Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.622
Filter
1.
Biomolecules ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062586

ABSTRACT

Glucagon-like peptide-1 (GLP-1)-based drugs have been approved by the United States Food and Drug Administration (FDA) and are widely used to treat type 2 diabetes mellitus (T2DM) and obesity. More recent developments of unimolecular peptides targeting multiple incretin-related receptors ("multi-agonists"), including the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) and the glucagon (Gcg) receptor (GcgR), have emerged with the aim of enhancing drug benefits. In this study, we utilized human and mouse microglial cell lines, HMC3 and IMG, respectively, together with the human neuroblastoma SH-SY5Y cell line as cellular models of neurodegeneration. Using these cell lines, we studied the neuroprotective and anti-inflammatory capacity of several multi-agonists in comparison with a single GLP-1 receptor (GLP-1R) agonist, exendin-4. Our data demonstrate that the two selected GLP-1R/GIPR dual agonists and a GLP-1R/GIPR/GcgR triple agonist not only have neurotrophic and neuroprotective effects but also have anti-neuroinflammatory properties, as indicated by the decreased microglial cyclooxygenase 2 (COX2) expression, nitrite production, and pro-inflammatory cytokine release. In addition, our results indicate that these multi-agonists have the potential to outperform commercially available single GLP-1R agonists in neurodegenerative disease treatment.


Subject(s)
Anti-Inflammatory Agents , Glucagon-Like Peptide-1 Receptor , Incretins , Neuroprotective Agents , Humans , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Incretins/pharmacology , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cell Line , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism , Exenatide/pharmacology , Microglia/drug effects , Microglia/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Cell Line, Tumor , Peptides/pharmacology , Peptides/chemistry , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/agonists
2.
Biomed Pharmacother ; 176: 116888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861859

ABSTRACT

OBJECTIVES: Co-agonists at the glucagon-like peptide-1 and glucagon receptors (GLP1R/GCGR) show promise as treatments for metabolic dysfunction-associated steatotic liver disease (MASLD). Although most co-agonists to date have been heavily GLP1R-biased, glucagon directly acts on the liver to reduce fat content. The aims of this study were to investigate a GCGR-biased co-agonist as treatment for hepatic steatosis in mice. METHODS: Mice with diet-induced obesity (DIO) were treated with Dicretin, a GLP1/GCGR co-agonist with high potency at the GCGR, Semaglutide (GLP1R monoagonist) or food restriction over 24 days, such that their weight loss was matched. Hepatic steatosis, glucose tolerance, hepatic transcriptomics, metabolomics and lipidomics at the end of the study were compared with Vehicle-treated mice. RESULTS: Dicretin lead to superior reduction of hepatic lipid content when compared to Semaglutide or equivalent weight loss by calorie restriction. Markers of glucose tolerance and insulin resistance improved in all treatment groups. Hepatic transcriptomic and metabolomic profiling demonstrated many changes that were unique to Dicretin-treated mice. These include some known targets of glucagon signaling and others with as yet unclear physiological significance. CONCLUSIONS: Our study supports the development of GCGR-biased GLP1/GCGR co-agonists for treatment of MASLD and related conditions.


Subject(s)
Fatty Liver , Glucagon-Like Peptide 1 , Mice, Inbred C57BL , Obesity , Receptors, Glucagon , Weight Loss , Animals , Obesity/drug therapy , Obesity/metabolism , Weight Loss/drug effects , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Male , Fatty Liver/drug therapy , Fatty Liver/metabolism , Mice , Glucagon-Like Peptide 1/metabolism , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin Resistance , Glucagon-Like Peptides/pharmacology
3.
N Engl J Med ; 391(4): 311-319, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38847460

ABSTRACT

BACKGROUND: Dual agonism of glucagon receptor and glucagon-like peptide-1 (GLP-1) receptor may be more effective than GLP-1 receptor agonism alone for treating metabolic dysfunction-associated steatohepatitis (MASH). The efficacy and safety of survodutide (a dual agonist of glucagon receptor and GLP-1 receptor) in persons with MASH and liver fibrosis are unclear. METHODS: In this 48-week, phase 2 trial, we randomly assigned adults with biopsy-confirmed MASH and fibrosis stage F1 through F3 in a 1:1:1:1 ratio to receive once-weekly subcutaneous injections of survodutide at a dose of 2.4, 4.8, or 6.0 mg or placebo. The trial had two phases: a 24-week rapid-dose-escalation phase, followed by a 24-week maintenance phase. The primary end point was histologic improvement (reduction) in MASH with no worsening of fibrosis. Secondary end points included a decrease in liver fat content by at least 30% and biopsy-assessed improvement (reduction) in fibrosis by at least one stage. RESULTS: A total of 293 randomly assigned participants received at least one dose of survodutide or placebo. Improvement in MASH with no worsening of fibrosis occurred in 47% of the participants in the survodutide 2.4-mg group, 62% of those in the 4.8-mg group, and 43% of those in the 6.0-mg group, as compared with 14% of those in the placebo group (P<0.001 for the quadratic dose-response curve as best-fitting model). A decrease in liver fat content by at least 30% occurred in 63% of the participants in the survodutide 2.4-mg group, 67% of those in the 4.8-mg group, 57% of those in the 6.0-mg group, and 14% of those in the placebo group; improvement in fibrosis by at least one stage occurred in 34%, 36%, 34%, and 22%, respectively. Adverse events that were more frequent with survodutide than with placebo included nausea (66% vs. 23%), diarrhea (49% vs. 23%), and vomiting (41% vs. 4%); serious adverse events occurred in 8% with survodutide and 7% with placebo. CONCLUSIONS: Survodutide was superior to placebo with respect to improvement in MASH without worsening of fibrosis, warranting further investigation in phase 3 trials. (Funded by Boehringer Ingelheim; 1404-0043 ClinicalTrials.gov number, NCT04771273; EudraCT number, 2020-002723-11.).


Subject(s)
Glucagon-Like Peptide-1 Receptor , Liver Cirrhosis , Humans , Female , Male , Liver Cirrhosis/drug therapy , Middle Aged , Double-Blind Method , Adult , Glucagon-Like Peptide-1 Receptor/agonists , Injections, Subcutaneous/adverse effects , Fatty Liver/drug therapy , Liver/pathology , Liver/drug effects , Receptors, Glucagon/agonists , Dose-Response Relationship, Drug , Aged
4.
Nat Med ; 30(7): 2037-2048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38858523

ABSTRACT

Retatrutide is a novel triple agonist of the glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and glucagon receptors. A 48-week phase 2 obesity study demonstrated weight reductions of 22.8% and 24.2% with retatrutide 8 and 12 mg, respectively. The primary objective of this substudy was to assess mean relative change from baseline in liver fat (LF) at 24 weeks in participants from that study with metabolic dysfunction-associated steatotic liver disease and ≥10% of LF. Here, in this randomized, double-blind, placebo-controlled trial, participants (n = 98) were randomly assigned to 48 weeks of once-weekly subcutaneous retatrutide (1, 4, 8 or 12 mg dose) or placebo. The mean relative change from baseline in LF at 24 weeks was -42.9% (1 mg), -57.0% (4 mg), -81.4% (8 mg), -82.4% (12 mg) and +0.3% (placebo) (all P < 0.001 versus placebo). At 24 weeks, normal LF (<5%) was achieved by 27% (1 mg), 52% (4 mg), 79% (8 mg), 86% (12 mg) and 0% (placebo) of participants. LF reductions were significantly related to changes in body weight, abdominal fat and metabolic measures associated with improved insulin sensitivity and lipid metabolism. The ClinicalTrials.gov registration is NCT04881760 .


Subject(s)
Fatty Liver , Humans , Male , Female , Middle Aged , Fatty Liver/drug therapy , Adult , Double-Blind Method , Receptors, Glucagon/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Liver/drug effects , Liver/metabolism , Obesity/drug therapy , Obesity/complications , Aged , Fatty Acids , Peptides
5.
Trends Endocrinol Metab ; 35(7): 566-568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763780

ABSTRACT

Unimolecular co-agonists at the GLP-1/GIP receptors have recently achieved remarkable anti-obesogenic feats; yet, in a recent Phase 1 clinical trial, Véniant and colleagues report astounding body-weight loss, and an appreciable safety profile, in participants with obesity using the GLP-1R agonist/GIPR antagonist AMG 133.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/metabolism , Obesity/metabolism , Peptides/pharmacology , Animals , Weight Loss/drug effects , Receptors, Glucagon/metabolism , Receptors, Glucagon/antagonists & inhibitors
6.
Diabetes Obes Metab ; 26(6): 2368-2378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38560764

ABSTRACT

AIM: To describe the biomarker strategy that was applied to select survodutide (BI 456906), BI 456908 and BI 456897 from 19 dual glucagon receptor (GCGR)/ glucagon-like peptide-1 receptor (GLP-1R) agonists for in-depth pharmacological profiling, which led to the qualification of survodutide as the clinical development candidate. MATERIALS AND METHODS: Potencies to increase cyclic adenosine monophosphate (cAMP) were determined in Chinese hamster ovary (CHO)-K1 cells stably expressing human GCGR and GLP-1R. Agonism for endogenously expressed receptors was investigated in insulinoma cells (MIN6) for mouse GLP-1R, and in rat primary hepatocytes for the GCGR. In vivo potencies to engage the GLP-1R or GCGR were determined, measuring improvement in oral glucose tolerance (30 nmol/kg) and increase in plasma fibroblast growth factor-21 (FGF21) and liver nicotinamide N-methyltransferase (NNMT) mRNA expression (100 nmol/kg), respectively. Body weight- and glucose-lowering efficacies were investigated in diet-induced obese (DIO) mice and diabetic db/db mice, respectively. RESULTS: Upon acute dosing in lean mice, target engagement biomarkers for the GCGR and GLP-1R demonstrated a significant correlation (Spearman correlation coefficient with p < 0.05) to the in vitro GCGR and GLP-1R potencies for the 19 dual agonists investigated. Survodutide, BI 456908 and BI 456897 were selected for in-depth pharmacological profiling based on the significant improvement in acute oral glucose tolerance achieved (area under the curve [AUC] of 54%, 57% and 60% vs. vehicle) that was comparable to semaglutide (AUC of 45% vs. vehicle), while showing different degrees of in vivo GCGR engagement, as determined by hepatic NNMT mRNA expression (increased by 15- to 17-fold vs. vehicle) and plasma FGF21 concentrations (increased by up to sevenfold vs. vehicle). In DIO mice, survodutide (30 nmol/kg/once daily), BI 456908 (30 nmol/kg/once daily) and BI 456897 (10 nmol/kg/once daily) achieved a body weight-lowering efficacy from baseline of 25%, 27% and 26%, respectively. In db/db mice, survodutide and BI 456908 (10 and 20 nmol/kg/once daily) significantly lowered glycated haemoglobin (0.4%-0.6%); no significant effect was observed for BI 456897 (3 and 7 nmol/kg/once daily). CONCLUSIONS: Survodutide was selected as the clinical candidate based on its balanced dual GCGR/GLP-1R pharmacology, engaging the GCGR for robust body weight-lowering efficacy exceeding that of selective GLP-1R agonists, while achieving antidiabetic efficacy that was comparable to selective GLP-1R agonism. Survodutide is currently being investigated in Phase 3 clinical trials in people living with obesity.


Subject(s)
Cricetulus , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Receptors, Glucagon , Animals , Receptors, Glucagon/agonists , Receptors, Glucagon/genetics , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , CHO Cells , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Humans , Biomarkers/blood , Male , Rats , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Diabetes Mellitus, Type 2/drug therapy
7.
Diabetes Obes Metab ; 26(7): 2634-2644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38562018

ABSTRACT

AIMS: To establish which components of energy balance mediate the clinically significant weight loss demonstrated with use of cotadutide, a glucagon-like peptide-1 (GLP-1)/glucagon receptor dual agonist, in early-phase studies. MATERIALS AND METHODS: We conducted a phase 2a, single-centre, randomized, placebo-controlled trial in overweight and obese adults with type 2 diabetes. Following a 16-day single-blind placebo run-in, participants were randomized 2:1 to double-blind 42-day subcutaneous treatment with cotadutide (100-300 µg daily) or placebo. The primary outcome was percentage weight change. Secondary outcomes included change in energy intake (EI) and energy expenditure (EE). RESULTS: A total of 12 participants (63%) in the cotadutide group and seven (78%) in the placebo group completed the study. The mean (90% confidence interval [CI]) weight change was -4.0% (-4.9%, -3.1%) and -1.4% (-2.7%, -0.1%) for the cotadutide and placebo groups, respectively (p = 0.011). EI was lower with cotadutide versus placebo (-41.3% [-66.7, -15.9]; p = 0.011). Difference in EE (per kJ/kg lean body mass) for cotadutide versus placebo was 1.0% (90% CI -8.4, 10.4; p = 0.784), assessed by doubly labelled water, and -6.5% (90% CI -9.3, -3.7; p < 0.001), assessed by indirect calorimetry. CONCLUSION: Weight loss with cotadutide is primarily driven by reduced EI, with relatively small compensatory changes in EE.


Subject(s)
Diabetes Mellitus, Type 2 , Energy Intake , Energy Metabolism , Obesity , Weight Loss , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Male , Female , Middle Aged , Double-Blind Method , Obesity/drug therapy , Obesity/complications , Energy Intake/drug effects , Weight Loss/drug effects , Energy Metabolism/drug effects , Adult , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Receptors, Glucagon/agonists , Glucagon-Like Peptide 1/agonists , Single-Blind Method , Aged , Glucagon-Like Peptide-1 Receptor/agonists , Treatment Outcome , Peptides
8.
Obesity (Silver Spring) ; 32(6): 1163-1168, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644683

ABSTRACT

OBJECTIVE: The objective of this study was to investigate why different weight-loss interventions result in varying durations of weight loss prior to approaching plateaus. METHODS: A validated mathematical model of energy metabolism and body composition dynamics was used to simulate mean weight- and fat-loss trajectories in response to diet restriction, semaglutide 2.4 mg, tirzepatide 10 mg, and Roux-en-Y gastric bypass (RYGB) surgery interventions. Each intervention was simulated by adjusting two model parameters affecting energy intake to fit the mean weight-loss data. One parameter represented the persistent shift of the system from baseline equilibrium, and the other parameter represented the strength of the feedback control circuit relating weight loss to increased appetite. RESULTS: RYGB surgery resulted in a persistent intervention magnitude more than threefold greater than diet restriction and about double that of tirzepatide and semaglutide. All interventions except diet restriction substantially weakened the appetite feedback control circuit, resulting in an extended period of weight loss prior to the plateau. CONCLUSIONS: These preliminary mathematical modeling results suggest that both glucagon-like peptide 1 (GLP-1) receptor agonism and RYGB surgery interventions act to weaken the appetite feedback control circuit that regulates body weight and induce greater persistent effects to shift the body weight equilibrium compared with diet restriction.


Subject(s)
Gastric Bypass , Glucagon-Like Peptide-1 Receptor , Weight Loss , Weight Loss/physiology , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides , Receptors, Glucagon/agonists , Energy Metabolism/drug effects , Energy Metabolism/physiology , Body Composition , Obesity/surgery , Energy Intake , Models, Biological , Diet, Reducing/methods , Caloric Restriction/methods , Bariatric Surgery , Appetite/drug effects , Appetite/physiology
9.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614123

ABSTRACT

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.


Subject(s)
Cholesterol , Receptors, Glucagon , Signal Transduction , Humans , Receptors, Glucagon/metabolism , Animals , Cholesterol/metabolism , Signal Transduction/physiology , Lipid Metabolism/physiology
10.
Peptides ; 176: 171219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615717

ABSTRACT

People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Glucagon , Obesity , Humans , Obesity/drug therapy , Obesity/metabolism , Glucagon/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism
11.
Mol Metab ; 85: 101947, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677509

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) is characterised by the loss of first-phase insulin secretion. We studied mice with ß-cell selective loss of the glucagon receptor (Gcgrfl/fl X Ins-1Cre), to investigate the role of intra-islet glucagon receptor (GCGR) signalling on pan-islet [Ca2+]I activity and insulin secretion. METHODS: Metabolic profiling was conducted on Gcgrß-cell-/- and littermate controls. Crossing with GCaMP6f (STOP flox) animals further allowed for ß-cell specific expression of a fluorescent calcium indicator. These islets were functionally imaged in vitro and in vivo. Wild-type mice were transplanted with islets expressing GCaMP6f in ß-cells into the anterior eye chamber and placed on a high fat diet. Part of the cohort received a glucagon analogue (GCG-analogue) for 40 days and the control group were fed to achieve weight matching. Calcium imaging was performed regularly during the development of hyperglycaemia and in response to GCG-analogue treatment. RESULTS: Gcgrß-cell-/- mice exhibited higher glucose levels following intraperitoneal glucose challenge (control 12.7 mmol/L ± 0.6 vs. Gcgrß-cell-/- 15.4 mmol/L ± 0.0 at 15 min, p = 0.002); fasting glycaemia was not different to controls. In vitro, Gcgrß-cell-/- islets showed profound loss of pan-islet [Ca2+]I waves in response to glucose which was only partially rescued in vivo. Diet induced obesity and hyperglycaemia also resulted in a loss of co-ordinated [Ca2+]I waves in transplanted islets. This was reversed with GCG-analogue treatment, independently of weight-loss (n = 8). CONCLUSION: These data provide novel evidence for the role of intra-islet GCGR signalling in sustaining synchronised [Ca2+]I waves and support a possible therapeutic role for glucagonergic agents to restore the insulin secretory capacity lost in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , Glucose , Homeostasis , Insulin Secretion , Insulin-Secreting Cells , Receptors, Glucagon , Signal Transduction , Animals , Glucagon/metabolism , Mice , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Receptors, Glucagon/metabolism , Receptors, Glucagon/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Male , Islets of Langerhans/metabolism , Mice, Inbred C57BL , Mice, Knockout , Diet, High-Fat , Blood Glucose/metabolism , Female
12.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612640

ABSTRACT

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Liver Diseases , Metabolic Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Incretins/therapeutic use , Receptors, G-Protein-Coupled , Receptors, Glucagon
13.
Peptides ; 176: 171213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604379

ABSTRACT

Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.


Subject(s)
Adrenocorticotropic Hormone , Glucagon , Glycopeptides , Humans , Glycopeptides/metabolism , Glucagon/metabolism , Glucagon/blood , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Male , Adult , Female , Pituitary Gland/metabolism , Pituitary Gland/drug effects , Hydrocortisone/blood , Receptors, Glucagon/metabolism , Human Growth Hormone/metabolism , Growth Hormone/metabolism , Growth Hormone/blood , Middle Aged
14.
Am J Physiol Endocrinol Metab ; 326(6): E747-E766, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38477666

ABSTRACT

Chronic kidney disease is a debilitating condition associated with significant morbidity and mortality. In recent years, the kidney effects of incretin-based therapies, particularly glucagon-like peptide-1 receptor agonists (GLP-1RAs), have garnered substantial interest in the management of type 2 diabetes and obesity. This review delves into the intricate interactions between the kidney, GLP-1RAs, and glucagon, shedding light on their mechanisms of action and potential kidney benefits. Both GLP-1 and glucagon, known for their opposing roles in regulating glucose homeostasis, improve systemic risk factors affecting the kidney, including adiposity, inflammation, oxidative stress, and endothelial function. Additionally, these hormones and their pharmaceutical mimetics may have a direct impact on the kidney. Clinical studies have provided evidence that incretins, including those incorporating glucagon receptor agonism, are likely to exhibit improved kidney outcomes. Although further research is necessary, receptor polypharmacology holds promise for preserving kidney function through eliciting vasodilatory effects, influencing volume and electrolyte handling, and improving systemic risk factors.


Subject(s)
Incretins , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/physiopathology , Incretins/therapeutic use , Incretins/pharmacology , Animals , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Kidney/drug effects , Kidney/metabolism , Glucagon/metabolism
15.
Biomed Pharmacother ; 174: 116485, 2024 May.
Article in English | MEDLINE | ID: mdl-38518602

ABSTRACT

BACKGROUND: Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH: We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS: The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION: We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.


Subject(s)
Diet, High-Fat , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Immunoglobulin Fc Fragments , Obesity , Receptors, Glucagon , Recombinant Fusion Proteins , Animals , Humans , Mice , Rats , Diet, High-Fat/adverse effects , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Recombinant Fusion Proteins/pharmacology , Weight Loss/drug effects
17.
Br J Pharmacol ; 181(12): 1874-1885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403793

ABSTRACT

BACKGROUND AND PURPOSE: Cotadutide is a dual GLP-1 and glucagon receptor agonist with balanced agonistic activity at each receptor designed to harness the advantages on promoting liver health, weight loss and glycaemic control. We characterised the effects of cotadutide on glucose, insulin, GLP-1, GIP, and glucagon over time in a quantitative manner using our glucose dynamics systems model (4GI systems model), in combination with clinical data from a multiple ascending dose/Phase 2a (MAD/Ph2a) study in overweight and obese subjects with a history of Type 2 diabetes mellitus (NCT02548585). EXPERIMENTAL APPROACH: The cotadutide PK-4GI systems model was calibrated to clinical data by re-estimating only food related parameters. In vivo cotadutide efficacy was scaled based on in vitro potency. The model was used to explore the effect of weight loss on insulin sensitivity and predict the relative contribution of the GLP-1 and glucagon receptor agonistic effects on glucose. KEY RESULTS: Cotadutide MAD/Ph2a clinical endpoints were successfully predicted. The 4GI model captured a positive effect of weight loss on insulin sensitivity and showed that the stimulating effect of glucagon on glucose production counteracts the GLP-1 receptor-mediated decrease in glucose, resulting in a plateau for glucose decrease around a 200-µg cotadutide dose. CONCLUSION AND IMPLICATIONS: The 4GI quantitative systems pharmacology model was able to predict the clinical effects of cotadutide on glucose, insulin, GLP-1, glucagon and GIP given known in vitro potency. The analyses demonstrated that the quantitative systems pharmacology model, and its successive refinements, will be a valuable tool to support the clinical development of cotadutide and related compounds.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents , Models, Biological , Receptors, Glucagon , Humans , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hypoglycemic Agents/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glycemic Control , Middle Aged , Female , Adult , Glucagon/pharmacology , Glucagon/metabolism , Insulin/metabolism , Insulin/pharmacology , Obesity/drug therapy , Obesity/metabolism , Glucagon-Like Peptide 1/agonists , Glucagon-Like Peptide 1/pharmacology , Dose-Response Relationship, Drug , Peptides
18.
Endocrinol Metab (Seoul) ; 39(1): 12-22, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356208

ABSTRACT

Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Receptors, Gastrointestinal Hormone , Humans , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Receptors, Glucagon/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/physiology , Gastric Inhibitory Polypeptide/therapeutic use , Obesity/drug therapy , Weight Loss , Receptors, G-Protein-Coupled , Glucose , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
19.
Clin Pharmacokinet ; 63(2): 255-267, 2024 02.
Article in English | MEDLINE | ID: mdl-38236561

ABSTRACT

BACKGROUND: Cotadutide is a dual glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor agonist peptide. The objective of this analysis was to develop a population pharmacokinetic (popPK) model of cotadutide, and to identify any potential effect on the PK from intrinsic and extrinsic covariates. METHODS: The popPK analysis utilized a non-linear mixed-effects modeling approach using the data from 10 clinical studies in different participant categories following once-daily subcutaneous dose administration ranging from 20 to 600 µg. Additionally, the covariates affecting cotadutide exposure were quantified, and the model performance was evaluated through the prediction-corrected visual predictive checks. RESULTS: A one-compartment model with first-order absorption and elimination adequately described the data as confirmed via visual predictive check plots and parameter plausibility. The mean values for cotadutide apparent clearance (CL/F), apparent volume of distribution (V/F), absorption rate constant (Ka), and half-life were 1.05 L/h, 20.0 L, 0.38 h-1, and 13.3 hours, respectively. Covariate modeling identified body weight, alanine transaminase, albumin, anti-drug antibody (ADA) titer values, formulation strength and injection device, and participant categories as significant covariates on PK parameters, where ADAs have been identified to decrease cotadutide clearance. The model demonstrated that a 150-kg participant was estimated to have 30% lower for both AUC and Cmax and a 66 kg participant was estimated to have 35% higher for both AUC and Cmax relative to a reference individual with a median weight of 96 kg. CONCLUSIONS: A popPK model was developed for cotadutide with cotadutide clinical data, and the impact of the statistically significant covariates identified was not considered clinically meaningful. The popPK model will be used to evaluate exposure-response relationships for cotadutide clinical data.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/drug therapy , Receptors, Glucagon , Models, Biological , Peptides , Obesity , Glucagon-Like Peptide 1
20.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38237602

ABSTRACT

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Subject(s)
Receptors, Glucagon , Renal Insufficiency, Chronic , Humans , Animals , Mice , Receptors, Glucagon/metabolism , Down-Regulation , Mice, Knockout , Kidney/metabolism , Homeostasis/physiology , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL