Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.906
Filter
1.
Biomaterials ; 312: 122731, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39153324

ABSTRACT

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-ß (CSF1R/CCR2/TGF-ß Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.


Subject(s)
Monocytes , Receptor, Macrophage Colony-Stimulating Factor , Receptors, CCR2 , Tumor Microenvironment , Humans , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Monocytes/metabolism , Monocytes/immunology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Female , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Mice , Cell Movement/drug effects , Neoplasms/immunology , Neoplasms/pathology
2.
NPJ Biofilms Microbiomes ; 10(1): 79, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227647

ABSTRACT

Alcohol use is an independent risk factor for the development of bacterial pneumonia due, in part, to impaired mucus-facilitated clearance, macrophage phagocytosis, and recruitment of neutrophils. Alcohol consumption is also known to reduce peripheral natural killer (NK) cell numbers and compromise NK cell cytolytic activity, especially NK cells with a mature phenotype. However, the role of innate lymphocytes, such as NK cells during host defense against alcohol-associated bacterial pneumonia is essentially unknown. We have previously shown that indole supplementation mitigates increases in pulmonary bacterial burden and improves pulmonary NK cell recruitment in alcohol-fed mice, which were dependent on aryl hydrocarbon receptor (AhR) signaling. Employing a binge-on-chronic alcohol-feeding model we sought to define the role and interaction of indole and NK cells during pulmonary host defense against alcohol-associated pneumonia. We demonstrate that alcohol dysregulates NK cell effector function and pulmonary recruitment via alterations in two key signaling pathways. We found that alcohol increases transforming growth factor beta (TGF-ß) signaling while suppressing AhR signaling. We further demonstrated that NK cells isolated from alcohol-fed mice have a reduced ability to kill Klebsiella pneumoniae. NK cell migratory capacity to chemokines was also significantly altered by alcohol, as NK cells isolated from alcohol-fed mice exhibited preferential migration in response to CXCR3 chemokines but exhibited reduced migration in response to CCR2, CXCR4, and CX3CR1 chemokines. Together this data suggests that alcohol disrupts NK cell-specific TGF-ß and AhR signaling pathways leading to decreased pulmonary recruitment and cytolytic activity thereby increasing susceptibility to alcohol-associated bacterial pneumonia.


Subject(s)
Killer Cells, Natural , Mice, Inbred C57BL , Pneumonia, Bacterial , Receptors, Aryl Hydrocarbon , Signal Transduction , Animals , Killer Cells, Natural/immunology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Mice , Receptors, Aryl Hydrocarbon/metabolism , Lung/immunology , Lung/microbiology , Transforming Growth Factor beta/metabolism , Ethanol , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Disease Models, Animal , Indoles/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Klebsiella pneumoniae , Receptors, CXCR3/metabolism
3.
Nature ; 633(8028): 174-181, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198639

ABSTRACT

Sterile inflammation after myocardial infarction is classically credited to myeloid cells interacting with dead cell debris in the infarct zone1,2. Here we show that cardiomyocytes are the dominant initiators of a previously undescribed type I interferon response in the infarct borderzone. Using spatial transcriptomics analysis in mice and humans, we find that myocardial infarction induces colonies of interferon-induced cells (IFNICs) expressing interferon-stimulated genes decorating the borderzone, where cardiomyocytes experience mechanical stress, nuclear rupture and escape of chromosomal DNA. Cardiomyocyte-selective deletion of Irf3 abrogated IFNIC colonies, whereas mice lacking Irf3 in fibroblasts, macrophages, neutrophils or endothelial cells, Ccr2-deficient mice or plasmacytoid-dendritic-cell-depleted mice did not. Interferons blunted the protective matricellular programs and contractile function of borderzone fibroblasts, and increased vulnerability to pathological remodelling. In mice that died after myocardial infarction, IFNIC colonies were immediately adjacent to sites of ventricular rupture, while mice lacking IFNICs were protected from rupture and exhibited improved survival3. Together, these results reveal a pathological borderzone niche characterized by a cardiomyocyte-initiated innate immune response. We suggest that selective inhibition of IRF3 activation in non-immune cells could limit ischaemic cardiomyopathy while avoiding broad immunosuppression.


Subject(s)
Immunity, Innate , Interferon Regulatory Factor-3 , Interferon Type I , Myocardial Infarction , Myocytes, Cardiac , Animals , Mice , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/deficiency , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Male , Female , Fibroblasts/metabolism , Macrophages/metabolism , Macrophages/immunology , Receptors, CCR2/metabolism , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Mice, Inbred C57BL , Endothelial Cells/metabolism
4.
Rev Med Virol ; 34(5): e2578, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39192485

ABSTRACT

A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.


Subject(s)
COVID-19 , Chemokine CCL2 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/pathology , Chemokine CCL2/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Prognosis , Receptors, CCR2/metabolism , Biomarkers , Anti-Inflammatory Agents/therapeutic use , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology
5.
Front Biosci (Landmark Ed) ; 29(8): 303, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39206918

ABSTRACT

BACKGROUND: Rheumatic heart disease (RHD) is an autoimmune disease caused by recurrent infections of Group A streptococcus (GAS), ultimately leading to inflammation and the fibrosis of heart valves. Recent studies have highlighted the crucial role of C-C chemokine receptor type 2-positive (CCR2+) macrophages in autoimmune diseases and tissue fibrosis. However, the specific involvement of CCR2+ macrophages in RHD remains unclear. METHODS: This study established an RHD rat model using inactivated GAS and complete Freund's adjuvant, demonstrating a correlation between CCR2+ macrophages and fibrosis in the mitral valves of these rats. RESULTS: Intraperitoneal injection of the CCR2 antagonist Rs-504393 significantly reduced macrophage infiltration, inflammation, and fibrosis in valve tissues of RHD rats compared to the solvent-treated group . Existing evidence suggests that C-C motif chemokine ligand 2 (CCL2) acts as the primary recruiting factor for CCR2+ cells. To validate this, human monocytic leukemia cells (THP-1) were cultured in vitro to assess the impact of recombinant CCL2 protein on macrophages. CCL2 exhibited pro-inflammatory effects similar to lipopolysaccharide (LPS), promoting M1 polarization in macrophages. Moreover, the combined effect of LPS and CCL2 was more potent than either alone. Knocking down CCR2 expression in THP-1 cells using small interfering RNA suppressed the pro-inflammatory response and M1 polarization induced by CCL2. CONCLUSIONS: The findings from this study indicate that CCR2+ macrophages are pivotal in the valvular remodeling process of RHD. Targeting the CCL2/CCR2 signaling pathway may therefore represent a promising therapeutic strategy to alleviate valve fibrosis in RHD.


Subject(s)
Inflammation , Macrophages , Receptors, CCR2 , Rheumatic Heart Disease , Animals , Humans , Male , Rats , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Disease Models, Animal , Eicosapentaenoic Acid/analogs & derivatives , Fibrosis , Heart Valves/pathology , Inflammation/metabolism , Macrophages/metabolism , Macrophages/immunology , Rats, Inbred Lew , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Rheumatic Heart Disease/immunology , Rheumatic Heart Disease/microbiology , Rheumatic Heart Disease/metabolism , Rheumatic Heart Disease/pathology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Streptococcus pyogenes , THP-1 Cells
6.
PeerJ ; 12: e17862, 2024.
Article in English | MEDLINE | ID: mdl-39135956

ABSTRACT

Background: Chemotactic cytokines play a crucial role in the development of acute myeloid leukemia (AML). Thus, investigating the mechanisms of chemotactic cytokine-related genes (CCRGs) in AML is of paramount importance. Methods: Using the TCGA-AML, GSE114868, and GSE12417 datasets, differential expression analysis identified differentially expressed CCRGs (DE-CCRGs). These genes were screened by overlapping differentially expressed genes (DEGs) between AML and control groups with CCRGs. Subsequently, functional enrichment analysis and the construction of a protein-protein interaction (PPI) network were conducted to explore the functions of the DE-CCRGs. Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses identified relevant prognostic genes and developed a prognostic model. Survival analysis of the prognostic gene was performed, followed by functional similarity analysis, immune analysis, enrichment analysis, and drug prediction analysis. Results: Differential expression analysis revealed 6,743 DEGs, of which 29 DE-CCRGs were selected for this study. Functional enrichment analysis indicated that DE-CCRGs were primarily involved in chemotactic cytokine-related functions and pathways. Six prognostic genes (CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2) were identified and incorporated into the risk model. The model's performance was validated using the GSE12417 dataset. Survival analysis showed significant differences in AML overall survival (OS) between prognostic gene high and low expression groups, indicating that prognostic gene might be significantly associated with patient survival. Additionally, nine different immune cells were identified between the two risk groups. Correlation analysis revealed that CCR2 had the most significant positive correlation with monocytes and the most significant negative correlation with resting mast cells. The tumor immune dysfunction and exclusion score was lower in the high-risk group. Conclusion: CXCR3, CXCR2, CXCR6, CCL20, CCL4, and CCR2 were identified as prognostic genes correlated to AML and the tumor immune microenvironment. These findings offerred novel insights into the prevention and treatment of AML.


Subject(s)
Leukemia, Myeloid, Acute , Protein Interaction Maps , Receptors, CCR2 , Receptors, Interleukin-8B , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Prognosis , Receptors, Interleukin-8B/genetics , Receptors, CCR2/genetics , Protein Interaction Maps/genetics , Chemokine CCL4/genetics , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Female , Male , Chemokines/genetics , Gene Expression Profiling , Middle Aged , Biomarkers, Tumor/genetics , Receptors, CXCR3
7.
Neuroscience ; 557: 51-55, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39137869

ABSTRACT

Subarachnoid hemorrhage due to rupture of intracranial aneurysms has a poor outcome, making this disease being the social problem. Inflammation evoked by the increase in intracranial pressure and the clot in the subarachnoid space after the onset of SAH exacerbates neuronal death and vasospasm, resulting in the poor outcome and severe aftereffects. Here, FROUNT mediates CCR2 and CCR5 signaling as an intracellular molecule binding to these chemoattractant receptors which facilitate the migration of inflammatory cells, such as macrophages, in situ to trigger inflammation there. Animal model of subarachnoid hemorrhage was established in rats through intrathecal injection of autologous blood. The effect of the FROUNT inhibitor, disulfiram, on survival rate, neuronal death in hippocampus or vasospasm was then examined. The intrathecal administration of disulfiram significantly suppressed the infiltration of CD68-positive macrophages and myeloperoxidase-positive neutrophils toward the clot in the cistern in situ. In this condition, disulfiram ameliorated the death of animals after the onset of subarachnoid hemorrhage in rats. In addition, disulfiram suppressed both the two major events after subarachnoid hemorrhage, the neuronal death in hippocampus and vasospasm. The pharmacological inhibition of CCR2 and CCR5 signaling by disulfiram could thus be the therapeutic strategy to improve the outcome of subarachnoid hemorrhage.


Subject(s)
Disulfiram , Rats, Sprague-Dawley , Subarachnoid Hemorrhage , Animals , Disulfiram/pharmacology , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Male , Vasospasm, Intracranial/drug therapy , Vasospasm, Intracranial/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Receptors, CCR5/metabolism , Macrophages/drug effects , Macrophages/metabolism , Rats , Prognosis , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Cell Death/drug effects , Cell Death/physiology , Antigens, Differentiation, Myelomonocytic/metabolism
8.
Int J Mol Sci ; 25(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39201480

ABSTRACT

Aging is a prominent risk factor for numerous chronic diseases. Understanding the shared mechanisms of aging can aid in pinpointing therapeutic targets for age-related disorders. Chronic inflammation has emerged as a pivotal mediator of aging and a determinant in various age-related chronic conditions. Recent findings indicate that C-C motif chemokine ligand 2 and receptor 2 (CCL2-CCR2) signaling, an important physiological modulator in innate immune response and inflammatory defense, plays a crucial role in aging-related disorders and is increasingly recognized as a promising therapeutic target, highlighting its significance. This review summarizes recent advances in the investigation of CCL2-CCR2 signaling in cardiovascular and neural aging, as well as in various aging-related disorders. It also explores the underlying mechanisms and therapeutic potentials in these contexts. These insights aim to deepen our understanding of aging pathophysiology and the development of aging-related diseases.


Subject(s)
Aging , Cardiovascular Diseases , Chemokine CCL2 , Receptors, CCR2 , Humans , Aging/metabolism , Receptors, CCR2/metabolism , Animals , Cardiovascular Diseases/metabolism , Chemokine CCL2/metabolism , Signal Transduction , Inflammation/metabolism
9.
Int J Mol Sci ; 25(16)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39201670

ABSTRACT

CC chemokine receptor 2 (CCR2) has been linked to many inflammatory and immune diseases, making it a relevant drug target. Yet, all CCR2 antagonists developed so far have failed in clinical trials; thus, novel strategies are needed to target this receptor. Targeted protein degradation represents a novel approach to inhibit protein function by hijacking the cellular degradation machinery, such as the proteasome, to degrade the protein of interest. Here, we aimed to determine the amenability of CCR2 to chemically induced degradation by using a CCR2 fusion protein containing a HaloTag7 and HiBiT tag (CCR2-HaloTag-HiBiT). After characterization of the CCR2 construct, we used luminescence-based assays and immunofluorescence to quantify CCR2 levels, as well as a label-free, phenotypic assay to investigate the functional effect of CCR2 degradation. Treatment with HaloPROTAC3, which selectively degrades HaloTag fusion proteins, led to concentration- and time-dependent degradation of CCR2-HaloTag-HiBiT. HaloPROTAC3 induced degradation via the proteasome, as degradation was fully blocked with proteasomal inhibitors. Finally, functional assays showed that degradation of CCR2-HaloTag-HiBiT leads to a reduced functional response after agonist stimulation. Overall, our results indicate that CCR2 is amenable to targeted degradation, paving the way for the future development of CCR2 chemical degraders.


Subject(s)
Proteasome Endopeptidase Complex , Proteolysis , Receptors, CCR2 , Receptors, CCR2/metabolism , Humans , Proteolysis/drug effects , Proteasome Endopeptidase Complex/metabolism , HEK293 Cells , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics
10.
Front Immunol ; 15: 1387651, 2024.
Article in English | MEDLINE | ID: mdl-39076996

ABSTRACT

Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.


Subject(s)
Chemokine CCL2 , Osteoarthritis , Receptors, CCR2 , Signal Transduction , Humans , Chemokine CCL2/metabolism , Receptors, CCR2/metabolism , Osteoarthritis/metabolism , Osteoarthritis/immunology , Osteoarthritis/therapy , Animals , Chondrocytes/metabolism , Chondrocytes/immunology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/immunology , Molecular Targeted Therapy
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000516

ABSTRACT

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Subject(s)
CCR5 Receptor Antagonists , Diabetic Neuropathies , Disease Models, Animal , Receptors, CCR2 , Receptors, CCR5 , Animals , Mice , Diabetic Neuropathies/drug therapy , Male , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Female , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia/drug therapy , Imidazoles , Sulfoxides
12.
Sci Rep ; 14(1): 15736, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977751

ABSTRACT

Benign Prostatic Hyperplasia (BPH) is a complex condition leading to Lower Urinary Tract Symptoms in aging men, characterized by cellular proliferation, smooth muscle dysfunction, inflammation, and fibrosis. While BPH is known to involve heightened macrophage infiltration, the specific contribution of infiltrating monocytes/macrophages to the disease mechanism remains uncertain. This research explores the impact of reducing circulating monocytes and subsequently limiting their tissue infiltration by using Ccr2 knockout (Ccr2-KO) mice. Ccr2-KO and wild type mice were implanted with testosterone and estradiol (T + E2, 25 mg + 2.5 mg) pellets. Urinary function was assessed via weekly void spot assays over 12 weeks, and prostatic macrophage levels were visualized and quantified in tissue sections using an F4/80 antibody. Additionally, Ki-67 staining was used to evaluate cell proliferation, and picrosirius red staining to assess collagen accumulation. Increased voiding frequency which developed in T + E2 mice, was significantly ameliorated in Ccr2-KO mice, however, both Ccr2-KO and wild type (WT) mice showed increased bladder weights after three month, representing a hypertrophic response to bladder outlet obstruction. T + E2 substantially increased the density of macrophages in WT but not Ccr2-KO mouse prostate. Proliferation rate, as indicated by Ki-67 positivity, was elevated in the vental and anterior prostate lobes but was only marginally reduced in Ccr2-KO mice. Most importantly, a significant prostatic collagen accumulation was observed in WT mice that was markedly reduced by Ccr2 deficiency post T + E2 treatment. The absence of Ccr2 mitigates urinary dysfunction and alters prostatic macrophage levels and collagen accumulation in steroid hormone imbalance. These findings suggest a crucial role for monocyte infiltration, giving rise to macrophages or other cell derivatives, to drive fibrosis.


Subject(s)
Estradiol , Fibrosis , Macrophages , Mice, Knockout , Monocytes , Prostate , Receptors, CCR2 , Testosterone , Animals , Male , Receptors, CCR2/metabolism , Macrophages/metabolism , Mice , Monocytes/metabolism , Prostate/metabolism , Prostate/pathology , Testosterone/metabolism , Estradiol/metabolism , Estradiol/pharmacology , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Cell Proliferation , Mice, Inbred C57BL
13.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39056179

ABSTRACT

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Subject(s)
Macrophages , Muramidase , Obesity , Receptors, CCR2 , Animals , Obesity/complications , Obesity/metabolism , Macrophages/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Mice , Muramidase/metabolism , Muramidase/genetics , Mice, Inbred C57BL , Male , Mice, Knockout , Signal Transduction , Inflammation/metabolism , Inflammation/genetics , Heart Diseases/etiology , Heart Diseases/metabolism , Heart Diseases/genetics
14.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39043180

ABSTRACT

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Subject(s)
Brain Injuries , Immunity, Innate , Immunologic Memory , Inflammation , Interleukin-1beta , Mice, Inbred C57BL , Monocytes , Animals , Mice , Interleukin-1beta/metabolism , Brain Injuries/immunology , Humans , Male , Monocytes/metabolism , Monocytes/immunology , Inflammation/immunology , Macrophages/immunology , Macrophages/metabolism , Stroke/complications , Stroke/immunology , Heart Diseases/immunology , Female , Receptors, CCR2/metabolism , Fibrosis , Epigenesis, Genetic , Trained Immunity
15.
J Pathol ; 264(2): 174-185, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39056146

ABSTRACT

The CCL2-CCR2 axis is involved in lupus nephritis, however the precise roles in the mechanisms by which different pathological lesions develop after glomerular immune complex deposition remain elusive. Previously, we demonstrated that genetic CCR2 inhibition induced a histological switch from glomerular endocapillary hypercellularity to wire-loop lesions in murine lupus nephritis. This study aimed to clarify the CCL2-CCR2 axis-mediated cellular mechanism in the formation of these different pathological lesions. We injected MRL/lpr mouse-derived monoclonal IgG3 antibody-producing hybridomas, 2B11.3 or B1, into wild-type (WT) mice to selectively induce glomerular endocapillary hypercellularity or wire-loop lesions. The expression of chemokine and chemokine receptors was analyzed using RT-quantitative PCR and/or immunofluorescence. We found 2B11.3 caused glomerular endocapillary hypercellularity in WT mice with glomerular infiltration of larger numbers of CCR2-expressing macrophages and neutrophils phagocyting immune complex, whereas B1 induced wire-loop lesions. In glomerular endocapillary hypercellularity, CCL2 was identified as the ligand involved in the CCR2-positive cell infiltration; it was expressed by glomerular endothelial cells and macrophages. Notably, 2B11.3-induced glomerular endocapillary hypercellularity converted to wire-loop lesions with reduced glomerular macrophage and neutrophil infiltration in CCL2-deficient (Ccl2-/-) mice similarly observed in Ccr2-/- mice. Moreover, this histological conversion was also observed when both glomerular macrophage and neutrophil infiltration were inhibited in anti-Ly6G antibody-treated Ccr5-/- mice but not when only glomerular macrophage infiltration was inhibited in Ccr5-/- mice or when only glomerular neutrophil infiltration was inhibited in anti-Ly6G antibody-treated WT mice. In contrast, B1 injection caused wire-loop lesions in Ccl2-/- and Ccr2-/- mice, as observed in WT mice. Moreover, 2B11.3 induced CCL2 from glomerular endothelial cells to a larger extent than B1 when injected into Ccr2-/- mice. In conclusion, the CCL2-CCR2 axis determines whether glomerular endocapillary hypercellularity or wire-loop lesions develop by regulating glomerular infiltration of phagocytic cells: macrophages and neutrophils. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Chemokine CCL2 , Kidney Glomerulus , Lupus Nephritis , Macrophages , Receptors, CCR2 , Animals , Lupus Nephritis/pathology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Chemokine CCL2/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Neutrophil Infiltration , Mice, Inbred MRL lpr , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Female , Disease Models, Animal , Mice , Mice, Inbred C57BL , Signal Transduction
16.
Brain Behav Immun ; 121: 1-12, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002812

ABSTRACT

induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1ß + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.


Subject(s)
Induced Pluripotent Stem Cells , Inflammation , Microglia , Neurons , Proteomics , Transcriptome , Animals , Mice , Induced Pluripotent Stem Cells/metabolism , Proteomics/methods , Inflammation/metabolism , Microglia/metabolism , Neurons/metabolism , Astrocytes/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Cell Differentiation , Cytokines/metabolism , Proteome/metabolism , Chemokine CXCL10/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/genetics
17.
Radiat Res ; 202(3): 552-564, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39048109

ABSTRACT

Inflammation is a key factor in both influenza and radiation-induced lung pathophysiology. This implies a commonality of response to pulmonary damage from these insults and suggests exacerbated pathology may occur after combined exposure. We therefore tested the hypothesis that past inflammation from viral infection alters the lung microenvironment and lowers tolerance for radiation injury. Mice were inoculated with influenza A virus (IAV) and three weeks later, after virus clearance, mice received total-body irradiation (TBI). Survival as well as systemic and local lung inflammation were assessed, and strategies to mitigate pulmonary injury were investigated. After IAV infection alone, body condition recovered within 3 weeks, however inflammatory pathways remained active for 15 weeks. IAV infection exacerbated subsequent TBI responses, evident by increased lethality, enhanced histologically evident lung injury and an altered lung macrophage phenotype. To mitigate this enhanced sensitivity, captopril [an angiotensin converting enzyme inhibitor (ACEi)] was administered to limit tissue inflammation, or inflammatory monocyte-derived macrophage recruitment was blocked with a C-C chemokine receptor type 2 (CCR2) inhibitor. Both treatments abrogated the changes in circulating immune cells observed 4 weeks after TBI, and attenuated pro-inflammatory phenotypes in lung alveolar macrophages, appearing to shift immune cell dynamics towards recovery. Histologically apparent lung injury was not improved by either treatment. We show that latent lung injury from viral infection exacerbates radiation morbidity and mortality. Although strategies that attenuate proinflammatory immune cell phenotypes can normalize macrophage dynamics, this does not fully mitigate lung injury. Recognizing that past viral infections can enhance lung radiosensitivity is of critical importance for patients receiving TBI, as it could increase the incidence of adverse outcomes.


Subject(s)
Lung , Animals , Mice , Lung/radiation effects , Lung/virology , Lung/pathology , Whole-Body Irradiation , Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Mice, Inbred C57BL , Receptors, CCR2 , Female , Lung Injury/virology , Lung Injury/pathology , Lung Injury/etiology , Captopril/pharmacology , Captopril/therapeutic use , Inflammation/virology , Inflammation/pathology
18.
Dis Model Mech ; 17(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38973385

ABSTRACT

Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.


Subject(s)
Breast Neoplasms , Chemokine CCL2 , Muscle, Skeletal , Signal Transduction , Animals , Chemokine CCL2/metabolism , Female , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Receptors, CCR2/metabolism , Mice , Cell Line, Tumor , Disease Models, Animal , Muscular Atrophy/pathology , Muscular Atrophy/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/drug effects , Myoblasts/metabolism , Mice, Inbred C57BL
20.
Cell Commun Signal ; 22(1): 364, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014433

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS: This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS: Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS: The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.


Subject(s)
Chemokine CCL2 , Macrophages , Mice, Knockout , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Disease, Chronic Obstructive , Receptors, CCR2 , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Animals , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice , Humans , Mice, Inbred C57BL , Male
SELECTION OF CITATIONS
SEARCH DETAIL