Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.959
Filter
1.
Sci Rep ; 14(1): 15331, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961200

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target to reduce lipids. In 2020, we reported a chimeric camelid-human heavy chain antibody VHH-B11-Fc targeting PCSK9. Recently, it was verified that VHH-B11 binds one linear epitope in the PCSK9 hinge region. To enhance its druggability, we have developed a novel biparatopic B11-H2-Fc Ab herein. Thereinto, surface plasmon resonance (SPR) confirmed the epitope differences in binding-PCSK9 among VHH-B11, VHH-H2 and the approved Repatha. Additionally, SPR revealed the B11-H2-Fc exhibits an avidity of approximately 0.036 nM for PCSK9, representing a considerable increase compared to VHH-B11-Fc (~ 0.69 nM). Moreover, we found the Repatha and B11-H2-Fc exhibited > 95% PCSK9 inhibition efficiency compared to approximately 48% for the VHH-Fc at 7.4 nM (P < 0.0005). Further, we verified its biological activity using the human hepatoma cells G2 model, where the B11-H2-Fc exhibited almost 100% efficiency in PCSK9 inhibition at only 0.75 µM. The immunoblotting results of low-density lipoprotein cholesterol (LDL-c) uptake assay also demonstrated the excellent performance of B11-H2-Fc on recovering the LDL-c receptor (LDLR), as strong as the Repatha (P > 0.05). These findings provide the first evidence of the efficacy of a novel Ab targeting PCSK9 in the field of lipid-lowering drugs.


Subject(s)
Proprotein Convertase 9 , Humans , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/immunology , Hep G2 Cells , PCSK9 Inhibitors , Surface Plasmon Resonance , Receptors, LDL/metabolism , Epitopes/immunology , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/immunology
2.
J Cardiovasc Pharmacol ; 84(1): 45-57, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38922585

ABSTRACT

ABSTRACT: Atherosclerosis (AS) is a chronic progressive disease caused by various factors and causes various cerebrovascular and cardiovascular diseases (CVDs). Reducing the plasma levels of low-density lipoprotein cholesterol is the primary goal in preventing and treating AS. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in regulating low-density lipoprotein cholesterol metabolism. Panax notoginseng has potent lipid-reducing effects and protects against CVDs, and its saponins induce vascular dilatation, inhibit thrombus formation, and are used in treating CVDs. However, the anti-AS effect of the secondary metabolite, 20( S )-protopanaxatriol (20( S )-PPT), remains unclear. In this study, the anti-AS effect and molecular mechanism of 20( S )-PPT were investigated in vivo and in vitro by Western blotting, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and other assays. The in vitro experiments revealed that 20( S )-PPT reduced the levels of PCSK9 in the supernatant of HepG2 cells, upregulated low-density lipoprotein receptor protein levels, promoted low-density lipoprotein uptake by HepG2 cells, and reduced PCSK9 mRNA transcription by upregulating the levels of forkhead box O3 protein and mRNA and decreasing the levels of HNF1α and SREBP2 protein and mRNA. The in vivo experiments revealed that 20( S )-PPT upregulated aortic α-smooth muscle actin expression, increased the stability of atherosclerotic plaques, and reduced aortic plaque formation induced by a high-cholesterol diet in ApoE -/- mice (high-cholesterol diet-fed group). Additionally, 20( S )-PPT reduced the aortic expression of CD68, reduced inflammation in the aortic root, and alleviated the hepatic lesions in the high-cholesterol diet-fed group. The study revealed that 20( S )-PPT inhibited low-density lipoprotein receptor degradation via PCSK9 to alleviate AS.


Subject(s)
Aorta , Aortic Diseases , Atherosclerosis , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Proprotein Convertase 9 , Receptors, LDL , Sapogenins , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/genetics , Sapogenins/pharmacology , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Humans , Male , Aortic Diseases/pathology , Aortic Diseases/prevention & control , Aortic Diseases/metabolism , Aortic Diseases/genetics , Aortic Diseases/drug therapy , Aorta/drug effects , Aorta/metabolism , Aorta/pathology , Proteolysis/drug effects , Hep G2 Cells , PCSK9 Inhibitors , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Mice , Diet, High-Fat , Apolipoproteins E
3.
Circ Res ; 135(2): 335-349, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38828596

ABSTRACT

BACKGROUND: Individuals with type 1 diabetes (T1D) generally have normal or even higher HDL (high-density lipoprotein)-cholesterol levels than people without diabetes yet are at increased risk for atherosclerotic cardiovascular disease (CVD). Human HDL is a complex mixture of particles that can vary in cholesterol content by >2-fold. To investigate if specific HDL subspecies contribute to the increased atherosclerosis associated with T1D, we created mouse models of T1D that exhibit human-like HDL subspecies. We also measured HDL subspecies and their association with incident CVD in a cohort of people with T1D. METHODS: We generated LDL receptor-deficient (Ldlr-/-) mouse models of T1D expressing human APOA1 (apolipoprotein A1). Ldlr-/-APOA1Tg mice exhibited the main human HDL subspecies. We also generated Ldlr-/-APOA1Tg T1D mice expressing CETP (cholesteryl ester transfer protein), which had lower concentrations of large HDL subspecies versus mice not expressing CETP. HDL particle concentrations and sizes and proteins involved in lipoprotein metabolism were measured by calibrated differential ion mobility analysis and targeted mass spectrometry in the mouse models of T1D and in a cohort of individuals with T1D. Endothelial transcytosis was analyzed by total internal reflection fluorescence microscopy. RESULTS: Diabetic Ldlr-/-APOA1Tg mice were severely hyperglycemic and hyperlipidemic and had markedly elevated plasma APOB levels versus nondiabetic littermates but were protected from the proatherogenic effects of diabetes. Diabetic Ldlr-/-APOA1Tg mice expressing CETP lost the atheroprotective effect and had increased lesion necrotic core areas and APOB accumulation, despite having lower plasma APOB levels. The detrimental effects of low concentrations of larger HDL particles in diabetic mice expressing CETP were not explained by reduced cholesterol efflux. Instead, large HDL was more effective than small HDL in preventing endothelial transcytosis of LDL mediated by scavenger receptor class B type 1. Finally, in humans with T1D, increased concentrations of larger HDL particles relative to APOB100 negatively predicted incident CVD independently of HDL-cholesterol levels. CONCLUSIONS: Our results suggest that the balance between APOB lipoproteins and the larger HDL subspecies contributes to atherosclerosis progression and incident CVD in the setting of T1D and that larger HDLs exert atheroprotective effects on endothelial cells rather than by promoting macrophage cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Atherosclerosis , Diabetes Mellitus, Type 1 , Receptors, LDL , Animals , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/blood , Atherosclerosis/pathology , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Mice , Receptors, LDL/genetics , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Apolipoprotein A-I/blood , Apolipoprotein A-I/metabolism , Male , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Ester Transfer Proteins/blood , Mice, Knockout , Female , Mice, Inbred C57BL , Lipoproteins, HDL/blood , Lipoproteins, HDL/metabolism , Mice, Transgenic , Apolipoprotein B-100/metabolism , Apolipoprotein B-100/genetics , Apolipoprotein B-100/blood , Middle Aged , Disease Models, Animal , Adult
4.
Cell Rep Med ; 5(6): 101614, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897173

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low-density lipoprotein receptor (LDLR) and mediates its internalization and degradation, resulting in an increase in LDL cholesterol levels. Recently, PCSK9 emerged as a therapeutic target for hypercholesterolemia and atherosclerosis. In this study, we develop a PCSK9 nanoparticle (NP) vaccine by covalently conjugating the catalytic domain (aa 153-aa 454, D374Y) of PCSK9 to self-assembled 24-mer ferritin NPs. We demonstrate that the PCSK9 NP vaccine effectively induces interfering antibodies against PCSK9 and reduces serum lipids levels in both a high-fat diet-induced hypercholesterolemia model and an adeno-associated virus-hPCSK9D374Y-induced hypercholesterolemia model. Additionally, the vaccine significantly reduces plaque lesion areas in the aorta and macrophages infiltration in an atherosclerosis mouse model. Furthermore, we discover that the vaccine's efficacy relied on T follicular help cells and LDLR. Overall, these findings suggest that the PCSK9 NP vaccine holds promise as an effective treatment for hypercholesterolemia and atherosclerosis.


Subject(s)
Atherosclerosis , Disease Models, Animal , Hypercholesterolemia , Nanoparticles , Proprotein Convertase 9 , Receptors, LDL , Vaccines , Proprotein Convertase 9/immunology , Proprotein Convertase 9/metabolism , Animals , Hypercholesterolemia/pathology , Nanoparticles/chemistry , Vaccines/immunology , Mice , Receptors, LDL/metabolism , Atherosclerosis/prevention & control , Atherosclerosis/immunology , Atherosclerosis/pathology , Mice, Inbred C57BL , Humans , Diet, High-Fat , Male , Nanovaccines
5.
Clin Transl Sci ; 17(6): e13836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845393

ABSTRACT

Homozygous familial hypercholesterolemia (HoFH) is a rare and serious genetic condition characterized by premature cardiovascular disease due to severely elevated low-density lipoprotein cholesterol (LDL-C). HoFH primarily results from loss-of-function (LOF) mutations in the LDL receptor (LDLR), reducing LDL-C clearance such that patients experience severe hypercholesterolemia, exacerbating the risk of developing cardiovascular events. Treatment options such as statins, lomitapide, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors, and apheresis help lower LDL-C; however, many patients with HoFH still fail to reach their target LDL-C levels and many of these lipid-lowering therapies are not indicated for pediatric use. Angiopoietin-like protein 3 (ANGPTL3) has been identified as a target to treat elevated LDL-C by acting as a natural inhibitor of lipoprotein lipase (LPL) and endothelial lipase (EL), enzymes involved in the hydrolysis of the triglyceride and phospholipid content of very low-density lipoproteins. Persons heterozygous for LOF mutations in ANGPTL3 were reported to have lower LDL-C than non-carriers and lower risk of coronary artery disease. Evinacumab is a first-in-class human monoclonal antibody that specifically binds to ANGPTL3 to prevent its inhibition of LPL and EL. In clinical trials, a 15 mg/kg intravenous dose every 4 weeks has shown a mean percent change from baseline in LDL-C of ~50% in adult, adolescent, and pediatric patients with HoFH. This mini review article describes the mechanism of action of evinacumab, evinacumab population PK and PD modeling, and clinical development history of evinacumab for the treatment of HoFH.


Subject(s)
Hyperlipoproteinemia Type II , Translational Research, Biomedical , Humans , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/blood , Angiopoietin-Like Protein 3 , Cholesterol, LDL/blood , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology , Broadly Neutralizing Antibodies , Animals , Anticholesteremic Agents/therapeutic use , Anticholesteremic Agents/pharmacology , Anticholesteremic Agents/administration & dosage , Receptors, LDL/metabolism , Receptors, LDL/genetics
6.
Cell Death Dis ; 15(6): 389, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830896

ABSTRACT

Apolipoprotein O (APOO) plays a critical intracellular role in regulating lipid metabolism. Here, we investigated the roles of APOO in metabolism and atherogenesis in mice. Hepatic APOO expression was increased in response to hyperlipidemia but was inhibited after simvastatin treatment. Using a novel APOO global knockout (Apoo-/-) model, it was found that APOO depletion aggravated diet-induced obesity and elevated plasma cholesterol levels. Upon crossing with low-density lipoprotein receptor (LDLR) and apolipoprotein E (APOE) knockout hyperlipidemic mouse models, Apoo-/- Apoe-/- and Apoo-/- Ldlr-/- mice exhibited elevated plasma cholesterol levels, with more severe atherosclerotic lesions than littermate controls. This indicated the effects of APOO on cholesterol metabolism independent of LDLR and APOE. Moreover, APOO deficiency reduced cholesterol excretion through bile and feces while decreasing phospholipid unsaturation by inhibiting NRF2 and CYB5R3. Restoration of CYB5R3 expression in vivo by adeno-associated virus (AAV) injection reversed the reduced degree of phospholipid unsaturation while decreasing blood cholesterol levels. This represents the first in vivo experimental validation of the role of APOO in plasma cholesterol metabolism independent of LDLR and elucidates a previously unrecognized cholesterol metabolism pathway involving NRF2/CYB5R3. APOO may be a metabolic regulator of total-body cholesterol homeostasis and a target for atherosclerosis management. Apolipoprotein O (APOO) regulates plasma cholesterol levels and atherosclerosis through a pathway involving CYB5R3 that regulates biliary and fecal cholesterol excretion, independently of the LDL receptor. In addition, down-regulation of APOO may lead to impaired mitochondrial function, which in turn aggravates diet-induced obesity and fat accumulation.


Subject(s)
Cholesterol , NF-E2-Related Factor 2 , Receptors, LDL , Animals , Receptors, LDL/metabolism , Cholesterol/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Mice, Knockout , Mice, Inbred C57BL , Lipid Metabolism , Male , Atherosclerosis/metabolism , Apolipoproteins/metabolism , Apolipoproteins/genetics , Humans , Liver/metabolism , Apolipoproteins E/metabolism , Hyperlipidemias/metabolism
7.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851803

ABSTRACT

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Subject(s)
Alphavirus , Antiviral Agents , Receptors, LDL , Virus Internalization , Animals , Humans , Alphavirus/drug effects , Alphavirus/physiology , Alphavirus/genetics , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Protein Binding , Receptors, LDL/metabolism , Receptors, LDL/genetics , Receptors, Virus/metabolism , Receptors, Virus/chemistry , Virion/metabolism , Virus Internalization/drug effects
8.
Stem Cell Res ; 78: 103463, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852422

ABSTRACT

Familial hypercholesterolemia (FH) is a genetic disorder affecting the metabolism of lipoprotein, characterized by elevated levels of plasma concentrations of low-density lipoprotein cholesterol (LDLC). The most common FH cause is mutations within the gene that encodes for the LDL receptor (LDLR) protein. Two induced pluripotent stem cell (iPSC) lines were generated from patients with FH, each carrying a single heterozygous mutation in the LDLR gene, one is a missense mutation, c.631C > T, and the other is a splice-site mutation, c.313 + 1G > A. Both iPSC lines exhibited strong expression of pluripotency markers, demonstrated the ability to differentiate into derivatives of the three germ layers, and maintained normal karyotypes. These derived iPSC lines represent powerful tools for in vitro modeling FH and offer a promising platform for therapeutic development.


Subject(s)
Heterozygote , Hyperlipoproteinemia Type II , Induced Pluripotent Stem Cells , Mutation , Receptors, LDL , Induced Pluripotent Stem Cells/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Humans , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/metabolism , Cell Line , Male , Female , Cell Differentiation
9.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38742353

ABSTRACT

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, LDL , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Receptors, LDL/metabolism , Receptors, LDL/genetics , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Transcriptome , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
10.
Arterioscler Thromb Vasc Biol ; 44(7): 1646-1657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695172

ABSTRACT

BACKGROUND: Trem2 (triggering receptor on myeloid cells 2), a surface lipid receptor, is expressed on foamy macrophages within atherosclerotic lesions and regulates cell survival, proliferation, and anti-inflammatory responses. Studies examining the role of Trem2 in atherosclerosis have shown that deletion of Trem2 leads to impaired foamy macrophage lipid uptake, proliferation, survival, and cholesterol efflux. Thus, we tested the hypothesis that administration of a Trem2 agonist antibody (AL002a) to atherogenic mice would enhance macrophage survival and decrease necrotic core formation to improve plaque stability. METHODS: To model a therapeutic intervention approach, atherosclerosis-prone mice (Ldlr [low-density lipoprotein receptor]-/-) were fed a high-fat diet for 8 weeks, then transitioned to treatment with AL002a or isotype control for an additional 8 weeks while continuing on a high-fat diet. RESULTS: AL002a-treated mice had increased lesion size in both the aortic root and whole mount aorta, which correlated with an expansion of plaque macrophage area. This expansion was due to increased macrophage survival and proliferation in plaques. Importantly, plaques from AL002a-treated mice showed improved features of plaque stability, including smaller necrotic cores, increased fibrous caps, and greater collagen deposition. Single-cell RNA sequencing of whole aorta suspensions from isotype- and AL002a-treated atherosclerotic mice revealed that Trem2 agonism dramatically altered foamy macrophage transcriptome. This included upregulation of oxidative phosphorylation and increased expression of collagen genes. In vitro studies validated that Trem2 agonism with AL002a promoted foamy macrophage oxidized low-density lipoprotein uptake, survival, and cholesterol efflux. CONCLUSIONS: Trem2 agonism expands atherosclerotic plaque macrophages by promoting cell survival and proliferation but improves features of plaque stability by rewiring foamy macrophage function to enhance cholesterol efflux and collagen deposition.


Subject(s)
Atherosclerosis , Disease Models, Animal , Foam Cells , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, Immunologic , Animals , Receptors, Immunologic/agonists , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/agonists , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Foam Cells/metabolism , Foam Cells/pathology , Foam Cells/drug effects , Male , Receptors, LDL/genetics , Receptors, LDL/metabolism , Receptors, LDL/deficiency , Cell Proliferation/drug effects , Diet, High-Fat , Cell Survival/drug effects , Necrosis , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/prevention & control
11.
Cell Commun Signal ; 22(1): 297, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807218

ABSTRACT

BACKGROUND: Endoplasmic reticulum (ER) stress-mediated increases in the hepatic levels of the very low-density lipoprotein (VLDL) receptor (VLDLR) promote hepatic steatosis by increasing the delivery of triglyceride-rich lipoproteins to the liver. Here, we examined whether the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) regulates hepatic lipid accumulation by modulating VLDLR levels and the subsequent uptake of triglyceride-rich lipoproteins. METHODS: Rats fed with fructose in drinking water, Sirt1-/- mice, mice treated with the ER stressor tunicamycin with or without a SIRT1 activator, and human Huh-7 hepatoma cells transfected with siRNA or exposed to tunicamycin or different inhibitors were used. RESULTS: Hepatic SIRT1 protein levels were reduced, while those of VLDLR were upregulated in the rat model of metabolic dysfunction-associated steatotic liver disease (MASLD) induced by fructose-drinking water. Moreover, Sirt1-/- mice displayed increased hepatic VLDLR levels that were not associated with ER stress, but were accompanied by an increased expression of hypoxia-inducible factor 1α (HIF-1α)-target genes. The pharmacological inhibition or gene knockdown of SIRT1 upregulated VLDLR protein levels in the human Huh-7 hepatoma cell line, with this increase abolished by the pharmacological inhibition of HIF-1α. Finally, SIRT1 activation prevented the increase in hepatic VLDLR protein levels in mice treated with the ER stressor tunicamycin. CONCLUSIONS: Overall, these findings suggest that SIRT1 attenuates fatty liver development by modulating hepatic VLDLR levels.


Subject(s)
Liver , Receptors, LDL , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Humans , Liver/metabolism , Liver/drug effects , Receptors, LDL/metabolism , Receptors, LDL/genetics , Mice , Male , Endoplasmic Reticulum Stress/drug effects , Rats , Cell Line, Tumor , Mice, Knockout , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Mice, Inbred C57BL , Tunicamycin/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Rats, Sprague-Dawley
12.
J Intern Med ; 296(1): 39-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704820

ABSTRACT

Platelet hyperreactivity and hyperlipidaemia contribute significantly to atherosclerosis. Thus, it is desirable to review the platelet-hyperlipidaemia interplay and its impact on atherogenesis. Native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) are the key proatherosclerotic components of hyperlipidaemia. nLDL binds to the platelet-specific LDL receptor (LDLR) ApoE-R2', whereas oxLDL binds to the platelet-expressed scavenger receptor CD36, lectin-type oxidized LDLR 1 and scavenger receptor class A 1. Ligation of nLDL/oxLDL induces mild platelet activation and may prime platelets for other platelet agonists. Platelets, in turn, can modulate lipoprotein metabolisms. Platelets contribute to LDL oxidation by enhancing the production of reactive oxygen species and LDLR degradation via proprotein convertase subtilisin/kexin type 9 release. Platelet-released platelet factor 4 and transforming growth factor ß modulate LDL uptake and foam cell formation. Thus, platelet dysfunction and hyperlipidaemia work in concert to aggravate atherogenesis. Hypolipidemic drugs modulate platelet function, whereas antiplatelet drugs influence lipid metabolism. The research prospects of the platelet-hyperlipidaemia interplay in atherosclerosis are also discussed.


Subject(s)
Atherosclerosis , Blood Platelets , Hyperlipidemias , Lipoproteins, LDL , Humans , Atherosclerosis/etiology , Blood Platelets/metabolism , Lipoproteins, LDL/metabolism , Platelet Activation/physiology , Receptors, LDL/metabolism , Hypolipidemic Agents/therapeutic use
13.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731489

ABSTRACT

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Subject(s)
Gallic Acid , Lipoproteins, LDL , Receptors, LDL , Humans , Gallic Acid/pharmacology , Receptors, LDL/metabolism , Hep G2 Cells , Lipoproteins, LDL/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
14.
Lipids Health Dis ; 23(1): 156, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796450

ABSTRACT

The degradation of low-density lipoprotein receptor (LDLR) is induced by proprotein convertase subtilisin/kexin type 9 (PCSK9), resulting in elevated plasma concentrations of LDL cholesterol. Therefore, inhibiting the interactions between PCSK9 and LDLR is a desirable therapeutic goal for managing hypercholesterolemia. Aptamers, which are RNA or single-stranded DNA sequences, can recognize their targets based on their secondary structure. Aptamers exhibit high selectivity and affinity for binding to target molecules. The systematic evolution of ligands by exponential enrichment (SELEX), a combination of biological approaches, is used to screen most aptamers in vitro. Due to their unique advantages, aptamers have garnered significant interest since their discovery and have found extensive applications in various fields. Aptamers have been increasingly utilized in the development of biosensors for sensitive detection of pathogens, analytes, toxins, drug residues, and malignant cells. Furthermore, similar to monoclonal antibodies, aptamers can serve as therapeutic tools. Unlike certain protein therapeutics, aptamers do not elicit antibody responses, and their modified sugars at the 2'-positions generally prevent toll-like receptor-mediated innate immune responses. The focus of this review is on aptamer-based targeting of PCSK9 and the application of aptamers both as biosensors and therapeutic agents.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lipid Metabolism , Proprotein Convertase 9 , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/blood , Humans , Biosensing Techniques/methods , Receptors, LDL/metabolism , SELEX Aptamer Technique , Hypercholesterolemia/drug therapy , Hypercholesterolemia/diagnosis , Hypercholesterolemia/blood , Animals , PCSK9 Inhibitors
15.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38713618

ABSTRACT

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Subject(s)
Adaptor Proteins, Signal Transducing , Cholesterol , Cytoskeletal Proteins , LIM Domain Proteins , Membrane Transport Proteins , Mice, Knockout , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Caco-2 Cells , Humans , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice , Cholesterol/metabolism , Cholesterol/blood , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Receptors, LDL/metabolism , Receptors, LDL/genetics , Intestinal Mucosa/metabolism , Enterocytes/metabolism , Intestinal Absorption , Diet, High-Fat , Homeodomain Proteins
16.
Food Funct ; 15(12): 6684-6691, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38819217

ABSTRACT

We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.


Subject(s)
Atherosclerosis , Mice, Knockout , Receptors, LDL , Animals , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice , Male , Atherosclerosis/prevention & control , Atherosclerosis/genetics , Atherosclerosis/metabolism , Triglycerides/blood , Triglycerides/metabolism , Kelp , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Liver/metabolism , Cholesterol/blood , Cholesterol/metabolism , Humans , Lipid Metabolism , Edible Seaweeds , Laminaria
17.
Nat Commun ; 15(1): 4542, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806525

ABSTRACT

The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.


Subject(s)
Apolipoproteins E , Hemorrhagic Fever Virus, Crimean-Congo , Receptors, LDL , Virus Internalization , Humans , Receptors, LDL/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Hemorrhagic Fever Virus, Crimean-Congo/metabolism , Hemorrhagic Fever Virus, Crimean-Congo/physiology , Animals , HEK293 Cells , Chlorocebus aethiops , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever, Crimean/metabolism , Virion/metabolism , Vero Cells
18.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732511

ABSTRACT

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Subject(s)
Choline , Dietary Supplements , Ethanol , Liver , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Choline/administration & dosage , Male , Liver/metabolism , Liver/drug effects , Mice , Fatty Liver/prevention & control , Fatty Liver/etiology , Triglycerides/metabolism , PPAR alpha/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Glucose Intolerance/prevention & control , Lipid Metabolism/drug effects
19.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786080

ABSTRACT

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Subject(s)
HLA-C Antigens , Hemochromatosis Protein , Lysosomes , Proprotein Convertase 9 , Protein Transport , Receptors, LDL , Humans , Receptors, LDL/metabolism , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Hemochromatosis Protein/metabolism , Hemochromatosis Protein/genetics , HLA-C Antigens/metabolism , Lysosomes/metabolism , HEK293 Cells , Protein Binding
20.
Nat Commun ; 15(1): 4564, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811591

ABSTRACT

Accurate non-invasive biomarkers to diagnose metabolic dysfunction-associated steatotic liver disease (MASLD)-related fibrosis are urgently needed. This study applies a translational approach to develop a blood-based biomarker panel for fibrosis detection in MASLD. A molecular gene expression signature identified from a diet-induced MASLD mouse model (LDLr-/-.Leiden) is translated into human blood-based biomarkers based on liver biopsy transcriptomic profiles and protein levels in MASLD patient serum samples. The resulting biomarker panel consists of IGFBP7, SSc5D and Sema4D. LightGBM modeling using this panel demonstrates high accuracy in predicting MASLD fibrosis stage (F0/F1: AUC = 0.82; F2: AUC = 0.89; F3/F4: AUC = 0.87), which is replicated in an independent validation cohort. The overall accuracy of the model outperforms predictions by the existing markers Fib-4, APRI and FibroScan. In conclusion, here we show a disease mechanism-related blood-based biomarker panel with three biomarkers which is able to identify MASLD patients with mild or advanced hepatic fibrosis with high accuracy.


Subject(s)
Biomarkers , Liver Cirrhosis , Semaphorins , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Biomarkers/blood , Animals , Male , Mice , Female , Semaphorins/blood , Semaphorins/genetics , Semaphorins/metabolism , Middle Aged , Fatty Liver/blood , Fatty Liver/diagnosis , Fatty Liver/pathology , Liver/pathology , Liver/metabolism , Disease Models, Animal , Receptors, LDL/genetics , Receptors, LDL/metabolism , Transcriptome , Mice, Knockout , Adult , Mice, Inbred C57BL , Insulin-Like Growth Factor Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...