Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.017
Filter
1.
Nat Commun ; 15(1): 6622, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103342

ABSTRACT

Sex steroids modulate the distribution of mammalian white adipose tissues. Moreover, WAT remodeling requires adipocyte progenitor cells. Nevertheless, the sex-dependent mechanisms regulating adipocyte progenitors remain undetermined. Here, we uncover Cxcr4 acting in a sexually dimorphic manner to affect a pool of proliferating cells leading to restriction of female fat mass. We find that deletion of Cxcr4 in Pparγ-expressing cells results in female, not male, lipodystrophy, which cannot be restored by high-fat diet consumption. Additionally, Cxcr4 deletion is associated with a loss of a pool of proliferating adipocyte progenitors. Cxcr4 loss is accompanied by the upregulation of estrogen receptor alpha in adipose-derived PPARγ-labelled cells related to estradiol hypersensitivity and stalled adipogenesis. Estrogen removal or administration of antiestrogens restores WAT accumulation and dynamics of adipose-derived cells in Cxcr4-deficient mice. These findings implicate Cxcr4 as a female adipogenic rheostat, which may inform strategies to target female adiposity.


Subject(s)
Adipocytes , Adipogenesis , Adiposity , PPAR gamma , Receptors, CXCR4 , Stem Cells , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Female , Male , Mice , Adipocytes/metabolism , Adipocytes/cytology , Stem Cells/metabolism , Stem Cells/cytology , PPAR gamma/metabolism , PPAR gamma/genetics , Mice, Knockout , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Diet, High-Fat/adverse effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Mice, Inbred C57BL , Estradiol/pharmacology , Estradiol/metabolism , Cell Proliferation , Sex Factors , Sex Characteristics
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125877

ABSTRACT

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Subject(s)
Fusion Proteins, bcr-abl , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Mice , Humans , Peptides/pharmacology , Cell Survival/drug effects , Apoptosis/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Line, Tumor , Philadelphia Chromosome/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
3.
BMC Res Notes ; 17(1): 222, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127702

ABSTRACT

Human T-lymphotropic virus type 1 (HTLV-1) is a RNA virus belonging to Retroviridae family and is associated with the development of various diseases, including adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Aside from HAM/TSP, HTLV-1 has been implicated in the development of several disorders that mimic auto-inflammation. T-cell migration is important topic in the context of HTLV-1 associated diseases progression. The primary objective of this case-control study was to assess the relationship between increased mRNA expression in virus migration following HTLV-1 infection. PBMCs from 20 asymptomatic patients and 20 healthy subjects were analyzed using real-time PCR to measure mRNA expression of LFA1, MLCK, RAC1, RAPL, ROCK1, VAV1 and CXCR4. Also, mRNA expression of Tax and HBZ were evaluated. Mean expression of Tax and HBZ in ACs (asymptomatic carriers) was 0.7218 and 0.6517 respectively. The results revealed a noteworthy upregulation of these genes involved in T-cell migration among ACs patients in comparison to healthy individuals. Considering the pivotal role of gene expression alterations associated with the progression into two major diseases (ATLL or HAM/TSP), analyzing the expression of these genes in the ACs group can offer probable potential diagnostic markers and aid in monitoring the condition of ACs.


Subject(s)
Cell Movement , HTLV-I Infections , Human T-lymphotropic virus 1 , Humans , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/physiology , Male , Female , Adult , Case-Control Studies , Middle Aged , HTLV-I Infections/immunology , HTLV-I Infections/virology , HTLV-I Infections/genetics , Gene Products, tax/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Leukocytes/metabolism , Leukocytes/immunology , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Lymphocyte Function-Associated Antigen-1/genetics , Retroviridae Proteins , Basic-Leucine Zipper Transcription Factors
5.
Int Immunopharmacol ; 139: 112686, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39053226

ABSTRACT

OBJECTIVE: Chronic hepatitis B (CHB) virus infection remains a major public health concern. In this study, the diagnostic capability of C-X-C chemokine receptor type 4 promoter methylation in patients with CHB-associated liver fibrosis/cirrhosis was evaluated. METHODS: Two hundred participants were recruited, including 25 healthy controls (HCs), 60 patients with CHB and 115 patients with hepatitis B virus (HBV)-related liver fibrosis/LC. Researchers monitored the methylation and messenger ribonucleic acid (mRNA) levels of C-X-C chemokine receptor type 4 (CXCR4) in peripheral blood mononuclear cells (PBMCs). In addition, we utilized single cell sequencing to analyze the cell types highly expressing CXCR4 in HBV-related liver fibrosis/LC. RESULTS: HBV-related fibrosis/cirrhosis patients exhibited a significant elevation in the expression level of CXCR4 mRNA in PBMCs compared to CHB ones. The CXCR4 promoter showed a significantly lower methylation level in patients with CHB-related fibrosis/cirrhosis than in patients with CHB. Additionally, the diagnostic area under the area under the curve (AUC) of methylation of the CXCR4 promoter for CHB -related liver fibrosis/LC exceeded liver stiffness measurement (LSM), aspartate aminotransferase-to-platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Furthermore, single-cell analysis demonstrated that CXCR4 expression is closely associated with Natural Killer cells(NK cells), T lymphocytes (T cells), and monocytes. CONCLUSION: The low methylation of the CXCR4 promoter holds promise as a non-invasive biomarker for detecting CHB-associated liver fibrosis/LC.


Subject(s)
DNA Methylation , Hepatitis B, Chronic , Liver Cirrhosis , Promoter Regions, Genetic , Receptors, CXCR4 , Humans , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/pathology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Promoter Regions, Genetic/genetics , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/immunology , Male , Female , Adult , Middle Aged , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Hepatitis B virus/immunology
7.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000362

ABSTRACT

Exposure to microgravity during spaceflight induces the alterations in endothelial cell function associated with post-flight cardiovascular deconditioning. PIEZO1 is a major mechanosensitive ion channel that regulates endothelial cell function. In this study, we used a two-dimensional clinostat to investigate the expression of PIEZO1 and its regulatory mechanism on human umbilical vein endothelial cells (HUVECs) under simulated microgravity. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis, we observed that PIEZO1 expression was significantly increased in response to simulated microgravity. Moreover, we found microgravity promoted endothelial cells migration by increasing expression of PIEZO1. Proteomics analysis highlighted the importance of C-X-C chemokine receptor type 4(CXCR4) as a main target molecule of PIEZO1 in HUVECs. CXCR4 protein level was increased with simulated microgravity and decreased with PIEZO1 knock down. The mechanistic study showed that PIEZO1 enhances CXCR4 expression via Ca2+ influx. In addition, CXCR4 could promote endothelial cell migration under simulated microgravity. Taken together, these results suggest that the upregulation of PIEZO1 in response to simulated microgravity regulates endothelial cell migration due to enhancing CXCR4 expression via Ca2+ influx.


Subject(s)
Cell Movement , Human Umbilical Vein Endothelial Cells , Ion Channels , Receptors, CXCR4 , Weightlessness Simulation , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Ion Channels/metabolism , Ion Channels/genetics , Cell Movement/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Calcium/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation
8.
Cancer Lett ; 598: 217097, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38964729

ABSTRACT

Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.


Subject(s)
Antimetabolites, Antineoplastic , Carcinoma, Pancreatic Ductal , Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Pancreatic Neoplasms , Receptors, CXCR4 , Trefoil Factor-1 , Xenograft Model Antitumor Assays , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Trefoil Factor-1/genetics , Trefoil Factor-1/metabolism , Animals , Cell Line, Tumor , Antimetabolites, Antineoplastic/pharmacology , Cell Movement/drug effects , Mice , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Apoptosis/drug effects , Mice, Nude , Cell Proliferation/drug effects , Molecular Docking Simulation
9.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992165

ABSTRACT

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , CD4-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class II , Intramolecular Oxidoreductases , Lymphocyte Activation , Macrophage Migration-Inhibitory Factors , SARS-CoV-2 , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Lymphocyte Activation/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Cell Movement , Male , Female , Middle Aged , Receptors, Immunologic
10.
Front Immunol ; 15: 1406532, 2024.
Article in English | MEDLINE | ID: mdl-39035006

ABSTRACT

Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.


Subject(s)
Mutation , Primary Immunodeficiency Diseases , Receptors, CXCR4 , Signal Transduction , Warts , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Humans , Primary Immunodeficiency Diseases/genetics , Warts/genetics , Animals , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , Thrombocytopenia/genetics , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism
11.
Aging (Albany NY) ; 16(13): 10868-10881, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38949514

ABSTRACT

As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.


Subject(s)
Apoptosis , Chemokine CXCL12 , Disease Models, Animal , Intervertebral Disc Degeneration , Nucleus Pulposus , Rats, Sprague-Dawley , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Chemokine CXCL12/metabolism , Apoptosis/drug effects , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/drug therapy , Rats , Male , Cervical Vertebrae , Signal Transduction/drug effects , Spondylosis/metabolism , Spondylosis/pathology
12.
Front Immunol ; 15: 1383136, 2024.
Article in English | MEDLINE | ID: mdl-38979422

ABSTRACT

Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.


Subject(s)
B-Cell Maturation Antigen , Chemokine CXCL12 , Immunotherapy, Adoptive , Killer Cells, Natural , Multiple Myeloma , Receptors, CXCR4 , Receptors, Chimeric Antigen , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , B-Cell Maturation Antigen/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Chemokine CXCL12/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic
13.
Front Immunol ; 15: 1411141, 2024.
Article in English | MEDLINE | ID: mdl-39040098

ABSTRACT

Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the CXCR4 gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic CXCR4 variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants. Understanding the genotypic-phenotypic associations in WHIM syndrome has the potential to improve time to diagnosis and guide appropriate clinical management, resulting in a true example of precision medicine. This article provides an overview of the spectrum of CXCR4 variants in WHIM syndrome and summarizes the various lines of clinical and functional evidence that can support interpretation of newly identified variants.


Subject(s)
Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Receptors, CXCR4/genetics , Humans , Warts/genetics , Warts/diagnosis , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/diagnosis , Mutation , Genetic Association Studies , Genetic Predisposition to Disease , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis
14.
Cancer Med ; 13(14): e7471, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015025

ABSTRACT

BACKGROUND: ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS: We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS: We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS: We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Oncogene Proteins, Fusion , RGS Proteins , Humans , Cell Line, Tumor , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation, Leukemic , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Trans-Activators
15.
Front Cell Infect Microbiol ; 14: 1415123, 2024.
Article in English | MEDLINE | ID: mdl-38994006

ABSTRACT

The high proportion of AIDS cases and mortality rates in Guangxi underscores the urgency to investigate the influence of HIV-1 genetic diversity on disease progression in this region. Newly diagnosed HIV-1 patients were enrolled from January 2016 to December 2021, and the follow-up work and detection of CD4+T lymphocytes were carried out every six months until December 2022. Multivariate logistic regression was used to analyze the factors affecting pre-treatment CD4+T lymphocyte counts, while local weighted regression models (LOESS) and generalized estimating equation models (GEE) were conducted to assess factors influencing CD4+T Lymphocyte Recovery. Cox regression analysis was utilized to examine the impact of subtypes on survival risk. Additionally, HIV-1 env sequences were utilized for predicting CXCR4 and CCR5 receptors. The study encompassed 1867 individuals with pol sequences and 281 with env sequences. Our findings indicate that age over 30, divorced/widowed, peasant, heterosexual infection, CRF01_AE, long-term infection, and Pre-treatment Viral load >10000 copies/ml were factors associated with higher risk for pre-treatment CD4+T lymphocyte decline. Specifically, male gender, age over 30, heterosexual infection (HETs), long-term infection, CRF01_AE, and Pre-treatment CD4 T cell counts below 350/µL were identified as risk factors impeding CD4+T lymphocyte recovery. Pre-treatment CD4+T lymphocyte counts and recovery in individuals infected with CRF01_AE were lower compared to CRF07_BC and CRF55_01B. Additionally, CRF01_AE and CRF08_BC subtypes exhibited higher mortality rates than CRF07_BC, CRF55_01B, and other subtypes. Notably, CRF01_AE demonstrated the highest percentage of CXCR4 affinity ratios. This research unveils the intricate influence of HIV-1 gene diversity on CD4+T lymphocyte dynamics and clinical outcomes. It highlights the multifaceted nature of HIV infection in Guangxi, providing novel insights into subtype-specific disease progression among HIV-infected individuals in this region.


Subject(s)
Disease Progression , Genetic Variation , HIV Infections , HIV-1 , Viral Load , Humans , HIV-1/genetics , Male , Female , Adult , China/epidemiology , HIV Infections/virology , Prospective Studies , CD4 Lymphocyte Count , Middle Aged , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Receptors, CXCR4/genetics , Young Adult , CD4-Positive T-Lymphocytes/immunology , Risk Factors
16.
Oncogene ; 43(34): 2535-2547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907003

ABSTRACT

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.


Subject(s)
Disease Progression , MicroRNAs , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptor, Notch3 , Receptors, CXCR4 , Thymocytes , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Thymocytes/metabolism , Thymocytes/cytology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mice , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Mice, Transgenic , Signal Transduction , Cell Differentiation/genetics
17.
Sci Signal ; 17(839): eade8041, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833528

ABSTRACT

A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gßγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gßγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Receptors, CXCR4 , Signal Transduction , Phosphorylation , Humans , HEK293 Cells , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals
18.
Tissue Cell ; 89: 102441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878656

ABSTRACT

Transmembrane proteins play key roles in the development of lung cancer. The family with sequence similarity 189 member A2 (FAM189A2) gene encodes a transmembrane structural protein, yet its involvement in lung adenocarcinoma remains largely unexplored. This study elucidated its role in lung adenocarcinoma and its possible molecular mechanism. Our findings revealed diminished expression levels of FAM189A2 in LUAD tissues. Additionally, the activity of LUAD cells was significantly inhibited by overexpression of FAM189A2. Following FAM189A2 overexpression, the expression of OCLN and TJP2 was upregulated in LUAD cells, while CXCR4 expression experiences a notable decrease. Moreover, the coimmunoprecipitation experiment confirmed the direct interaction between FAM189A2 and CXCR4. The infiltration levels of T cells (CD4+ memory resting, CD8+, regulatory), NK cells, B memory cells, endothelial cells and cancer-associated fibroblasts were significantly correlated with FAM189A2 expression. These results indicate FAM189A2 may act as a tumour suppressor in LUAD through tight junction protein (TJP) and CXCR4 regulation. Moreover, FAM189A2 is significantly correlated with the immune microenvironment of LUAD, which may be involved in prognosis and immunotherapeutic efficacy.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Receptors, CXCR4 , Tight Junction Proteins , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Apoptosis/genetics , Tight Junction Proteins/metabolism , Cell Line, Tumor , Female , Male , Tumor Microenvironment , Middle Aged , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Genes, Tumor Suppressor
19.
PLoS One ; 19(6): e0302530, 2024.
Article in English | MEDLINE | ID: mdl-38905184

ABSTRACT

At present, the mechanism of fluorosis-induced damage to the hepatic system is unclear. Studies have shown that excess fluoride causes some degree of damage to the liver, including inflammation. The SDF-1/CXCR4 signaling axis has been reported to have an impact on the regulation of inflammation in human cells. In this study, we investigated the role of the SDF-1/CXCR4 signaling axis and related inflammatory factors in fluorosis through in vitro experiments on human hepatic astrocytes (LX-2) cultured with sodium fluoride. CCK-8 assays showed that the median lethal dose at 24 h was 2 mmol/l NaF, and these conditions were used for subsequent enzyme-linked immunosorbent assays (ELISAs) and quantitative real-time polymerase chain reaction (qPCR) analysis. The protein expression levels of SDF-1/CXCR4 and the related inflammatory factors nuclear factor-κB (NF-κB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß) were detected by ELISAs from the experimental and control groups. The mRNA expression levels of these inflammatory indicators were also determined by qPCR in both groups. Moreover, the expression levels of these factors were significantly higher in the experimental group than in the control group at both the protein and mRNA levels (P < 0.05). Excess fluorine may stimulate the SDF-1/CXCR4 signaling axis, activating the inflammatory NF-κB signaling pathway and increasing the expression levels of the related inflammatory factors IL-6, TNF-α and IL-1ß. Identification of this mechanism is important for elucidating the pathogenesis of fluorosis-induced liver injury.


Subject(s)
Chemokine CXCL12 , Hepatocytes , Receptors, CXCR4 , Sodium Fluoride , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Sodium Fluoride/toxicity , Sodium Fluoride/pharmacology , Hepatocytes/metabolism , Hepatocytes/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Cell Line , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Inflammation/metabolism , Inflammation/chemically induced
20.
Biomacromolecules ; 25(7): 4569-4580, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38869359

ABSTRACT

Acute myeloid leukemia (AML) is often associated with poor prognosis and survival. Small molecule inhibitors, though widening the treatment landscape, have limited monotherapy efficacy. The combination therapy, however, shows suboptimal clinical outcomes due to low bioavailability, overlapping systemic toxicity and drug resistance. Here, we report that CXCR4-mediated codelivery of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor sorafenib (SOR) via T22 peptide-tagged disulfide cross-linked polymeric micelles (TM) achieves synergistic treatment of FLT3-ITD AML. TM-VS with a VEN/SOR weight ratio of 1/4 and T22 peptide density of 20% exhibited an extraordinary inhibitory effect on CXCR4-overexpressing MV4-11 AML cells. TM-VS at a VEN/SOR dosage of 2.5/10 mg/kg remarkably reduced leukemia burden, prolonged mouse survival, and impeded bone loss in orthotopic MV4-11-bearing mice, outperforming the nontargeted M-VS and oral administration of free VEN/SOR. CXCR4-mediated codelivery of BCL-2 and FLT3 inhibitors has emerged as a prospective clinical treatment for FLT3-ITD AML.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Receptors, CXCR4 , Sorafenib , Sulfonamides , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Sorafenib/pharmacology , Sorafenib/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Micelles
SELECTION OF CITATIONS
SEARCH DETAIL