Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.667
Filter
1.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900789

ABSTRACT

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Subject(s)
COVID-19 , Receptor for Advanced Glycation End Products , SARS-CoV-2 , Humans , Receptor for Advanced Glycation End Products/metabolism , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19/complications , COVID-19/virology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Lung Injury/immunology , Lung Injury/metabolism , Lung Injury/pathology , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Male , Lung/pathology , Lung/metabolism , Lung/immunology , Female
3.
Iran J Kidney Dis ; 18(3): 179-186, 2024 05.
Article in English | MEDLINE | ID: mdl-38904338

ABSTRACT

INTRODUCTION: Diabetic nephropathy is one of the most common severe symptoms of diabetes mellitus. Hyperglycemia can lead to tissue damage and inflammation due to mediators such as receptor for advanced glycation end-products (RAGE). Therefore, in this study, we aimed to investigate the association between the G82S polymorphism of the RAGE gene and diabetic nephropathy in diabetic patients. METHODS: In this case-control study, 356 participants (158 men and 198 women) of Asian race, aged 45 to 65 years, who were diagnosed with type 2 diabetes mellitus based on their fasting plasma glucose levels were enrolled. DNA was isolated from the participants' blood samples and genotyped using TETRA -Primer ARMS-PCR. Serum protein concentration of soluble RAGE (sRAGE) was also determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Although we found differences in genotyping of participants between homozygous AA and GG and heterozygous GA in the studied groups, the differences were not significant (P = .568). In addition, we found no significant correlation between the G82S polymorphism of RAGE and the development of diabetic nephropathy. Serum levels of sRAGE were only slightly decreased in patients with diabetic nephropathy compared with diabetic patients (P > .05). CONCLUSION: The results of this study indicate no significant association between the G82S polymorphism in the gene RAGE and the development of diabetic nephropathy. Serum levels of sRAGE were only slightly decreased in patients with diabetic nephropathy compared to diabetic patients without nephropathy. Therefore, the study suggests that there is probably no association between the G82S polymorphism in the gene RAGE and the development of diabetic nephropathy. DOI: 10.52547/ijkd.7872.


Subject(s)
Asian People , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Receptor for Advanced Glycation End Products , Aged , Female , Humans , Male , Middle Aged , Asian People/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/genetics , Diabetic Nephropathies/blood , Genetic Predisposition to Disease , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/blood
4.
Aging (Albany NY) ; 16(12): 10446-10461, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38885076

ABSTRACT

Ferroptosis is a new way of cell death, and stimulating the process of cell ferroptosis is a new strategy to treat breast cancer. NGR1 has good anti-cancer activity and is able to slow the progression of breast cancer. However, NGR1 has not been reported in the field related to ferroptosis. By searching the online database for potential targets of NGR1 and the breast cancer disease database, among 11 intersecting genes we focused on Runt-related transcription factor 2 (RUNX2), which is highly expressed in breast cancer, and KEGG pathway enrichment showed that the intersecting genes were mainly enriched in the AGE (advanced glycosylation end products)-RAGE (receptor of AGEs) signaling pathway. After that, we constructed overexpression and down-regulation breast cancer cell lines of RUNX2 in vitro, and tested whether NGR1 treatment induced ferroptosis in breast cancer cells by regulating RUNX2 to inhibit the AGE-RAGE signaling pathway through phenotyping experiments of ferroptosis, Western blot experiments, QPCR experiments, and electron microscopy observation. The results showed that NGR1 was able to inhibit the expression level of RUNX2 and suppress the AGE/PAGE signaling pathway in breast cancer cells. NGR1 was also able to promote the accumulation of Fe2+ and oxidative damage in breast cancer cells by regulating RUNX2 and then down-regulating the expression level of GPX4, FIH1 and up-regulating the expression level of ferroptosis-related proteins such as COX2, ACSL4, PTGS2 and NOX1, which eventually led to the ferroptosis of breast cancer cells.


Subject(s)
Breast Neoplasms , Core Binding Factor Alpha 1 Subunit , Ferroptosis , Signal Transduction , Ferroptosis/drug effects , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Signal Transduction/drug effects , Female , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Ginsenosides/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Glycation End Products, Advanced/metabolism , MCF-7 Cells
5.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892513

ABSTRACT

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Glycation End Products, Advanced , Insulin , Kidney , Lycopene , Oxidative Stress , Rats, Wistar , Animals , Lycopene/pharmacology , Kidney/drug effects , Kidney/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycation End Products, Advanced/metabolism , Antioxidants/pharmacology , Male , Insulin/blood , Insulin/metabolism , Oxidative Stress/drug effects , Rats , Blood Glucose/metabolism , Blood Glucose/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Aryldialkylphosphatase/metabolism , Receptor for Advanced Glycation End Products/metabolism , Insulin Resistance , Lactoylglutathione Lyase/metabolism , Drug Therapy, Combination , Hypoglycemic Agents/pharmacology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism
6.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847916

ABSTRACT

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Subject(s)
Diabetic Foot , Drugs, Chinese Herbal , Glycation End Products, Advanced , Smad2 Protein , Smad3 Protein , Wound Healing , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Diabetic Foot/pathology , Animals , Wound Healing/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , Smad2 Protein/metabolism , Humans , Smad3 Protein/metabolism , Glycation End Products, Advanced/metabolism , Male , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Apoptosis/drug effects , Disease Models, Animal , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Survival/drug effects
7.
Nat Commun ; 15(1): 4985, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862515

ABSTRACT

Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.


Subject(s)
Atherosclerosis , F-Box-WD Repeat-Containing Protein 7 , Glycation End Products, Advanced , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nuclear Factor 90 Proteins , Receptor for Advanced Glycation End Products , Animals , Male , Mice , Glycation End Products, Advanced/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/genetics , Mice, Inbred C57BL , Ubiquitination , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Hyperglycemia/metabolism , Hyperglycemia/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/genetics , Apoptosis
8.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892134

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.


Subject(s)
Aptamers, Nucleotide , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Glycation End Products, Advanced , Inflammation , Oxidative Stress , Receptor for Advanced Glycation End Products , Sperm Motility , Testis , Animals , Male , Oxidative Stress/drug effects , Glycation End Products, Advanced/metabolism , Mice , Aptamers, Nucleotide/pharmacology , Testis/metabolism , Testis/drug effects , Testis/pathology , Receptor for Advanced Glycation End Products/metabolism , Diabetes Mellitus, Experimental/metabolism , Sperm Motility/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Inflammation/metabolism , Inflammation/pathology , Spermatozoa/metabolism , Spermatozoa/drug effects , Sperm Count
9.
Cytokine ; 180: 156665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823153

ABSTRACT

BACKGROUND: AGEs, their receptor (RAGE), and the extracellular newly identified receptor for AGEs product-binding protein (EN-RAGE) are implicated in the pathogenesis of inflammation. AIM: We analyzed serum EN-RAGE, soluble RAGE (sRAGE), and their isoforms: endogenous secretory - esRAGE and cleaved - cRAGE concentrations in lean controls (n = 74) and in patients with obesity (n = 71) treated for three weeks with moderate calorie restriction (CR) combined with physical activity in a hospital condition. METHODS: Using the ELISA method, serum sRAGE, esRAGE, and EN-RAGE were measured before and after CR. RESULTS: The serum level of sRAGE and esRAGE in patients with obesity was lower than that in non-obese individuals, contrary to cRAGE. EN-RAGE concentration was about three times higher in obese patients. Gradually, a rise in BMI resulted in sRAGE, esRAGE reduction, and EN-RAGE increase. The sRAGE concentration was sex-dependent, indicating a higher value in lean men. A moderate negative correlation was observed between BMI and all RAGE isoforms, whereas EN-RAGE displays a positive correlation. CR resulted in an expected decrease in anthropometric, metabolic, and proinflammatory parameters and EN-RAGE, but no RAGE isoforms. The ratio EN-RAGE/sRAGE was higher in obese humans than in control and was not modified by CR. CONCLUSION: Obesity decreases sRAGE and esRAGE and increases EN-RAGE concentration. Moderate CR and physical activity by decreasing inflammation reduces EN-RAGE but is insufficient to increase sRAGE and esRAGE to the extent observed in lean patients. EN-RAGE instead of sRAGE could be helpful to indicate a better outcome of moderate dietary intervention in obese subjects.


Subject(s)
Caloric Restriction , Obesity , Protein Isoforms , Receptor for Advanced Glycation End Products , Humans , Caloric Restriction/methods , Male , Obesity/blood , Obesity/diet therapy , Obesity/therapy , Female , Receptor for Advanced Glycation End Products/blood , Adult , Middle Aged , Protein Isoforms/blood , Body Mass Index , Exercise/physiology , Receptors, Immunologic/blood , Motor Activity/physiology , Antigens, Neoplasm , Mitogen-Activated Protein Kinases
10.
BMC Complement Med Ther ; 24(1): 225, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858747

ABSTRACT

BACKGROUND: This study aimed to explore the mechanism of Ge-Gen-Qin-Lian decoction (GGQLD) in the alleviation of symptoms of type 2 diabetes mellitus (T2DM) with inflammatory bowel disease (IBD) by network pharmacology and experimental validation. METHODS: The active components and targets of GGQLD were identified from the TCMSP database. The potential therapeutic targets of T2DM and IBD were identified from the GEO database and 4 online disease target databases. The PPI network and KEGG/GO analyses were performed with the common targets among GGQLD, T2DM and IBD. Molecular docking was carried out between the core compounds and hub targets. To verify the above results, UHPLC-MS technology was used to identify the chemical compounds in GGQLD, and a T2DM with IBD rat model was used to explore the mechanism by which GGQLD treats T2DM with IBD. RESULTS: Totally, 70 potential therapeutic targets were identified among GGQLD, T2DM and IBD. Ten hub genes were selected from the PPI network. KEGG analysis revealed that GGQLD is tightly involved in the AGE-RAGE signaling pathway. Berberine, baicalein, wogonin, and quercitrin are the main active compounds of GGQLD. Animal experiments showed that GGQLD could decrease blood glucose and alleviate intestinal inflammation. Notably, the concentrations of AGEs, the expression of RAGE, c-JUN and NF-κB and the expression of inflammatory cytokines were decreased by GGQLD. CONCLUSIONS: Our study initially demonstrated that GGQLD has favorable anti-hyperglycemic and anti-intestinal inflammation effects in a T2DM with IBD rat model, and the AGE-RAGE pathway plays a vital role in this process.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Inflammatory Bowel Diseases , Animals , Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Rats , Inflammatory Bowel Diseases/drug therapy , Male , Rats, Sprague-Dawley , Signal Transduction/drug effects , Molecular Docking Simulation , Disease Models, Animal , Receptor for Advanced Glycation End Products/metabolism , Diabetes Mellitus, Experimental/drug therapy , Network Pharmacology
11.
Nutr Diabetes ; 14(1): 37, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824123

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic medical condition affecting more than 95% of people with diabetes. Traditionally, some medicinal plants have been considered as an effective approach in management of T2DM. This trial evaluated the effects of date seed powder (DSP) on glycemia indices and oxidative stress in T2DM patients. METHODS: In this trail, 43 patients with T2DM were randomized to two groups: either 5 g/d of the DSP or placebo for 8 weeks. Levels of glycemic indices, lipolpolysaccharide (LPS), and soluble receptor for advanced glycation end products (s-RAGE), as well as other parameters associated with oxidative stress were assessed at baseline and after 8 weeks. Independent t-test and analysis of covariance (ANCOVA) were used for between-groups comparisons at baseline and the post-intervention phase, respectively. RESULTS: The results showed that supplementation with DSP significantly decreased HbA1c (-0.30 ± 0.48%), insulin (-1.70 ± 2.21 µU/ml), HOMA-IR (-1.05 ± 0.21), HOMA-B (-0.76 ± 21.21), lipopolysaccharide (LPS) (-3.68 ± 6.05 EU/mL), and pentosidine (118.99 ± 21.67 pg/mL) (P < 0.05, ANCOVA adjusted for baseline and confounding factors). On the other hand, DSP supplementation significantly increased total antioxidant capacity (TAC) (0.50 ± 0.26 mmol/L), superoxide dismutase (SOD) (0.69 ± 0.32 U/ml), and s-RAGE (240.13 ± 54.25 pg/mL) compared to the placebo group. FPG, hs-CRP, GPx, CML, and uric acid had no significant within- or between-group changes. CONCLUSION: Supplementation of DSP could be considered an effective strategy to improve glycemic control and oxidative stress in T2DM patients (Registration ID at www.irct.ir : IRCT20150205020965N10).


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycation End Products, Advanced , Oxidative Stress , Seeds , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Male , Female , Middle Aged , Glycation End Products, Advanced/blood , Oxidative Stress/drug effects , Glycated Hemoglobin/analysis , Blood Glucose/drug effects , Receptor for Advanced Glycation End Products/blood , Insulin/blood , Adult , Glycemic Index/drug effects , Aged
12.
Parasite Immunol ; 46(6): e13039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838041

ABSTRACT

Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE-/- mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE-/- mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE-/- mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44+ lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE-/- mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE-/- mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.


Subject(s)
Inflammation , Ixodidae , Mice, Knockout , Receptor for Advanced Glycation End Products , Tick Infestations , Animals , Ixodidae/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Mice , Tick Infestations/immunology , Mice, Inbred C57BL , Female , Feeding Behavior , Haemaphysalis longicornis
13.
Physiol Rep ; 12(12): e16121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898369

ABSTRACT

Advanced glycation end products (AGEs) have been implicated in several skeletal muscle dysfunctions. However, whether the adverse effects of AGEs on skeletal muscle are because of their direct action on the skeletal muscle tissue is unclear. Therefore, this study aimed to investigate the direct and acute effects of AGEs on skeletal muscle using an isolated mouse skeletal muscle to eliminate several confounders derived from other organs. The results showed that the incubation of isolated mouse skeletal muscle with AGEs (1 mg/mL) for 2-6 h suppressed protein synthesis and the mechanistic target of rapamycin signaling pathway. Furthermore, AGEs showed potential inhibitory effects on protein degradation pathways, including autophagy and the ubiquitin-proteasome system. Additionally, AGEs stimulated endoplasmic reticulum (ER) stress by modulating the activating transcription factor 6, PKR-like ER kinase, C/EBP homologous protein, and altered inflammatory cytokine expression. AGEs also stimulated receptor for AGEs (RAGE)-associated signaling molecules, including mitogen-activated protein kinases. These findings suggest that AGEs have direct and acute effect on skeletal muscle and disturb proteostasis by modulating intracellular pathways such as RAGE signaling, protein synthesis, proteolysis, ER stress, and inflammatory cytokines.


Subject(s)
Endoplasmic Reticulum Stress , Glycation End Products, Advanced , Muscle, Skeletal , Proteostasis , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Glycation End Products, Advanced/metabolism , Mice , Male , Endoplasmic Reticulum Stress/drug effects , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction , Autophagy , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism
14.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
15.
Mol Med ; 30(1): 76, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840067

ABSTRACT

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Glycation End Products, Advanced , Lipoproteins, LDL , NF-kappa B , Osteogenesis , Receptor for Advanced Glycation End Products , Signal Transduction , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Glycation End Products, Advanced/metabolism , NF-kappa B/metabolism , Humans , Calcinosis/metabolism , Calcinosis/pathology , Calcinosis/genetics , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/pathology , Cricetinae , Osteogenesis/drug effects , Male , Lipoproteins, LDL/metabolism , Disease Models, Animal , Female , Middle Aged , Glycated Proteins
16.
Nutrients ; 16(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931253

ABSTRACT

Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA). Cell viability, reactive oxygen species levels, and myotube formation were assessed in AGE-exposed C2C12 cells to explore potential mitigation by CPA and TPA. Elevated receptors for AGE expression and decreased Akt and AMPK phosphorylation were evident in rat skeletal muscles in IDM. Maternal palmitoleic acid supplementation alleviated insulin resistance by downregulating RAGE expression and enhancing Akt phosphorylation. The exposure of the C2C12 cells to AGEs reduced cell viability and myotube formation and elevated reactive oxygen species levels, which were attenuated by CPA or TPA supplementation. This suggests that maternal hyperglycemia and plasma AGEs may contribute to skeletal muscle disorders in offspring, which are mitigated by palmitoleic acid supplementation. Hence, the maternal intake of palmitoleic acid during pregnancy may have implications for fetal health.


Subject(s)
Fatty Acids, Monounsaturated , Glycation End Products, Advanced , Muscle, Skeletal , Reactive Oxygen Species , Receptor for Advanced Glycation End Products , Fatty Acids, Monounsaturated/pharmacology , Glycation End Products, Advanced/metabolism , Female , Animals , Pregnancy , Receptor for Advanced Glycation End Products/metabolism , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Cell Survival/drug effects , Mice , Dietary Supplements , Proto-Oncogene Proteins c-akt/metabolism , Oxidative Stress/drug effects , Insulin Resistance , Humans , Phosphorylation , Rats, Sprague-Dawley , Pregnancy in Diabetics/metabolism , Pregnancy in Diabetics/drug therapy , Male , Fetal Development/drug effects
18.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731953

ABSTRACT

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Subject(s)
Berberine , Cachexia , HMGB1 Protein , Animals , Rats , Apoptosis/drug effects , Autophagy/drug effects , Berberine/pharmacology , Cachexia/metabolism , Cachexia/drug therapy , Cachexia/etiology , Cachexia/pathology , Cell Line, Tumor , Disease Models, Animal , HMGB1 Protein/drug effects , HMGB1 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Neoplasms/metabolism , Neoplasms/complications , Neoplasms/drug therapy , Neoplasms/pathology , NF-kappa B/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732159

ABSTRACT

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Subject(s)
Lung , Mice, Knockout , Receptor for Advanced Glycation End Products , Tobacco Smoke Pollution , Transcriptome , Animals , Mice , Gene Expression Profiling , Gene Expression Regulation/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Mice, Inbred C57BL , Receptor for Advanced Glycation End Products/metabolism , Receptor for Advanced Glycation End Products/genetics , Signal Transduction/drug effects , Tobacco Smoke Pollution/adverse effects
20.
Phytomedicine ; 129: 155654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723525

ABSTRACT

BACKGROUND: Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE: This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS: This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS: Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1ß, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1ß in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION: The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Lipopolysaccharides , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Acute Lung Injury/drug therapy , Animals , Sepsis/complications , Sepsis/drug therapy , Mice , RAW 264.7 Cells , Drugs, Chinese Herbal/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Network Pharmacology , Protective Agents/pharmacology , Glycation End Products, Advanced/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...