Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.139
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000275

ABSTRACT

In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.


Subject(s)
ErbB Receptors , Interleukin-6 , Sensory Receptor Cells , Spinal Cord , Animals , Female , Mice , Rats , Arthritis/metabolism , Arthritis, Experimental/metabolism , Cell Line , ErbB Receptors/metabolism , Ganglia, Spinal/metabolism , Gefitinib/pharmacology , Interleukin-6/metabolism , Receptors, Interleukin-6/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Signal Transduction , Spinal Cord/metabolism , STAT3 Transcription Factor/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000334

ABSTRACT

Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.


Subject(s)
Estradiol , Fibroblasts , Fibrosis , Interleukin-6 , Scleroderma, Systemic , Humans , Interleukin-6/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Female , Male , Skin/metabolism , Skin/pathology , Cells, Cultured , Feedback, Physiological , Middle Aged , Adult , Receptors, Interleukin-6/metabolism
3.
BMC Cardiovasc Disord ; 24(1): 365, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014329

ABSTRACT

BACKGROUND: M1 macrophages are closely associated with cardiac injury after myocardial infarction (MI). Increasing evidence shows that exosomes play a key role in pathophysiological regulation after MI, but the role of M1 macrophage-derived exosomes (M1-Exos) in myocardial regeneration remains unclear. In this study, we explored the impact of M1 macrophage-derived exosomes on cardiomyocytes regeneration in vitro and in vivo. METHODS: M0 macrophages were induced to differentiate into M1 macrophages with GM-CSF (50 ng/mL) and IFN-γ (20 ng/mL). Then M1-Exos were isolated and co-incubated with cardiomyocytes. Cardiomyocyte proliferation was detected by pH3 or ki67 staining. Quantitative real-time PCR (qPCR) was used to test the level of miR-155 in macrophages, macrophage-derived exosomes and exosome-treated cardiomyocytes. MI model was constructed and LV-miR-155 was injected around the infarct area, the proliferation of cardiomyocytes was counted by pH3 or ki67 staining. The downstream gene and pathway of miR-155 were predicted and verified by dual-luciferase reporter gene assay, qPCR and immunoblotting analysis. IL-6 (50 ng/mL) was added to cardiomyocytes transfected with miR-155 mimics, and the proliferation of cardiomyocytes was calculated by immunofluorescence. The protein expressions of IL-6R, p-JAK2 and p-STAT3 were detected by Western blot. RESULTS: The results showed that M1-Exos suppressed cardiomyocytes proliferation. Meanwhile, miR-155 was highly expressed in M1-Exos and transferred to cardiomyocytes. miR-155 inhibited the proliferation of cardiomyocytes and antagonized the pro-proliferation effect of interleukin 6 (IL-6). Furthermore, miR-155 targeted gene IL-6 receptor (IL-6R) and inhibited the Janus kinase 2(JAK)/Signal transducer and activator of transcription (STAT3) signaling pathway. CONCLUSION: M1-Exos inhibited cardiomyocyte proliferation by delivering miR-155 and inhibiting the IL-6R/JAK/STAT3 signaling pathway. This study provided new insight and potential treatment strategy for the regulation of myocardial regeneration and cardiac repair by macrophages.


Subject(s)
Cell Proliferation , Disease Models, Animal , Exosomes , Janus Kinase 2 , Macrophages , MicroRNAs , Myocardial Infarction , Myocytes, Cardiac , STAT3 Transcription Factor , Signal Transduction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/transplantation , Exosomes/genetics , Animals , Cell Proliferation/drug effects , Macrophages/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/genetics , Janus Kinase 2/metabolism , Male , Regeneration , Rats, Sprague-Dawley , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Cells, Cultured , Phosphorylation , Coculture Techniques , Mice, Inbred C57BL , Interleukin-6/metabolism
4.
Bull Exp Biol Med ; 176(6): 772-775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890212

ABSTRACT

Specific features of IL-6 signal transduction were studied in 89 patients with lung damage of varying degrees during the first COVID-19 pandemic wave. The levels of IL-6 signaling components (IL-6, sIL-6R, and sgp130) and highly sensitive C-reactive protein (hsCRP) were examined in patients with intact lungs (CT-0), mild (CT-1), moderate (CT-2), moderate to severe (CT-3), and severe (CT-4) lung damage. Seventy patients were re-examined 3-7 months after discharge from the hospital. The IL-6 and hsCRP levels increased several times with severing lung damage severity. In patients with CT-3, sIL6-R increased statistically significantly and remained high in CT-4 patients. sgp130 levels were lower in CT-1 and CT-2 patients and higher in CT-3 and CT-4 patients compared to CT-0 patients. We revealed a positive correlation between IL-6 and hsCRP levels in CT-1, CT-2, and CT-3 patients. In CT-3 patients, sIL-6R levels positively correlated with IL-6 concentration. The studied parameters decreased considerably in all patients 3-7 months after discharge. It can be suggested that IL-6 classic-signaling is predominant in CT-1 and CT-2, while trans-signaling prevails in CT-3. Disorders in regulatory mechanisms of IL-6 signaling occur in CT-4, which prevents physiological elimination of IL-6 hyperactivity. The results obtained are preliminary and require a broader study.


Subject(s)
C-Reactive Protein , COVID-19 , Cytokine Receptor gp130 , Interleukin-6 , Signal Transduction , Humans , Interleukin-6/blood , COVID-19/immunology , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Pilot Projects , Male , Female , C-Reactive Protein/metabolism , Middle Aged , Cytokine Receptor gp130/blood , Cytokine Receptor gp130/metabolism , Lung/pathology , Lung/immunology , SARS-CoV-2 , Aged , Adult , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/metabolism , Severity of Illness Index
5.
Front Immunol ; 15: 1374967, 2024.
Article in English | MEDLINE | ID: mdl-38881895

ABSTRACT

Background: Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods: We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results: The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion: The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Cytokine Receptor gp130 , Interleukin-6 , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , Humans , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/mortality , Cholangiocarcinoma/pathology , Interleukin-6/genetics , Interleukin-6/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Male , Female , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Middle Aged , Prognosis , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Aged , Biomarkers, Tumor/genetics , Gene Expression Profiling , Clinical Relevance
6.
Nat Commun ; 15(1): 4682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824130

ABSTRACT

Interleukin-6 (IL-6) has been long considered a key player in cancer cachexia. It is believed that sustained elevation of IL-6 production during cancer progression causes brain dysfunctions, which ultimately result in cachexia. However, how peripheral IL-6 influences the brain remains poorly understood. Here we show that neurons in the area postrema (AP), a circumventricular structure in the hindbrain, is a critical mediator of IL-6 function in cancer cachexia in male mice. We find that circulating IL-6 can rapidly enter the AP and activate neurons in the AP and its associated network. Peripheral tumor, known to increase circulating IL-6, leads to elevated IL-6 in the AP, and causes potentiated excitatory synaptic transmission onto AP neurons and AP network hyperactivity. Remarkably, neutralization of IL-6 in the brain of tumor-bearing mice with an anti-IL-6 antibody attenuates cachexia and the hyperactivity in the AP network, and markedly prolongs lifespan. Furthermore, suppression of Il6ra, the gene encoding IL-6 receptor, specifically in AP neurons with CRISPR/dCas9 interference achieves similar effects. Silencing Gfral-expressing AP neurons also attenuates cancer cachectic phenotypes and AP network hyperactivity. Our study identifies a central mechanism underlying the function of peripheral IL-6, which may serve as a target for treating cancer cachexia.


Subject(s)
Cachexia , Interleukin-6 , Neurons , Receptors, Interleukin-6 , Animals , Cachexia/metabolism , Cachexia/etiology , Interleukin-6/metabolism , Male , Neurons/metabolism , Mice , Receptors, Interleukin-6/metabolism , Mice, Inbred C57BL , Neoplasms/metabolism , Neoplasms/complications , Cell Line, Tumor , Humans
7.
J Transl Med ; 22(1): 581, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898459

ABSTRACT

Dysregulation of inflammation can lead to multiple chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. Interleukin-6 (IL6) is crucial in regulating the inflammatory cascade, but the causal link between IL6 signaling downregulation and respiratory diseases risk is unclear. This study uses Mendelian randomization to examine the effects of IL6R blockade on respiratory diseases. Analyzing data from 522,681 Europeans, 26 genetic variants were obtained to mimic IL6R inhibition. Our findings show that IL6R blockade significantly reduces the risk of COPD (OR = 0.71, 95% CI = 0.60-9.84) and asthma (OR = 0.82, 95% CI = 0.74-0.90), with protective trends for bronchitis, pulmonary embolism, and lung cancer. Results were consistent across methods, with no significant heterogeneity or pleiotropy. These insights suggest IL6R downregulation as a potential therapeutic target for respiratory diseases, meriting further clinical investigation.


Subject(s)
Receptors, Interleukin-6 , Signal Transduction , Humans , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Signal Transduction/genetics , Genetic Predisposition to Disease , Risk Factors , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Mendelian Randomization Analysis , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/metabolism , Asthma/genetics , Respiration Disorders/genetics
8.
PLoS Comput Biol ; 20(6): e1012157, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848446

ABSTRACT

The spread of cancer from organ to organ (metastasis) is responsible for the vast majority of cancer deaths; however, most current anti-cancer drugs are designed to arrest or reverse tumor growth without directly addressing disease spread. It was recently discovered that tumor cell-secreted interleukin-6 (IL-6) and interleukin-8 (IL-8) synergize to enhance cancer metastasis in a cell-density dependent manner, and blockade of the IL-6 and IL-8 receptors (IL-6R and IL-8R) with a novel bispecific antibody, BS1, significantly reduced metastatic burden in multiple preclinical mouse models of cancer. Bispecific antibodies (BsAbs), which combine two different antigen-binding sites into one molecule, are a promising modality for drug development due to their enhanced avidity and dual targeting effects. However, while BsAbs have tremendous therapeutic potential, elucidating the mechanisms underlying their binding and inhibition will be critical for maximizing the efficacy of new BsAb treatments. Here, we describe a quantitative, computational model of the BS1 BsAb, exhibiting how modeling multivalent binding provides key insights into antibody affinity and avidity effects and can guide therapeutic design. We present detailed simulations of the monovalent and bivalent binding interactions between different antibody constructs and the IL-6 and IL-8 receptors to establish how antibody properties and system conditions impact the formation of binary (antibody-receptor) and ternary (receptor-antibody-receptor) complexes. Model results demonstrate how the balance of these complex types drives receptor inhibition, providing important and generalizable predictions for effective therapeutic design.


Subject(s)
Antibodies, Bispecific , Receptors, Interleukin-6 , Receptors, Interleukin-8 , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/immunology , Receptors, Interleukin-6/metabolism , Humans , Receptors, Interleukin-8/metabolism , Receptors, Interleukin-8/antagonists & inhibitors , Animals , Computational Biology , Computer Simulation , Interleukin-6/metabolism , Interleukin-6/immunology , Mice , Interleukin-8/metabolism , Interleukin-8/immunology , Interleukin-8/antagonists & inhibitors , Neoplasms/immunology , Neoplasms/drug therapy
9.
Emerg Microbes Infect ; 13(1): 2366359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38855910

ABSTRACT

Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.


Subject(s)
Coinfection , Granuloma , HIV Infections , Lung , Macrophages , Receptors, Interleukin-6 , STAT3 Transcription Factor , Humans , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV Infections/complications , HIV Infections/immunology , Macrophages/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Granuloma/immunology , Lung/pathology , Lung/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/complications , Female , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , CD68 Molecule
10.
Circ Genom Precis Med ; 17(3): e004374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752343

ABSTRACT

BACKGROUND: The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS: For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS: Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS: Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.


Subject(s)
Single-Cell Analysis , Humans , Male , Female , Middle Aged , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/genetics , ST Elevation Myocardial Infarction/blood , Aged , Monocytes/immunology , Monocytes/metabolism , Biomarkers/blood , Myocardial Infarction/immunology , Myocardial Infarction/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Case-Control Studies
11.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Article in Japanese | MEDLINE | ID: mdl-38692922

ABSTRACT

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Subject(s)
CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Signal Transduction , TNF Receptor-Associated Factor 5 , Humans , Animals , TNF Receptor-Associated Factor 5/genetics , TNF Receptor-Associated Factor 5/metabolism , TNF Receptor-Associated Factor 5/physiology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cytokine Receptor gp130/physiology , Cytokine Receptor gp130/metabolism , Th17 Cells/immunology , Interleukin-6/metabolism , Interleukin-6/physiology , Cell Differentiation , Receptors, Interleukin-6/physiology , Receptors, Interleukin-6/metabolism , Janus Kinases/metabolism , Janus Kinases/physiology , STAT Transcription Factors/physiology , STAT Transcription Factors/metabolism , Mice
12.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715108

ABSTRACT

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Subject(s)
Cell Movement , Cell Proliferation , Receptors, Interleukin-6 , Humans , Cell Proliferation/drug effects , Receptors, Interleukin-6/metabolism , Cell Movement/drug effects , HEK293 Cells , Cell Line, Tumor , Protein Binding/drug effects
13.
Sci Rep ; 14(1): 10751, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730088

ABSTRACT

Type III collagen gene expression is upregulated in the synovium of patients with rheumatoid arthritis (RA) presenting the fibroid phenotype. The soluble type III collagen formation biomarker, PRO-C3, is known to measure fibrogenesis in fibrotic diseases. In this exploratory study, we aimed to investigate the association between fibrogenesis (PRO-C3) and the disease- and treatment response in patients with RA. We measured PRO-C3 in subsets of two clinical trials assessing the effect of the anti-interleukin-6 (IL-6) receptor treatment tocilizumab (TCZ) as monotherapy or polytherapy with methotrexate. PRO-C3 levels had weak or very weak correlations with the clinical parameters (Spearman's). However, when the patients were divided into Disease Activity Score-28 groups characterized by the erythrocyte sedimentation rate (DAS28-ESR), there was a statistical difference between the PRO-C3 levels of the different groups (p < 0.05). To determine the response in relation to PRO-C3, a cut-off based on PRO-C3 levels and patients in remission (DAS28-ESR ≤ 2.6) was identified. This showed that a reduction in PRO-C3 after treatment initiation was associated with decreased DAS28-ESR and a higher response rate in patients with low PRO-C3 levels than in those with high PRO-C3 levels. This indicates that a fibrotic component affects the responsiveness of patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Antirheumatic Agents , Arthritis, Rheumatoid , Receptors, Interleukin-6 , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Female , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Methotrexate/therapeutic use , Phenotype , Biomarkers , Adult , Aged , Treatment Outcome
14.
EBioMedicine ; 103: 105132, 2024 May.
Article in English | MEDLINE | ID: mdl-38677182

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Subject(s)
COVID-19 , Cytokine Receptor gp130 , Disease Models, Animal , Interleukin-6 , Mice, Transgenic , SARS-CoV-2 , Signal Transduction , Animals , Interleukin-6/metabolism , COVID-19/metabolism , Humans , Mice , Signal Transduction/drug effects , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Lung/pathology , Lung/virology , Lung/metabolism , Endothelial Cells/metabolism , COVID-19 Drug Treatment , Betacoronavirus , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Coronavirus Infections/pathology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/antagonists & inhibitors , Severity of Illness Index
15.
Cell Rep Med ; 5(5): 101526, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38670095

ABSTRACT

The efficacy of chimeric antigen receptor (CAR)-engineered T cell therapy is suboptimal in most cancers, necessitating further improvement in their therapeutic actions. However, enhancing antitumor T cell response inevitably confers an increased risk of cytokine release syndrome associated with monocyte-derived interleukin-6 (IL-6). Thus, an approach to simultaneously enhance therapeutic efficacy and safety is warranted. Here, we develop a chimeric cytokine receptor composed of the extracellular domains of GP130 and IL6RA linked to the transmembrane and cytoplasmic domain of IL-7R mutant that constitutively activates the JAK-STAT pathway (G6/7R or G6/7R-M452L). CAR-T cells with G6/7R efficiently absorb and degrade monocyte-derived IL-6 in vitro. The G6/7R-expressing CAR-T cells show superior expansion and persistence in vivo, resulting in durable antitumor response in both liquid and solid tumor mouse models. Our strategy can be widely applicable to CAR-T cell therapy to enhance its efficacy and safety, irrespective of the target antigen.


Subject(s)
Immunotherapy, Adoptive , Interleukin-6 , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Humans , Interleukin-6/metabolism , Interleukin-6/immunology , Immunotherapy, Adoptive/methods , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokine Receptor gp130/metabolism , Neoplasms/immunology , Neoplasms/therapy , Xenograft Model Antitumor Assays , Receptors, Cytokine/metabolism , Receptors, Cytokine/genetics , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-7/metabolism
16.
J Autoimmun ; 146: 103215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653164

ABSTRACT

INTRODUCTION: The IL-12-IFNγ-Th1 and the IL-6-IL-23-Th17 axes are considered the dominant pathogenic pathways in Giant Cell Arteritis (GCA). Both pathways signal via activation of the downstream JAK/STAT proteins. We hypothesized that phosphorylated STAT (pSTAT) signatures in circulating immune cells may aid to stratify GCA-patients for personalized treatment. METHODS: To investigate pSTAT expression, PBMCs from treatment-naive GCA-patients (n = 18), infection controls (INF, n = 11) and age-matched healthy controls (HC, n = 15) were stimulated in vitro with IL-6, IL-2, IL-10, IFN-γ, M-CSF or GM-CSF, and stained with CD3, CD4, CD19, CD45RO, pSTAT1, pSTAT3, pSTAT5 antibodies, and analyzed by flow cytometry. Serum IL-6, sIL-6-receptor and gp130 were measured by Luminex. The change in percentages of pSTAT3+CD4+T-cells was evaluated at diagnosis and at 3 months and 1-year of follow-up. Kaplan-Meier analyses was used to asses prognostic accuracy. RESULTS: Analysis of IL-6 stimulated immune cell subsets revealed a significant decrease in percentages of pSTAT3+CD4+T-cells of GCA-patients and INF-controls compared to HCs. Following patient stratification according to high (median>1.5 pg/mL) and low (median<1.5 pg/mL) IL-6 levels, we observed a reduction in the pSTAT3 response in GCA-patients with high serum IL-6. Percentages of pSTAT3+CD4+T-cells in patients with high serum IL-6 levels at diagnosis normalized after glucocorticoid (GC) treatment. Importantly, we found that patients with low percentages of pSTAT3+CD4+T-cells at baseline require longer GC-treatment. CONCLUSION: Overall, in GCA, the percentages of in vitro IL-6-induced pSTAT3+CD4+T-cells likely reflect prior in vivo exposure to high IL-6 and may serve as a prognostic marker for GC-treatment duration and may assist improving personalized treatment options in the future.


Subject(s)
CD4-Positive T-Lymphocytes , Giant Cell Arteritis , Interleukin-6 , Signal Transduction , Humans , Giant Cell Arteritis/immunology , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/metabolism , Interleukin-6/metabolism , Interleukin-6/blood , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Aged , Janus Kinases/metabolism , Middle Aged , Phosphorylation , STAT3 Transcription Factor/metabolism , Aged, 80 and over , STAT Transcription Factors/metabolism , Receptors, Interleukin-6/metabolism , Biomarkers , Cytokine Receptor gp130/metabolism
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167151, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565387

ABSTRACT

Immunoglobulin A vasculitis (IgAV) is the most common vasculitis of childhood. Disordered immune responses play important roles in its pathogenesis, but the comprehensive immune profile of the disease and the underlying mechanisms are still largely unknown. Here we found a potential disease biomarker cold inducible RNA binding protein (CIRP) in our pediatric IgAV cohort. Serum CIRP level in these patients were elevated and positively correlated with the increased early memory (CD45RA+CD62L+CD95+) T cells revealed using multicolor flow cytometry. Immune phenotyping of the patients showed they had more activated T cells with higher IL6Ra expression. T cell culture experiment showed CIRP further activated both human CD4+ and CD8+ T cells as indicated by increased perforin secretion and phosphorylation of STAT3. Blockade of IL6Rα attenuated CIRP-induced T cell toxicity in vitro. RNA-sequencing data further supported CIRP stimulation promoted human T cell activation and migration, fueled inflammation through the JAK-STAT signaling pathway. Therefore, IL6Ra-mediated T cell activation by extracellular CIRP may contribute to pathogenesis of IgAV in children, both CIRP and IL6Ra could be new therapeutic targets for IgAV.


Subject(s)
Lymphocyte Activation , RNA-Binding Proteins , Receptors, Interleukin-6 , STAT3 Transcription Factor , Adolescent , Child , Female , Humans , Male , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2 , IgA Vasculitis/immunology , IgA Vasculitis/pathology , IgA Vasculitis/metabolism , Lymphocyte Activation/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
J Biol Chem ; 300(5): 107251, 2024 May.
Article in English | MEDLINE | ID: mdl-38569939

ABSTRACT

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Subject(s)
Ciliary Neurotrophic Factor , Cytokine Receptor gp130 , Interleukin-6 , Signal Transduction , Animals , Humans , Mice , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/genetics , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Models, Molecular , Protein Engineering/methods , Protein Structure, Tertiary , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Receptors, OSM-LIF/metabolism , Receptors, OSM-LIF/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Mice, Inbred C57BL
19.
Brain Behav Immun ; 119: 801-806, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677624

ABSTRACT

There is urgent need for novel antidepressant treatments that confer therapeutic benefits via engagement with identified mechanistic targets. The objective of the study was to determine whether activation of the classical anti-inflammatory interleukin-6 signaling pathways is associated with the antidepressant effects of whole-body hyperthermia. A 6-week, randomized, double-blind study compared whole-body hyperthermia with a sham condition in a university-based medical center. Medically healthy participants aged 18-65 years who met criteria for major depressive disorder, were free of psychotropic medication use, and had a baseline 17-item Hamilton Depression Rating Scale score ≥ 16 were randomized with 1-to-1 allocation in blocks of 6 to receive whole-body hyperthermia or sham. Of 338 individuals screened, 34 were randomized, 30 received interventions and 26 had ≥ 2 blood draws and depressive symptom assessments. Secondary data analysis examined change in the ratio of IL-6:soluble IL-6 receptor pre-intervention, post-intervention, and at weeks 1 and 4. Hierarchical linear modeling tested whether increased IL-6:soluble IL-6 receptor ratio post-intervention was associated with decreased depressive symptom at weeks 1, 2, 4 and 6 for those randomized to whole-body hyperthermia. Twenty-six individuals were randomized to whole-body hyperthermia [n = 12; 75 % female; age = 37.9 years (SD = 15.3) or sham [n = 14; 57.1 % female; age = 41.1 years (SD = 12.5). When compared to the sham condition, active whole-body hyperthermia only increased the IL-6:soluble IL-6 receptor ratio post-treatment [F(3,72) = 11.73,p < .001], but not pre-intervention or at weeks 1 and 4. Using hierarchical linear modeling, increased IL-6:sIL-6R ratio following whole-body hyperthermia moderated depressive symptoms at weeks 1, 2, 4 and 6, such that increases in the IL-6:soluble IL-6 receptor ratio were associated with decreased depressive symptoms at weeks 1, 2, 4 and 6 for those receiving the active whole-body hyperthermia compared to sham treatment (B = -229.44, t = -3.82,p < .001). Acute activation of classical intereukin-6 signaling might emerge as a heretofore unrecognized novel mechanism that could be harnessed to expand the antidepressant armamentarium.


Subject(s)
Depressive Disorder, Major , Interleukin-6 , Receptors, Interleukin-6 , Signal Transduction , Humans , Female , Male , Interleukin-6/blood , Adult , Double-Blind Method , Middle Aged , Signal Transduction/drug effects , Depressive Disorder, Major/therapy , Receptors, Interleukin-6/metabolism , Hyperthermia, Induced/methods , Young Adult , Adolescent , Treatment Outcome , Aged , Hyperthermia , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology
20.
Exp Physiol ; 109(6): 966-979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594909

ABSTRACT

The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venous P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.


Subject(s)
Acute Lung Injury , Antibodies, Monoclonal, Humanized , Disease Models, Animal , Receptors, Interleukin-6 , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Mice , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Interleukin 1 Receptor Antagonist Protein/pharmacology , Bleomycin , Lung/metabolism , Lung/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL