Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.309
1.
PLoS One ; 19(6): e0304985, 2024.
Article En | MEDLINE | ID: mdl-38843278

Signal regulatory protein alpha (SIRPα) is an immune inhibitory receptor on myeloid cells including macrophages and dendritic cells, which binds to CD47, a ubiquitous self-associated molecule. SIRPα-CD47 interaction is exploited by cancer cells to suppress anti-tumor activity of myeloid cells, therefore emerging as a novel immune checkpoint for cancer immunotherapy. In blood cancer, several SIRPα-CD47 blockers have shown encouraging monotherapy activity. However, the anti-tumor activity of SIRPα-CD47 blockers in solid tumors seems limited, suggesting the need for combination therapies to fully exploit the myeloid immune checkpoint in solid tumors. Here we tested whether combination of SIRPα-CD47 blocker with antibody-drug conjugate bearing a topoisomerase I inhibitor DXd (DXd-ADC) would enhance anti-tumor activity in solid tumors. To this end, DS-1103a, a newly developed anti-human SIRPα antibody (Ab), was assessed for the potential combination benefit with datopotamab deruxtecan (Dato-DXd) and trastuzumab deruxtecan (T-DXd), DXd-ADCs targeting human trophoblast cell-surface antigen 2 and human epidermal growth factor receptor 2, respectively. DS-1103a inhibited SIRPα-CD47 interaction and enhanced antibody-dependent cellular phagocytosis of Dato-DXd and T-DXd against human cancer cells. In a whole cancer cell vaccination model, vaccination with DXd-treated cancer cells led to activation of tumor-specific T cells when combined with an anti-mouse SIRPα (anti-mSIRPα) Ab, implying the benefit of combining DXd-ADCs with anti-SIRPα Ab on anti-tumor immunity. Furthermore, in syngeneic mouse models, both Dato-DXd and T-DXd combination with anti-mSIRPα Ab showed stronger anti-tumor activity over the monotherapies. Taken together, this study provides a preclinical rationale of novel therapies for solid tumors combining SIRPα-CD47 blockers with DXd-ADCs.


Antigens, Differentiation , CD47 Antigen , Immunoconjugates , Receptors, Immunologic , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , Animals , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Humans , Mice , Immunoconjugates/pharmacology , Antigens, Differentiation/immunology , Cell Line, Tumor , Female , Trastuzumab/pharmacology , Topoisomerase I Inhibitors/pharmacology , Immunotherapy/methods , Mice, Inbred BALB C
2.
Front Immunol ; 15: 1362152, 2024.
Article En | MEDLINE | ID: mdl-38835768

Introduction: The effector function of T cells is regulated via immune checkpoints, activating or inhibiting the immune response. The BTLA-HVEM complex, the inhibitory immune checkpoint, may act as one of the tumor immune escape mechanisms. Therefore, interfering with the binding of these proteins can prove beneficial in cancer treatment. Our study focused on peptides interacting with HVEM at the same place as BTLA, thus disrupting the BTLA-HVEM interaction. These peptides' structure and amino acid sequences are based on the gD protein, the ligand of HVEM. Here, we investigated their immunomodulatory potential in melanoma patients. Methods: Flow cytometry analyses of activation, proliferation, and apoptosis of T cells from patients were performed. Additionally, we evaluated changes within the T cell memory compartment. Results: The most promising compound - Pep(2), increased the percentages of activated T cells and promoted their proliferation. Additionally, this peptide affected the proliferation rate and apoptosis of melanoma cell line in co-culture with T cells. Discussion: We conclude that the examined peptide may act as a booster for the immune system. Moreover, the adjuvant and activating properties of the gD-derived peptide could be used in a combinatory therapy with currently used ICI-based treatment. Our studies also demonstrate that even slight differences in the amino acid sequence of peptides and any changes in the position of the disulfide bond can strongly affect the immunomodulatory properties of compounds.


Lymphocyte Activation , Melanoma , Receptors, Immunologic , Receptors, Tumor Necrosis Factor, Member 14 , T-Lymphocytes , Humans , Melanoma/immunology , Melanoma/drug therapy , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Female , Male , Middle Aged , Cell Proliferation/drug effects , Aged , Cell Line, Tumor , Adult , Apoptosis/drug effects , Peptides/pharmacology , Peptides/immunology , Gangliosides/immunology
3.
J Clin Invest ; 134(11)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38828721

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Macrophages , Phagocytosis , Receptors, Immunologic , Humans , Animals , Mice , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Macrophages/immunology , Macrophages/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation/immunology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line, Tumor , Xenograft Model Antitumor Assays , CD47 Antigen/immunology , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism
4.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758808

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
5.
Sci Rep ; 14(1): 10661, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724599

We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.


Antibodies, Bispecific , Cricetulus , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , CHO Cells , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
6.
Int Immunopharmacol ; 133: 112055, 2024 May 30.
Article En | MEDLINE | ID: mdl-38677094

As a transmembrane protein, CD300e is primarily expressed in myeloid cells. It belongs to the CD300 glycoprotein family, functioning as an immune-activating receptor. Dysfunction of CD300e has been suggested in many diseases, such as infections, immune disorders, obesity, and diabetes, signifying its potential as a key biomarker for disease diagnosis and treatment. This review is aimed to explore the roles and potential mechanisms of CD300e in regulating oxidative stress, immune cell activation, tissue damage and repair, and lipid metabolism, shedding light on its role as a diagnostic marker or a therapeutic target, particularly for infections and autoimmune disorders.


Receptors, Immunologic , Humans , Animals , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Oxidative Stress , Lipid Metabolism , Autoimmune Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Biomarkers
7.
Nature ; 628(8009): 854-862, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570678

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Intestinal Mucosa , Mucous Membrane , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Antigens, CD/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Single-Cell Gene Expression Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , Transcriptome
8.
Curr Med Chem ; 31(13): 1634-1645, 2024.
Article En | MEDLINE | ID: mdl-38666504

Immune checkpoint inhibitors (ICIs) have shown unprecedented efficacy in treating many advanced cancers. Although FDA-approved ICIs have shown promising efficacy in treating many advanced cancers, their application is greatly limited by the low response rate, immune-related adverse events (irAE), and drug resistance. Developing novel ICIs holds great promise to improve the survival and prognosis of advanced cancer patients. T-Cell immunoglobulin and ITIM domain (TIGIT) is an inhibitory receptor expressed on T cells, natural killer (NK) cells, and T regulatory cells. Increasing reports have shown that the disrupting CD155-TIGIT axis could activate the immune system and restore antitumor immune response. This review briefly summarized the role of TIGIT in tumor immune escape and targeting CD155-TIGIT axis drugs in preclinical and clinical trials for cancer immunotherapy.


Immunotherapy , Neoplasms , Receptors, Immunologic , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Virus/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals
9.
Clin Cancer Res ; 30(11): 2300-2302, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38568191

Outcomes in mature T-cell lymphomas remain poor, with previous attempts at developing mAbs compromised by limited efficacy and significant immunocompromise. Anti-killer cell lectin-like receptor G1 mAbs may have greater selectivity and specificity for malignant T cells and avoid the toxicity concerns with previous agents. See related article by Assatova et al., p. 2514.


Lectins, C-Type , Humans , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/antagonists & inhibitors , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/drug therapy , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Animals , Antibodies, Monoclonal/therapeutic use
10.
Cancer Biol Med ; 21(4)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38425216

OBJECTIVE: The human cluster of differentiation (CD)300A, a type-I transmembrane protein with immunoreceptor tyrosine-based inhibitory motifs, was investigated as a potential immune checkpoint for human natural killer (NK) cells targeting hematologic malignancies (HMs). METHODS: We implemented a stimulation system involving the CD300A ligand, phosphatidylserine (PS), exposed to the outer surface of malignant cells. Additionally, we utilized CD300A overexpression, a CD300A blocking system, and a xenotransplantation model to evaluate the impact of CD300A on NK cell efficacy against HMs in in vitro and in vivo settings. Furthermore, we explored the association between CD300A and HM progression in patients. RESULTS: Our findings indicated that PS hampers the function of NK cells. Increased CD300A expression inhibited HM lysis by NK cells. CD300A overexpression shortened the survival of HM-xenografted mice by impairing transplanted NK cells. Blocking PS-CD300A signals with antibodies significantly amplified the expression of lysis function-related proteins and effector cytokines in NK cells, thereby augmenting the ability to lyse HMs. Clinically, heightened CD300A expression correlated with shorter survival and an "exhausted" phenotype of intratumoral NK cells in patients with HMs or solid tumors. CONCLUSIONS: These results propose CD300A as a potential target for invigorating NK cell-based treatments against HMs.


Hematologic Neoplasms , Killer Cells, Natural , Receptors, Immunologic , Humans , Killer Cells, Natural/immunology , Animals , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Xenograft Model Antitumor Assays , Female , Antigens, CD/metabolism , Antigens, CD/immunology , Male , Cell Line, Tumor , Cytotoxicity, Immunologic , Phosphatidylserines/metabolism
11.
Nature ; 627(8005): 847-853, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480885

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors with an N-terminal Toll/interleukin-1 receptor (TIR) domain mediate recognition of strain-specific pathogen effectors, typically via their C-terminal ligand-sensing domains1. Effector binding enables TIR-encoded enzymatic activities that are required for TIR-NLR (TNL)-mediated immunity2,3. Many truncated TNL proteins lack effector-sensing domains but retain similar enzymatic and immune activities4,5. The mechanism underlying the activation of these TIR domain proteins remain unclear. Here we show that binding of the TIR substrates NAD+ and ATP induces phase separation of TIR domain proteins in vitro. A similar condensation occurs with a TIR domain protein expressed via its native promoter in response to pathogen inoculation in planta. The formation of TIR condensates is mediated by conserved self-association interfaces and a predicted intrinsically disordered loop region of TIRs. Mutations that disrupt TIR condensates impair the cell death activity of TIR domain proteins. Our data reveal phase separation as a mechanism for the activation of TIR domain proteins and provide insight into substrate-induced autonomous activation of TIR signalling to confer plant immunity.


Adenosine Triphosphate , Arabidopsis , NAD , Nicotiana , Phase Separation , Plant Proteins , Protein Domains , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Death , Mutation , NAD/metabolism , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/metabolism , NLR Proteins/chemistry , NLR Proteins/genetics , NLR Proteins/immunology , NLR Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Promoter Regions, Genetic , Protein Domains/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Toll-Like Receptors/chemistry , Receptors, Interleukin-1/chemistry
12.
Eur J Immunol ; 54(6): e2350771, 2024 Jun.
Article En | MEDLINE | ID: mdl-38494423

Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed microbes are expelled from phagocytes without discernible damage to either the phagocyte or microbe. Although this phenomenon was first described in the opportunistic fungal pathogen Cryptococcus neoformans in 2006, to date, mechanistic studies have been hampered by an inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery that macrophages lacking the scavenger receptor MAcrophage Receptor with COllagenous domain (MARCO), exhibit near-total vomocytosis of internalised cryptococci within a few hours of infection. Marco-/- macrophages also showed elevated vomocytosis of a yeast-locked C. albicans strain, suggesting this to be a broadly relevant observation. We go on to show that MARCO's role in modulating vomocytosis is independent of its role as a phagocytic receptor, suggesting that this protein may play an important and hitherto unrecognised role in modulating macrophage behaviour.


Cryptococcus neoformans , Macrophages , Receptors, Immunologic , Animals , Mice , Cryptococcus neoformans/immunology , Macrophages/immunology , Macrophages/microbiology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/genetics , Candida albicans/immunology , Phagocytosis/immunology , Mice, Knockout , Exocytosis/immunology , Cryptococcosis/immunology
13.
Nature ; 627(8004): 646-655, 2024 Mar.
Article En | MEDLINE | ID: mdl-38418879

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Antibodies, Monoclonal , Antineoplastic Agents , B7-H1 Antigen , Myeloid Cells , Neoplasms , Receptors, Immunologic , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Drug Therapy, Combination , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/therapeutic use , Macrophage Activation , Myeloid Cells/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Receptors, IgG/immunology , Receptors, Immunologic/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology
14.
Cancer Res ; 84(10): 1550-1559, 2024 May 15.
Article En | MEDLINE | ID: mdl-38381555

Lipid nanoparticle (LNP)-encapsulated mRNA has been used for in vivo production of several secreted protein classes, such as IgG, and has enabled the development of personalized vaccines in oncology. Establishing the feasibility of delivering complex multispecific modalities that require higher-order structures important for their function could help expand the use of mRNA/LNP biologic formulations. Here, we evaluated whether in vivo administration of mRNA/LNP formulations of SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT could achieve oligomerization and extend exposure, on-target activity, and antitumor responses comparable with that of the corresponding recombinant fusion proteins. Intravenous infusion of the formulated LNP-encapsulated mRNAs led to rapid and sustained production of functional hexameric proteins in vivo, which increased the overall exposure relative to the recombinant protein controls by ∼28 to 140 fold over 96 hours. High concentrations of the mRNA-encoded proteins were also observed in secondary lymphoid organs and within implanted tumors, with protein concentrations in tumors up to 134-fold greater than with the recombinant protein controls 24 hours after treatment. In addition, SIRPα-Fc-CD40L and TIGIT-Fc-LIGHT mRNAs induced a greater increase in antigen-specific CD8+ T cells in the tumors. These mRNA/LNP formulations were well tolerated and led to a rapid increase in serum and intratumoral IL2, delayed tumor growth, extended survival, and outperformed the activities of benchmark mAb controls. Furthermore, the mRNA/LNPs demonstrated improved efficacy in combination with anti-PD-L1 relative to the recombinant fusion proteins. These data support the delivery of complex oligomeric biologics as mRNA/LNP formulations, where high therapeutic expression and exposure could translate into improved patient outcomes. SIGNIFICANCE: Lipid nanoparticle-encapsulated mRNA can efficiently encode complex fusion proteins encompassing immune checkpoint blockers and costimulators that functionally oligomerize in vivo with extended pharmacokinetics and durable exposure to induce potent antitumor immunity.


Nanoparticles , RNA, Messenger , Recombinant Fusion Proteins , Animals , Mice , RNA, Messenger/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Nanoparticles/chemistry , Humans , Female , Mice, Inbred C57BL , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Lipids/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Cell Line, Tumor
15.
Int Immunol ; 36(6): 317-325, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38289706

The cluster of differentiation 155 (CD155) is highly expressed on tumor cells and augments or inhibits the cytotoxic activities of natural killer (NK) cells and T cells through its receptor ligands DNAX accessory molecule 1 (DNAM-1) and T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), respectively. Although CD155 is heavily glycosylated, the role of glycosylation of CD155 in the cytotoxic activity of effector lymphocytes remains unknown. Here, we show that the N-linked glycosylation at residue 105 (N105 glycosylation) in the first Ig-like domain of CD155 is involved in the binding of CD155 to both DNAM-1 and TIGIT. The N105 glycosylation also plays an essential role to induce signaling in both DNAM-1 and TIGIT reporter cells. Moreover, we show that the N105 glycosylation of CD155 contributes preferentially to the DNAM-1-mediated activating signal over the TIGIT-mediated inhibitory signal in NK cells. Our results demonstrated the important role of the N105 glycosylation of CD155 in DNAM-1 and TIGIT functions and shed new light on the understanding of tumor immune responses.


Antigens, Differentiation, T-Lymphocyte , Killer Cells, Natural , Receptors, Immunologic , Receptors, Virus , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Glycosylation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Receptors, Virus/metabolism , Receptors, Virus/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Protein Binding
17.
Clin Cancer Res ; 30(11): 2514-2530, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38252421

PURPOSE: Develop a novel therapeutic strategy for patients with subtypes of mature T-cell and NK-cell neoplasms. EXPERIMENTAL DESIGN: Primary specimens, cell lines, patient-derived xenograft models, commercially available, and proprietary anti-KLRG1 antibodies were used for screening, target, and functional validation. RESULTS: Here we demonstrate that surface KLRG1 is highly expressed on tumor cells in subsets of patients with extranodal NK/T-cell lymphoma (ENKTCL), T-prolymphocytic leukemia (T-PLL), and gamma/delta T-cell lymphoma (G/D TCL). The majority of the CD8+/CD57+ or CD3-/CD56+ leukemic cells derived from patients with T- and NK-large granular lymphocytic leukemia (T-LGLL and NK-LGLL), respectively, expressed surface KLRG1. The humanized afucosylated anti-KLRG1 monoclonal antibody (mAb208) optimized for mouse in vivo use depleted KLRG1+ TCL cells by mechanisms of ADCC, ADCP, and CDC rather than apoptosis. mAb208 induced ADCC and ADCP of T-LGLL patient-derived CD8+/CD57+ cells ex vivo. mAb208 effected ADCC of subsets of healthy donor-derived KLRG1+ NK, CD4+, CD8+ Tem, and TemRA cells while sparing KLRG1- naïve and CD8+ Tcm cells. Treatment of cell line and TCL patient-derived xenografts with mAb208 or anti-CD47 mAb alone and in combination with the PI3K-δ/γ inhibitor duvelisib extended survival. The depletion of macrophages in vivo antagonized mAb208 efficacy. CONCLUSIONS: Our findings suggest the potential benefit of a broader treatment strategy combining therapeutic antibodies with PI3Ki for the treatment of patients with mature T-cell and NK-cell neoplasms. See related commentary by Varma and Diefenbach, p. 2300.


Lectins, C-Type , Receptors, Immunologic , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/antagonists & inhibitors , Cell Line, Tumor , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/therapy , Lymphoma, T-Cell/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology
18.
Nature ; 621(7980): 830-839, 2023 Sep.
Article En | MEDLINE | ID: mdl-37674079

The immune-suppressive tumour microenvironment represents a major obstacle to effective immunotherapy1,2. Pathologically activated neutrophils, also known as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), are a critical component of the tumour microenvironment and have crucial roles in tumour progression and therapy resistance2-4. Identification of the key molecules on PMN-MDSCs is required to selectively target these cells for tumour treatment. Here, we performed an in vivo CRISPR-Cas9 screen in a tumour mouse model and identified CD300ld as a top candidate of tumour-favouring receptors. CD300ld is specifically expressed in normal neutrophils and is upregulated in PMN-MDSCs upon tumour-bearing. CD300ld knockout inhibits the development of multiple tumour types in a PMN-MDSC-dependent manner. CD300ld is required for the recruitment of PMN-MDSCs into tumours and their function to suppress T cell activation. CD300ld acts via the STAT3-S100A8/A9 axis, and knockout of Cd300ld reverses the tumour immune-suppressive microenvironment. CD300ld is upregulated in human cancers and shows an unfavourable correlation with patient survival. Blocking CD300ld activity inhibits tumour development and has synergistic effects with anti-PD1. Our study identifies CD300ld as a critical immune suppressor present on PMN-MDSCs, being required for tumour immune resistance and providing a potential target for cancer immunotherapy.


Myeloid-Derived Suppressor Cells , Neoplasms , Neutrophils , Receptors, Immunologic , Animals , Humans , Mice , CRISPR-Cas Systems , Disease Progression , Gene Editing , Immunotherapy , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/pathology , Neoplasms/immunology , Neoplasms/pathology , Neutrophils/immunology , Neutrophils/pathology , Receptors, Immunologic/immunology , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Microenvironment , Lymphocyte Activation
19.
Life Sci Alliance ; 6(10)2023 10.
Article En | MEDLINE | ID: mdl-37558422

RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.


DEAD Box Protein 58 , Receptors, Immunologic , Signal Transduction , Virus Diseases , Cell Line , Receptors, Immunologic/immunology , DEAD Box Protein 58/immunology , Virus Diseases/immunology
20.
Science ; 379(6635): 934-939, 2023 03 03.
Article En | MEDLINE | ID: mdl-36862785

Plant pathogens cause recurrent epidemics, threatening crop yield and global food security. Efforts to retool the plant immune system have been limited to modifying natural components and can be nullified by the emergence of new pathogen strains. Made-to-order synthetic plant immune receptors provide an opportunity to tailor resistance to pathogen genotypes present in the field. In this work, we show that plant nucleotide-binding, leucine-rich repeat immune receptors (NLRs) can be used as scaffolds for nanobody (single-domain antibody fragment) fusions that bind fluorescent proteins (FPs). These fusions trigger immune responses in the presence of the corresponding FP and confer resistance against plant viruses expressing FPs. Because nanobodies can be raised against most molecules, immune receptor-nanobody fusions have the potential to generate resistance against plant pathogens and pests delivering effectors inside host cells.


Disease Resistance , Plant Diseases , Receptors, Immunologic , Single-Domain Antibodies , Disease Resistance/immunology , Genotype , Receptors, Immunologic/immunology , Single-Domain Antibodies/immunology , Plant Diseases/immunology , Plant Diseases/prevention & control , Luminescent Proteins
...