depression. RESULTS: The data showed that catalpol could improve synaptic plasticity and depressive behaviors, and its action pathway was predicted to involve TrkB signaling. Subsequently, the blockade of TrkB abolished the improvement of synaptic plasticity by catalpol and its antidepressant properties, which validated that TrkB signaling was the key pathway for catalpol to improve synaptic plasticity and exert antidepressant properties. Inhibition of COX-2 was likely to be a necessary facilitator for the antidepressant efficacy of catalpol via the TrkB target and TrkB-mediated synaptic plasticity. CONCLUSION: TrkB signaling-mediated synaptic plasticity plays a key role in the antidepressant properties of catalpol. This study provides critical information for the development of new and targeted antidepressant therapies or treatment strategies by catalpol. However, considering the existence of sex differences in depression (female depression is 2-3 times than that of males) and not exploring the antidepressant sex specificity of catalpol is a limitation, we will investigate the sex specificity of the antidepressant effects and molecular mechanisms of catalpol on sex-specific animals in the future to provide a preclinical basis for more accurate and targeted medication of catalpol.


Subject(s)
Antidepressive Agents , Iridoid Glucosides , Neuronal Plasticity , Receptor, trkB , Rehmannia , Signal Transduction , Iridoid Glucosides/pharmacology , Neuronal Plasticity/drug effects , Rehmannia/chemistry , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/isolation & purification , Male , Signal Transduction/drug effects , Receptor, trkB/metabolism , Mice , Female , Molecular Docking Simulation , Depression/drug therapy , Depression/metabolism , Mice, Inbred C57BL , Hippocampus/drug effects , Hippocampus/metabolism , Network Pharmacology , Molecular Dynamics Simulation , Disease Models, Animal
11.
Cancer Med ; 13(12): e7351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38925616

ABSTRACT

BACKGROUND: Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS: This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS: In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS: NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.


Subject(s)
Neoplasms , Oncogene Proteins, Fusion , Receptor, trkA , Humans , Japan/epidemiology , Oncogene Proteins, Fusion/genetics , Receptor, trkA/genetics , Male , Neoplasms/genetics , Neoplasms/epidemiology , Female , Child , Adult , Receptor, trkC/genetics , Adolescent , Receptor, trkB/genetics , Prevalence , Young Adult , Middle Aged , Child, Preschool , Aged , Membrane Glycoproteins
12.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891120

ABSTRACT

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dendritic Spines , Hippocampus , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Dendritic Spines/metabolism , Mice , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Receptor, trkB/metabolism , Receptor, trkB/genetics
13.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 598-604, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825906

ABSTRACT

Objective: To investigate the clinicopathological, immunophenotypic and molecular genetic characteristics, and differential diagnosis of NTRK-rearranged spindle cell neoplasms (NTRK-RSCNs) in the gastrointestinal tract. Methods: Two NTRK-RSCNs diagnosed at the Department of Pathology of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China and one case diagnosed at Zhengzhou Central Hospital, Zhengzhou, China from 2019 to 2022 were collected. The clinical data, histopathology, immunophenotypes and prognosis were analyzed. Fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) were used to detect NTRK gene rearrangements, while relevant literature was also reviewed and discussed. Results: Two patients were male and one was female, with the age of 17, 47 and 62 years, respectively. The tumors were located in the duodenum, ascending colon and descending colon, respectively. The tumors were protuberant masses with gray and rubbery sections. Their maximum diameter was 2.5, 5.0 and 10.0 cm, respectively. Histologically, the tumors invaded mucosa, intrinsic muscle and serosal adipose tissue. Tumor cells consisted of spindle or oval shaped cells with monotonous morphology and arranged in bundles or stripes pattern. Spindle cells were mildly to moderately atypical, with slightly eosinophilic cytoplasm and inconspicuous nucleoli. Necrosis and mitotic figures were observed in one high-grade tumor. All tumors expressed CD34, S-100 and pan-TRK in varying degrees. FISH analysis showed that NTRK1 gene was break-apart in 1 case and NTRK2 gene break-apart in 2 cases. NGS technologies showed LMNA::NTRK1 fusion in one case, STRN::NTRK2 fusion in another case. All patients recovered well after the surgery without recurrence at the end of the follow-up. Conclusions: NTRK-RSCN is rarely diagnosed in the gastrointestinal tract and has significant variations in morphology. It overlaps with various other mesenchymal tumors which should be considered as differential diagnoses. Be familiar with the features of histological morphology in combination with immunophenotype and molecular genetic characteristics can not only help diagnose NTRK-RSCNs, but provide therapeutic targets for clinical treatment.


Subject(s)
Gastrointestinal Neoplasms , In Situ Hybridization, Fluorescence , Receptor, trkA , Humans , Male , Female , Middle Aged , Receptor, trkA/genetics , Receptor, trkA/metabolism , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Adolescent , Gene Rearrangement , Diagnosis, Differential , High-Throughput Nucleotide Sequencing , Receptor, trkB/genetics , Receptor, trkB/metabolism
14.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835076

ABSTRACT

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Lipopolysaccharides , Receptor, trkB , Animals , Humans , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lipopolysaccharides/pharmacology , Mice , Neuroinflammatory Diseases/drug therapy , Cell Line, Tumor , Cyclopentane Monoterpenes/pharmacology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Olive Oil/pharmacology , Olive Oil/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Aldehydes , Membrane Glycoproteins , Phenols
15.
PLoS One ; 19(6): e0301730, 2024.
Article in English | MEDLINE | ID: mdl-38935636

ABSTRACT

Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1. This study characterizes the NACC2-NTRK2 oncogenic fusion protein that leads to pilocytic astrocytoma and pediatric glioblastoma. This fusion joins the BTB domain (Broad-complex, Tramtrack, and Bric-a-brac) domain of NACC2 (Nucleus Accumbens-associated protein 2) with the transmembrane helix and tyrosine kinase domain of NTRK2. We focus on identifying critical domains for the biological activity of the fusion protein. Mutations were introduced in the charged pocket of the BTB domain or in the monomer core, based on a structural comparison of the NACC2 BTB domain with that of PLZF, another BTB-containing protein. Mutations were also introduced into the NTRK2-derived portion to allow comparison of two different breakpoints that have been clinically reported. We show that activation of the NTRK2 kinase domain relies on multimerization of the BTB domain in NACC2-NTRK2. Mutations which disrupt BTB-mediated multimerization significantly reduce kinase activity and downstream signaling. The ability of these mutations to abrogate biological activity suggests that BTB domain inhibition could be a potential treatment for NACC2-NTRK2-induced cancers. Removal of the transmembrane helix leads to enhanced stability of the fusion protein and increased activity of the NACC2-NTRK2 fusion, suggesting a mechanism for the oncogenicity of a distinct NACC2-NTRK2 isoform observed in pediatric glioblastoma.


Subject(s)
Oncogene Proteins, Fusion , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/chemistry , Receptor, trkB/metabolism , Receptor, trkB/genetics , Protein Domains , Mutation , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Signal Transduction , Protein Multimerization
16.
Biomed Pharmacother ; 175: 116729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776676

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS: The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION: EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Survival , Diabetes Mellitus, Type 2 , Hippocampus , Memory , Metformin , Neurons , Receptor, trkB , Signal Transduction , Stress, Psychological , Animals , Metformin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Male , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Rats , Neurons/drug effects , Neurons/metabolism , Memory/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Cell Survival/drug effects , Receptor, trkB/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Environment , Memory Disorders/drug therapy , Rats, Wistar
17.
Alzheimers Dement ; 20(7): 4434-4460, 2024 07.
Article in English | MEDLINE | ID: mdl-38779814

ABSTRACT

INTRODUCTION: Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aß) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS: PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS: In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION: BD10-2 prevented APPL/S/Aß-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS: Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Mice, Transgenic , Microglia , Receptor, trkB , Synapses , Animals , Alzheimer Disease/drug therapy , Mice , Receptor, trkB/metabolism , Microglia/drug effects , Microglia/metabolism , Synapses/drug effects , Long-Term Potentiation/drug effects , Receptor, trkC/metabolism , Receptor, trkC/genetics , Transcriptome/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Male
18.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38788710

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cytoskeletal Proteins , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Sepsis-Associated Encephalopathy , Animals , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/genetics , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/etiology , Sepsis-Associated Encephalopathy/therapy , Sepsis-Associated Encephalopathy/genetics , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Dependovirus/genetics , Male , Long-Term Potentiation , Receptor, trkB/metabolism , Receptor, trkB/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Synapses/metabolism
19.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804836

ABSTRACT

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Subject(s)
Disease Models, Animal , Prostatitis , Rats, Sprague-Dawley , Receptor, trkA , Urinary Bladder, Overactive , Animals , Male , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/etiology , Rats , Mice , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Prostatitis/drug therapy , Prostatitis/pathology , Prostatitis/metabolism , Nerve Growth Factor/antagonists & inhibitors , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Administration, Oral , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Prostate/drug effects , Prostate/pathology , Prostate/metabolism , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/metabolism
20.
Article in English | MEDLINE | ID: mdl-38762160

ABSTRACT

Cannabidiol (CBD) is a phytocannabinoid devoid of psychostimulant properties and is currently under investigation as a potential antidepressant drug. However, the mechanisms underlying CBD's antidepressant effects are not yet well understood. CBD targets include a variety of receptors, enzymes, and transporters, with different binding-affinities. Neurochemical and pharmacological evidence indicates that both serotonin and BDNF-TrkB signalling in the prefrontal cortex are necessary for the antidepressant effects induced by CBD in animal models. Herein, we reviewed the current literature to dissect if these are independent mechanisms or if CBD-induced modulation of the serotonergic neurotransmission could mediate its neuroplastic effects through subsequent regulation of BDNF-TrkB signalling, thus culminating in rapid neuroplastic changes. It is hypothesized that: a) CBD interaction with serotonin receptors on neurons of the dorsal raphe nuclei and the resulting disinhibition of serotonergic neurons would promote rapid serotonin release in the PFC and hence its neuroplastic and antidepressant effects; b) CBD facilitates BDNF-TRKB signalling, especially in the PFC, which rapidly triggers neurochemical and neuroplastic effects. These hypotheses are discussed with perspectives for new drug development and clinical applications.


Subject(s)
Antidepressive Agents , Brain-Derived Neurotrophic Factor , Cannabidiol , Receptor, trkB , Serotonin , Signal Transduction , Cannabidiol/pharmacology , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Serotonin/metabolism , Animals , Humans , Signal Transduction/drug effects , Receptor, trkB/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL