Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.030
Filter
1.
Neural Dev ; 19(1): 14, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068495

ABSTRACT

Gephyrin is thought to play a critical role in clustering glycine receptors at synapses within the central nervous system (CNS). The main in vivo evidence for this comes from Gephyrin (Gphn)-null mice, where glycine receptors are depleted from synaptic regions. However, these mice die at birth, possibly due to impaired molybdenum cofactor (MoCo) synthesis, an essential role Gephyrin assumes throughout an animal. This complicates the interpretation of synaptic phenotypes in Gphn-null mice and raises the question whether the synaptic and enzymatic functions of Gephyrin can be investigated separately. Here, we generated a gephyrinb zebrafish mutant, vo84, that almost entirely lacks Gephyrin staining in the spinal cord. gephyrinbvo84 mutants exhibit normal gross morphology at both larval and adult stages. In contrast to Gphn-null mice, gephyrinbvo84 mutants exhibit normal motor activity and MoCo-dependent enzyme activity. Instead, gephyrinbvo84 mutants display impaired rheotaxis and increased mortality in late development. To investigate what may mediate these defects in gephyrinbvo84 mutants, we examined the cell density of neurons and myelin in the spinal cord and found no obvious changes. Surprisingly, in gephyrinbvo84 mutants, glycine receptors are still present in the synaptic regions. However, their abundance is reduced, potentially contributing to the observed defects. These findings challenge the notion that Gephyrin is absolutely required to cluster glycine receptors at synapses and reveals a new role of Gephyrin in regulating glycine receptor abundance and rheotaxis. They also establish a powerful new model for studying the mechanisms underlying synaptic, rather than enzymatic, functions of Gephyrin.


Subject(s)
Carrier Proteins , Membrane Proteins , Mutation , Spinal Cord , Synapses , Zebrafish , Animals , Synapses/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Spinal Cord/metabolism , Mutation/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Receptors, Glycine/metabolism , Receptors, Glycine/genetics , Molybdenum Cofactors , Pteridines , Neurons/metabolism , Myelin Sheath/metabolism , Motor Activity/physiology , Motor Activity/genetics , Animals, Genetically Modified
2.
Cell Mol Life Sci ; 81(1): 268, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884814

ABSTRACT

It has been recently established that GPR158, a class C orphan G protein-coupled receptor, serves as a metabotropic glycine receptor. GPR158 is highly expressed in the nucleus accumbens (NAc), a major input structure of the basal ganglia that integrates information from cortical and subcortical structures to mediate goal-directed behaviors. However, whether glycine modulates neuronal activity in the NAc through GPR158 activation has not been investigated yet. Using whole-cell patch-clamp recordings, we found that glycine-dependent activation of GPR158 increased the firing rate of NAc medium spiny neurons (MSNs) while it failed to significantly affect the excitability of cholinergic interneurons (CIN). In MSNs GPR158 activation reduced the latency to fire, increased the action potential half-width, and reduced action potential afterhyperpolarization, effects that are all consistent with negative modulation of potassium M-currents, that in the central nervous system are mainly carried out by Kv7/KCNQ-channels. Indeed, we found that the GPR158-induced increase in MSN excitability was associated with decreased M-current amplitude, and selective pharmacological inhibition of the M-current mimicked and occluded the effects of GPR158 activation. In addition, when the protein kinase A (PKA) or extracellular signal-regulated kinase (ERK) signaling was pharmacologically blocked, modulation of MSN excitability by GPR158 activation was suppressed. Moreover, GPR158 activation increased the phosphorylation of ERK and Kv7.2 serine residues. Collectively, our findings suggest that GPR158/PKA/ERK signaling controls MSN excitability via Kv7.2 modulation. Glycine-dependent activation of GPR158 may significantly affect MSN firing in vivo, thus potentially mediating specific aspects of goal-induced behaviors.


Subject(s)
Action Potentials , Glycine , Neurons , Nucleus Accumbens , Receptors, G-Protein-Coupled , Animals , Glycine/pharmacology , Glycine/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/cytology , Neurons/metabolism , Neurons/drug effects , Receptors, G-Protein-Coupled/metabolism , Male , Action Potentials/drug effects , Mice , Mice, Inbred C57BL , Receptors, Glycine/metabolism , Patch-Clamp Techniques , Phosphorylation/drug effects , Medium Spiny Neurons
3.
Behav Brain Res ; 471: 115086, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38825024

ABSTRACT

The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.


Subject(s)
Glycine , Memory, Long-Term , Rats, Wistar , Receptors, Glycine , Spatial Memory , Taurine , Animals , Receptors, Glycine/metabolism , Receptors, Glycine/drug effects , Male , Glycine/pharmacology , Rats , Spatial Memory/drug effects , Spatial Memory/physiology , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Taurine/pharmacology , Taurine/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Memory Consolidation/drug effects , Memory Consolidation/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Maze Learning/drug effects , Maze Learning/physiology
4.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723884

ABSTRACT

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Ethanol , Mice, Transgenic , Nucleus Accumbens , Receptors, Glycine , Reward , Animals , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alzheimer Disease/metabolism , Receptors, Glycine/metabolism , Ethanol/administration & dosage , Ethanol/pharmacology , Mice , Male , Neurons/metabolism , Mice, Inbred C57BL , Alcohol Drinking/metabolism
5.
J Phys Chem B ; 128(20): 4996-5007, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38747451

ABSTRACT

Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.


Subject(s)
Cholesterol , Molecular Dynamics Simulation , Receptors, Glycine , Receptors, Glycine/chemistry , Receptors, Glycine/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Animals , Allosteric Site , Zebrafish
6.
Life Sci ; 348: 122673, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38679193

ABSTRACT

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.


Subject(s)
Ethanol , Gene Knock-In Techniques , Receptors, Glycine , Animals , Ethanol/pharmacology , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Mice , Male , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Alcohol Drinking/genetics , Alcohol Drinking/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/drug effects , Mice, Transgenic , Receptors, GABA-A
7.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38553047

ABSTRACT

Glycinergic neurons regulate nociceptive and pruriceptive signaling in the spinal cord, but the identity and role of the glycine-regulated neurons are not fully known. Herein, we have characterized spinal glycine receptor alpha 3 (Glra3) subunit-expressing neurons in Glra3-Cre female and male mice. Glra3-Cre(+) neurons express Glra3, are located mainly in laminae III-VI, and respond to glycine. Chemogenetic activation of spinal Glra3-Cre(+) neurons induced biting/licking, stomping, and guarding behaviors, indicative of both a nociceptive and pruriceptive role for this population. Chemogenetic inhibition did not affect mechanical or thermal responses but reduced behaviors evoked by compound 48/80 and chloroquine, revealing a pruriceptive role for these neurons. Spinal cells activated by compound 48/80 or chloroquine express Glra3, further supporting the phenotype. Retrograde tracing revealed that spinal Glra3-Cre(+) neurons receive input from afferents associated with pain and itch, and dorsal root stimulation validated the monosynaptic input. In conclusion, these results show that spinal Glra3(+) neurons contribute to acute communication of compound 48/80- and chloroquine-induced itch in hairy skin.


Subject(s)
Pruritus , Receptors, Glycine , Spinal Cord , Animals , Pruritus/chemically induced , Pruritus/metabolism , Mice , Receptors, Glycine/metabolism , Male , Female , Spinal Cord/metabolism , Spinal Cord/drug effects , Chloroquine/pharmacology , Mice, Transgenic , Skin/innervation , Mice, Inbred C57BL , p-Methoxy-N-methylphenethylamine/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/physiology
8.
Sci Adv ; 10(5): eadj3808, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306424

ABSTRACT

G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.


Subject(s)
Pain , Receptors, G-Protein-Coupled , Humans , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Glycine/metabolism , Signal Transduction , Spinal Cord/metabolism
9.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200187, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215349

ABSTRACT

BACKGROUND AND OBJECTIVES: Stiff-person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM) are rare neurologic disorders of the CNS. Until now, exclusive GlyRα subunit-binding autoantibodies with subsequent changes in function and surface numbers were reported. GlyR autoantibodies have also been described in patients with focal epilepsy. Autoimmune reactivity against the GlyRß subunits has not yet been shown. Autoantibodies against GlyRα1 target the large extracellular N-terminal domain. This domain shares a high degree of sequence homology with GlyRß making it not unlikely that GlyRß-specific autoantibody (aAb) exist and contribute to the disease pathology. METHODS: In this study, we investigated serum samples from 58 patients for aAb specifically detecting GlyRß. Studies in microarray format, cell-based assays, and primary spinal cord neurons and spinal cord tissue immunohistochemistry were performed to determine specific GlyRß binding and define aAb binding to distinct protein regions. Preadsorption approaches of aAbs using living cells and the purified extracellular receptor domain were further used. Finally, functional consequences for inhibitory neurotransmission upon GlyRß aAb binding were resolved by whole-cell patch-clamp recordings. RESULTS: Among 58 samples investigated, cell-based assays, tissue analysis, and preadsorption approaches revealed 2 patients with high specificity for GlyRß aAb. Quantitative protein cluster analysis demonstrated aAb binding to synaptic GlyRß colocalized with the scaffold protein gephyrin independent of the presence of GlyRα1. At the functional level, binding of GlyRß aAb from both patients to its target impair glycine efficacy. DISCUSSION: Our study establishes GlyRß as novel target of aAb in patients with SPS/PERM. In contrast to exclusively GlyRα1-positive sera, which alter glycine potency, aAbs against GlyRß impair receptor efficacy for the neurotransmitter glycine. Imaging and functional analyses showed that GlyRß aAbs antagonize inhibitory neurotransmission by affecting receptor function rather than localization.


Subject(s)
Autoimmune Diseases , Receptors, Glycine , Stiff-Person Syndrome , Humans , Autoantibodies , Glycine , Receptors, Glycine/immunology , Receptors, Glycine/metabolism , Stiff-Person Syndrome/immunology
10.
J Neurosci ; 44(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37963764

ABSTRACT

Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and ß subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRß, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRß that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRß under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRß was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRß enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2ß complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.


Subject(s)
Receptors, Glycine , Spinal Cord , Humans , Adult , Mice , Animals , Receptors, Glycine/metabolism , Virulence , Spinal Cord/metabolism , Glycine/metabolism , Synaptic Transmission/genetics
11.
Neurochem Res ; 49(3): 684-691, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38017313

ABSTRACT

In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1-α3 and ß) in streptozotocin-induced diabetic Long-Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and ß subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Glycine/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Streptozocin/toxicity , Diabetic Neuropathies/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Rats, Long-Evans , Spinal Cord/metabolism , RNA, Messenger/metabolism
12.
Biomolecules ; 13(12)2023 12 07.
Article in English | MEDLINE | ID: mdl-38136628

ABSTRACT

Glycine receptors (GlyRs) are glycine-gated inhibitory pentameric ligand-gated ion channels composed of α or α + ß subunits. A number of structures of these proteins have been reported, but to date, these have only revealed details of the extracellular and transmembrane domains, with the intracellular domain (ICD) remaining uncharacterised due to its high flexibility. The ICD is a region that can modulate function in addition to being critical for receptor localisation and clustering via proteins such as gephyrin. Here, we use modelling and molecular dynamics (MD) to reveal details of the ICDs of both homomeric and heteromeric GlyR. At their N and C ends, both the α and ß subunit ICDs have short helices, which are major sites of stabilising interactions; there is a large flexible loop between them capable of forming transient secondary structures. The α subunit can affect the ß subunit ICD structure, which is more flexible in a 4α2:1ß than in a 4α1:1ß GlyR. We also explore the effects of gephyrin binding by creating GlyR models bound to the gephyrin E domain; MD simulations suggest these are more stable than the unbound forms, and again there are α subunit-dependent differences, despite the fact the gephyrin binds to the ß subunit. The bound models also suggest that gephyrin causes compaction of the ICD. Overall, the data expand our knowledge of this important receptor protein and in particular clarify features of the underexplored ICD.


Subject(s)
Molecular Dynamics Simulation , Receptors, Glycine , Receptors, Glycine/metabolism , Carrier Proteins/metabolism , Glycine
13.
Addict Biol ; 28(12): e13349, 2023 12.
Article in English | MEDLINE | ID: mdl-38017639

ABSTRACT

Alcohol use disorder is one of the major psychiatric disorders worldwide, and there are many factors and effects contributing to the disorder, for example, the experience of ethanol reward. The rewarding and reinforcing properties of ethanol have been linked to activation of the mesolimbic dopamine system, an effect that appears to involve glycine receptors (GlyRs) in the nucleus accumbens. On which neuronal subtypes these receptors are located is, however, not known. The aim of this study was to explore the role of GlyRs on cholinergic interneurons (CIN) in sustaining extracellular dopamine levels and in ethanol-induced dopamine release. To this end, CIN were ablated by anti-choline acetyltransferase-saporin administered locally in the nucleus accumbens of male Wistar rats. Changes in dopamine levels induced by ablation, ethanol and/or a GlyR antagonist were monitored using in vivo microdialysis. The GlyRs antagonist strychnine depressed extracellular dopamine in a similar manner independent on local ablation, suggesting that GlyRs on CIN are not important for sustaining the extracellular dopamine tone. However, a low concentration of strychnine hampered ethanol-induced dopamine release in sham-treated animals, whilst no reduction was seen in ablated animals, suggesting that GlyRs located on CIN are involved in ethanol-induced dopamine release. Further, in ablated rats, ethanol-induced increases of the extracellular levels of the GlyR agonists glycine and taurine were attenuated. In conclusion, this study suggests that CIN are not important for GlyR-mediated regulation of basal dopamine output, but that CIN ablation blunts the ethanol-induced dopamine release, putatively by reducing the release of GlyR agonists.


Subject(s)
Receptors, Glycine , Strychnine , Humans , Rats , Male , Animals , Receptors, Glycine/metabolism , Rats, Wistar , Strychnine/pharmacology , Ethanol/pharmacology , Nucleus Accumbens , Dopamine , Interneurons/metabolism , Cholinergic Agents/pharmacology , Microdialysis
14.
eNeuro ; 10(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37903619

ABSTRACT

Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.


Subject(s)
Glycine , Receptors, Glycine , Mice , Animals , Humans , Receptors, Glycine/metabolism , Glycine/metabolism , Mutation, Missense , Mutation , Alanine/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Glycine Plasma Membrane Transport Proteins/metabolism
15.
Nat Commun ; 14(1): 6377, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821459

ABSTRACT

Hetero-pentameric Cys-loop receptors constitute a major type of neurotransmitter receptors that enable signal transmission and processing in the nervous system. Despite intense investigations into their working mechanism and pharmaceutical potentials, how neurotransmitters activate these receptors remains unclear due to the lack of high-resolution structural information in the activated open state. Here we report near-atomic resolution structures resolved in digitonin consistent with all principle functional states of the human α1ß GlyR, which is a major Cys-loop receptor that mediates inhibitory neurotransmission in the central nervous system of adults. Glycine binding induces cooperative and symmetric structural rearrangements in the neurotransmitter-binding extracellular domain but asymmetrical pore dilation in the transmembrane domain. Symmetric response in the extracellular domain is consistent with electrophysiological data showing cooperative glycine activation and contribution from both α1 and ß subunits. A set of functionally essential but differentially charged amino acid residues in the transmembrane domain of the α1 and ß subunits explains asymmetric activation. These findings provide a foundation for understanding how the gating of the Cys-loop receptor family members diverges to accommodate specific physiological environments.


Subject(s)
Cysteine Loop Ligand-Gated Ion Channel Receptors , Receptors, Glycine , Humans , Receptors, Glycine/metabolism , Ion Channel Gating/physiology , Cysteine Loop Ligand-Gated Ion Channel Receptors/chemistry , Cysteine Loop Ligand-Gated Ion Channel Receptors/metabolism , Synaptic Transmission , Glycine
16.
Pharmacology ; 108(5): 469-477, 2023.
Article in English | MEDLINE | ID: mdl-37607511

ABSTRACT

INTRODUCTION: Complex spikes (CSs) activity of cerebellar Purkinje cells plays critical roles in motor coordination and motor learning by transferring information to cerebellar cortex, which is an accessible and useful model for neurophysiological investigation. Etomidate is an ultrashort-acting nonbarbiturate intravenous anesthetic, which inhibits the spontaneous activity of cerebellar Purkinje cells through activation of GABAA and glycine receptors in vivo in mice. However, the effect of etomidate on the spontaneous CSs activity of cerebellar Purkinje cells in living mouse is not clear. METHODS: We here investigated the effects of etomidate on spontaneous CSs activity of cerebellar Purkinje cell in urethane-anesthetized mice by electrophysiology recording technique and pharmacological methods. RESULTS: Our results showed that cerebellar surface perfusion of etomidate significantly depressed the activity of spontaneous CSs, which exhibited decreases in the number of spikelets and the area under curve (AUC) of the CSs. The etomidate-produced inhibition of CSs activity was persisted in the presence of GABAA and glycine receptors antagonists. However, application of cannabinoid 1 (CB1) receptor antagonist, AM-251, completely blocked the etomidate-induced inhibition of CSs. Furthermore, application of the CB1 receptor agonist, WIN55212-2, induced a decrease of CSs. Moreover, in the presence of a specific protein kinase A (PKA) inhibitor, KT5720, etomidate failed to produce decreases in the spikelets number and the AUC of the spontaneous CSs. CONCLUSION: These results indicate that cerebellar surface application of etomidate facilitates CB1 receptor activity resulting in a depression of spontaneous CSs activity of Purkinje cells via PKA signaling pathway in mouse cerebellar cortex. Our present results suggest that the etomidate administration may impair the function of cerebellar cortical neuronal circuitry by inhibition of the climbing fiber - Purkinje cells synaptic transmission through activation of CB1 receptors in vivo in mice.


Subject(s)
Cannabinoids , Etomidate , Animals , Mice , Purkinje Cells , Etomidate/pharmacology , Receptors, Glycine/metabolism , Receptor, Cannabinoid, CB1/metabolism , Anesthetics, Intravenous/pharmacology , Cannabinoids/pharmacology
17.
BMC Neurosci ; 24(1): 32, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264306

ABSTRACT

BACKGROUND: The glycinergic system plays an important inhibitory role in the mouse central nervous system, where glycine controls the excitability of spinal itch- and pain-mediating neurons. Impairments of the glycine receptors can cause motor and sensory deficits. Glycine exerts inhibition through interaction with ligand-gated ion channels composed of alpha and beta subunits. We have investigated the mRNA expression of the glycine receptor alpha 3 (Glra3) subunit in the nervous system as well as in several peripheral organs of female and male mice. RESULTS: Single-cell RNA sequencing (scRNA-seq) data analysis on the Zeisel et al. (2018) dataset indicated widespread but low expression of Glra3 in vesicular glutamate transporter 2 (Vglut2, Slc17a6) positive and vesicular inhibitory amino acid transporter (Viaat, Slc32a1)positive neurons of the mouse central nervous system. Highest occurrence of Glra3 expression was identified in the cortex, amygdala, and striatal regions, as well as in the hypothalamus, brainstem and spinal cord. Bulk quantitative real-time-PCR (qRT-PCR) analysis demonstrated Glra3 expression in cortex, amygdala, striatum, hypothalamus, thalamus, pituitary gland, hippocampus, cerebellum, brainstem, and spinal cord. Additionally, male mice expressed higher levels of Glra3 in all investigated brain areas compared with female mice. Lastly, RNAscope spatially validated Glra3 expression in the areas indicated by the single-cell and bulk analyses. Moreover, RNAscope analysis confirmed co-localization of Glra3 with Slc17a6 or Slc32a1 in the central nervous system areas suggested from the single-cell data. CONCLUSIONS: Glra3 expression is low but widespread in the mouse central nervous system. Clear sex-dependent differences have been identified, indicating higher levels of Glra3 in several telencephalic and diencephalic areas, as well as in cerebellum and brainstem, in male mice compared with female mice.


Subject(s)
Glycine , Receptors, Glycine , Mice , Male , Female , Animals , Receptors, Glycine/metabolism , Glycine/metabolism , Neurons/metabolism , Brain/metabolism , Spinal Cord/metabolism , RNA, Messenger
18.
Trends Neurosci ; 46(8): 667-681, 2023 08.
Article in English | MEDLINE | ID: mdl-37248111

ABSTRACT

GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.


Subject(s)
Receptors, Glycine , Receptors, N-Methyl-D-Aspartate , Humans , Brain/metabolism , Glycine/metabolism , Glycine/pharmacology , Neurons/metabolism , Receptors, Glycine/metabolism
19.
Mol Brain ; 16(1): 44, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217969

ABSTRACT

Glycine receptors (GlyRs) are ligand-gated chloride channels comprising alpha (α1-4) and ß subunits. The GlyR subunits play major roles in the mammalian central nervous system, ranging from regulating simple sensory information to modulating higher-order brain function. Unlike the other GlyR subunits, GlyR α4 receives relatively little attention because the human ortholog lacks a transmembrane domain and is thus considered a pseudogene. A recent genetic study reported that the GLRA4 pseudogene locus on the X chromosome is potentially involved in cognitive impairment, motor delay and craniofacial anomalies in humans. The physiologic roles of GlyR α4 in mammal behavior and its involvement in disease, however, are not known. Here we examined the temporal and spatial expression profile of GlyR α4 in the mouse brain and subjected Glra4 mutant mice to a comprehensive behavioral analysis to elucidate the role of GlyR α4 in behavior. The GlyR α4 subunit was mainly enriched in the hindbrain and midbrain, and had relatively lower expression in the thalamus, cerebellum, hypothalamus, and olfactory bulb. In addition, expression of the GlyR α4 subunit gradually increased during brain development. Glra4 mutant mice exhibited a decreased amplitude and delayed onset of the startle response compared with wild-type littermates, and increased social interaction in the home cage during the dark period. Glra4 mutants also had a low percentage of entries into open arms in the elevated plus-maze test. Although mice with GlyR α4 deficiency did not show motor and learning abnormalities reported to be associated in human genomics studies, they exhibited behavioral changes in startle response and social and anxiety-like behavior. Our data clarify the spatiotemporal expression pattern of the GlyR α4 subunit and suggest that glycinergic signaling modulates social, startle, and anxiety-like behaviors in mice.


Subject(s)
Central Nervous System , Receptors, Glycine , Mice , Humans , Animals , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Central Nervous System/metabolism , Mammals/metabolism
20.
Mol Med ; 29(1): 53, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069517

ABSTRACT

Pain, although unpleasant, is an essential warning mechanism against injury and damage of the organism. An intricate network of specialised sensors and transmission systems contributes to reception, transmission and central sensitization of pain. Here, we briefly introduce some of the main aspects of pain signal transmission, including nociceptors and nociceptive signals, mechanisms of inflammatory and neuropathic pain, and the situation of diabetes-associated neuropathic pain. The role of glia-astrocytes, microglia, satellite glia cells-and their specific channels, transporters and signaling pathways is described. A focus is on the contribution of inhibitory synaptic signaling to nociception and a possible role of glycine receptors in glucose-mediated analgesia and treatment-induced diabetic neuropathy. Inhibitory receptors such as GABAA- and glycine receptors are important contributors to nociceptive signaling; their contribution to altered pain sensation in diabetes may be of clinical relevance, and they could be promising therapeutic targets towards the development of novel analgesics.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Neuralgia , Humans , Receptors, Glycine/metabolism , Receptors, Glycine/therapeutic use , Diabetic Neuropathies/etiology , Neuralgia/etiology , Neuralgia/metabolism , Signal Transduction , Neuroglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL