Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Proc Natl Acad Sci U S A ; 119(15): e2122682119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377814

ABSTRACT

Comparisons of G protein-coupled receptor (GPCR) complexes with agonists and antagonists based on X-ray crystallography and cryo-electron microscopy structure determinations show differences in the width of the orthosteric ligand binding groove over the range from 0.3 to 2.9 Å. Here, we show that there are transient structure fluctuations with amplitudes up to at least 6 Å. The experiments were performed with the neurokinin 1 receptor (NK1R), a GPCR of class A that is involved in inflammation, pain, and cancer. We used 19F-NMR observation of aprepitant, which is an approved drug that targets NK1R for the treatment of chemotherapy-induced nausea and vomiting. Aprepitant includes a bis-trifluoromethyl-phenyl ring attached with a single bond to the core of the molecule; 19F-NMR revealed 180° flipping motions of this ring about this bond. In the picture emerging from the 19F-NMR data, the GPCR transmembrane helices undergo large-scale floating motions in the lipid bilayer. The functional implication is of extensive promiscuity of initial ligand binding, primarily determined by size and shape of the ligand, with subsequent selection by unique interactions between atom groups of the ligand and the GPCR within the binding groove. This second step ensures the wide range of different efficacies documented for GPCR-targeting drugs. The NK1R data also provide a rationale for the observation that diffracting GPCR crystals are obtained for complexes with only very few of the ligands from libraries of approved drugs and lead compounds that bind to the receptors.


Subject(s)
Antiemetics , Aprepitant , Neurokinin-1 Receptor Antagonists , Receptors, Neurokinin-1 , Antiemetics/chemistry , Antiemetics/pharmacology , Aprepitant/chemistry , Aprepitant/pharmacology , Cryoelectron Microscopy , Crystallography, X-Ray , Ligands , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacology , Protein Structure, Secondary , Receptors, Neurokinin-1/chemistry
2.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163139

ABSTRACT

Locoregionally administered, NK1 receptor (NK1R) targeted radionuclide therapy is a promising strategy for the treatment of glioblastoma multiforme. So far, the radiopharmaceuticals used in this approach have been based on the endogenous agonist of NK1R, Substance P or on its close analogues. Herein, we used a well-known, small molecular NK1R antagonist, L732,138, as the basis for the radiopharmaceutical vector. First, 14 analogues of this compound were evaluated to check whether extending the parent structure with linkers of different lengths would not deteriorate the NK1R binding. The tested analogues had affinity similar to or better than the parent compound, and none of the linkers had a negative impact on the binding. Next, five DOTA conjugates were synthesized and used for labelling with 68Ga and 177Lu. The obtained radioconjugates turned out to be fairly lipophilic but showed rather limited stability in human plasma. Evaluation of the receptor affinity of the (radio)conjugates showed that neither the chelator nor the metal negatively impacts the NK1R binding. The 177Lu-radioconjugates exhibited the binding characteristics towards NK1R similar or better than that of the 177Lu-labelled derivative of Substance P, which is in current clinical use. The experimental results presented herein, along with their structural rationalization provided by modelling, give insight for the further molecular design of small molecular NK1R-targeting vectors.


Subject(s)
Gallium Radioisotopes/metabolism , Glioblastoma/metabolism , Lutetium/metabolism , Radioisotopes/metabolism , Radiopharmaceuticals/metabolism , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Structure-Activity Relationship , Tumor Cells, Cultured
3.
Sci Rep ; 11(1): 24358, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934106

ABSTRACT

The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.


Subject(s)
Formaldehyde/toxicity , Inflammation/drug therapy , Nociception/drug effects , Pain/drug therapy , Piperidines/pharmacology , Prosencephalon/drug effects , Receptors, Neurokinin-1/chemistry , Septal Nuclei/drug effects , Animals , Disinfectants/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Male , Pain/chemically induced , Pain/metabolism , Pain/pathology , Prosencephalon/metabolism , Prosencephalon/pathology , Rats , Rats, Sprague-Dawley , Receptors, Neurokinin-1/metabolism , Septal Nuclei/metabolism , Septal Nuclei/pathology
4.
Molecules ; 26(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34500841

ABSTRACT

Opioid agonists are well-established analgesics, widely prescribed for acute but also chronic pain. However, their efficiency comes with the price of drastically impacting side effects that are inherently linked to their prolonged use. To answer these liabilities, designed multiple ligands (DMLs) offer a promising strategy by co-targeting opioid and non-opioid signaling pathways involved in nociception. Despite being intimately linked to the Substance P (SP)/neurokinin 1 (NK1) system, which is broadly examined for pain treatment, the neurokinin receptors NK2 and NK3 have so far been neglected in such DMLs. Herein, a series of newly designed opioid agonist-NK2 or -NK3 antagonists is reported. A selection of reported peptidic, pseudo-peptidic, and non-peptide neurokinin NK2 and NK3 ligands were covalently linked to the peptidic µ-opioid selective pharmacophore Dmt-DALDA (H-Dmt-d-Arg-Phe-Lys-NH2) and the dual µ/δ opioid agonist H-Dmt-d-Arg-Aba-ßAla-NH2 (KGOP01). Opioid binding assays unequivocally demonstrated that only hybrids SBL-OPNK-5, SBL-OPNK-7 and SBL-OPNK-9, bearing the KGOP01 scaffold, conserved nanomolar range µ-opioid receptor (MOR) affinity, and slightly reduced affinity for the δ-opioid receptor (DOR). Moreover, NK binding experiments proved that compounds SBL-OPNK-5, SBL-OPNK-7, and SBL-OPNK-9 exhibited (sub)nanomolar binding affinity for NK2 and NK3, opening promising opportunities for the design of next-generation opioid hybrids.


Subject(s)
Analgesics, Opioid/chemistry , Neurokinin-1 Receptor Antagonists/chemistry , Peptidomimetics/chemistry , Receptors, Neurokinin-1/chemistry , Receptors, Opioid, mu/chemistry , Amino Acid Sequence , Humans , Ligands , Oligopeptides/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substance P/chemistry
5.
Med Chem ; 17(3): 289-297, 2021.
Article in English | MEDLINE | ID: mdl-32914717

ABSTRACT

BACKGROUND: Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE: The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS: The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS: We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION: The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.


Subject(s)
Asthma/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Oxazoles/chemistry , Oxazoles/pharmacology , Asthma/drug therapy , Dose-Response Relationship, Drug , Drug Design , Humans , Molecular Docking Simulation , Oxazoles/metabolism , Oxazoles/therapeutic use , Protein Conformation , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism
6.
Peptides ; 136: 170458, 2021 02.
Article in English | MEDLINE | ID: mdl-33248147

ABSTRACT

The neurokinin-1 receptor plays a profound role in inflammatory processes and is involved in immune cell differentiation, cytokine release, and mast cell activation. Due to their similar peptide structures, the neurokinin-1 receptor does not discriminate between the endogenous ligands substance P (SP) and human hemokinin-1 (hHK-1), which both demonstrate biological receptor affinity. In addition, due to cross-reactivity, the current bioanalytical method of choice-immunoassays-also displays limitations in differentiating between these peptides. Thus, a recently developed mass spectrometric assay was utilized for the selective quantification of SP and hHK-1 in various biofluids and tissue. By applying the sample processing protocols developed, SP was quantified in porcine brain tissue (4.49 ± 0.53 nM), human saliva (113.3 ± 67.0 pM), and human seminal fluid (0.52 ± 0.15 nM) by mass spectrometric analysis. As previously reported, neither SP nor hHK-1 could be detected in human plasma by mass spectrometry. Comparison with analysis using a commercial immunoassay of the same plasma sample revealed SP like-immunoreactivity concentrations of 37.1-178.0 pM. The previously reported carboxylic acid of SP, whose identity was confirmed by high-resolution mass spectrometric analysis, did not show cross-reactivity in the applied immunoassay and did not contribute to SP-like immunoreactivity results. Subsequent compound discovery of the immunocaptured substance indicated the presence of a precursor of SP as possible cross-reactor in human plasma samples. The found cross-reactivity might be the cause for the high variance of SP plasma levels in former determinations.


Subject(s)
Inflammation/genetics , Receptors, Neurokinin-1/isolation & purification , Substance P/isolation & purification , Tachykinins/isolation & purification , Animals , Body Fluids/chemistry , Brain/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Mass Spectrometry , Peptides/chemistry , Peptides/isolation & purification , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/genetics , Saliva/chemistry , Semen/chemistry , Substance P/chemistry , Substance P/genetics , Swine , Tachykinins/chemistry , Tachykinins/genetics
7.
Molecules ; 25(16)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824729

ABSTRACT

Aprepitant, a lipophilic and small molecular representative of neurokinin 1 receptor antagonists, is known for its anti-proliferative activity on numerous cancer cell lines that are sensitive to Substance P mitogen action. In the presented research, we developed two novel structural modifications of aprepitant to create aprepitant conjugates with different radionuclide chelators. All of them were radiolabeled with 68Ga and 177Lu radionuclides and evaluated in terms of their lipophilicity and stability in human serum. Furthermore, fully stable conjugates were examined in molecular modelling with a human neurokinin 1 receptor structure and in a competitive radioligand binding assay using rat brain homogenates in comparison to the aprepitant molecule. This initial research is in the conceptual stage to give potential theranostic-like radiopharmaceutical pairs for the imaging and therapy of neurokinin 1 receptor-overexpressing cancers.


Subject(s)
Aprepitant/chemistry , Aprepitant/pharmacology , Brain/drug effects , Neoplasms/drug therapy , Neurokinin-1 Receptor Antagonists/pharmacology , Radiopharmaceuticals/pharmacology , Receptors, Neurokinin-1/chemistry , Animals , Brain/pathology , Radiochemistry , Radiopharmaceuticals/chemical synthesis , Rats
8.
Cancer Immunol Immunother ; 69(8): 1639-1650, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32322911

ABSTRACT

Substance P a neuro-immune mediator acts on Neurokinin-1 and -2 receptors (NK1R and NK2R). Inhibitors of NK1R are considered to be safe and effective approaches for cancer treatment since Aprepitant, a non-peptide antagonist of NK1R is widely used for chemotherapy-induced emesis and has cytotoxic and antitumor effects in various models for cancer. On the other hand, our previous findings demonstrated that systemic inhibition of NK1R may decrease cytotoxic anti-tumoral immune response. Hence, actual consequences of inhibition of neurokinin receptors under in vivo conditions in a syngeneic model of carcinoma should be determined. The effects of highly potent and selective non-peptide mouse NK1R and NK2R antagonists RP 67580 and GR 159897, respectively, on metastatic breast carcinoma were evaluated. Specifically, 4T1 breast cancer cells metastasized to brain (denoted as 4TBM) and liver (denoted as 4TLM) were used to induce tumors in Balb-c mice. Changes in tumor growth, metastasis and immune response to cancer cells were determined. We here observed differential effects of NK1R antagonist depended on the subset of metastatic cells. Specifically, inhibition of NK1R markedly increased liver metastasis of tumors formed by 4TBM but not 4TLM cells. On the contrary, NK1R antagonist decreased inflammatory response and liver metastasis in 4TLM-injected mice. 4TLM tumors act more aggressively inducing more inflammatory response compared to 4TBM tumors. Hence, differential effects of NK1R antagonist are at least partly due to extend and type of the inflammatory response evoked by specific subset metastatic cells. These findings demonstrate the necessity for understanding the immunological consequences of tumor-microenvironment interactions.


Subject(s)
Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Inflammation/drug therapy , Liver Neoplasms/drug therapy , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/chemistry , Tumor Microenvironment/immunology , Animals , Apoptosis , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Cell Proliferation , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Nude , Phenotype , Receptors, Neurokinin-2/antagonists & inhibitors , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
9.
Am J Pathol ; 190(1): 125-133, 2020 01.
Article in English | MEDLINE | ID: mdl-31669306

ABSTRACT

Neuroinflammation plays an important role in the pathogenesis of ocular surface disease, including dry eye disease (DED), but little is known about the contribution of substance P (SP) to DED. In this study, we investigated the expression of SP at the ocular surface and evaluated its effect on maturation of antigen-presenting cells (APCs), the key cell component involved in the induction of type 17 helper T-cell (Th17) response in DED. The effect of topical blockade of SP signaling was further investigated using neurokinin-1 receptor (NK1R) inhibitors on APC maturation, Th17 cell activation, and disease severity in a mouse model of DED. The results demonstrate that SP is constitutively expressed at the ocular surface, and trigeminal ganglion neurons are the major source of SP in DED. SP derived from trigeminal ganglion enhanced the expression of major histocompatibility complex class II maturation marker by bone marrow-derived dendritic cells, an effect that is abrogated by blockade of SP signaling using NK1R antagonist spantide. Finally, using a well-established murine model of DED, topical treatment of DED mice with NK1R antagonists CP-99,994 and L-733,060 suppressed APC acquisition of major histocompatibility complex class II, reduced Th17 cell activity, and ameliorated DED severity. These findings are of translational value, as they suggest that antagonizing NK1R-mediated SP signaling may be an effective strategy in suppressing Th17-mediated ocular surface disease.


Subject(s)
Antigen-Presenting Cells/immunology , Disease Models, Animal , Dry Eye Syndromes/prevention & control , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/chemistry , Th17 Cells/immunology , Animals , Antigen-Presenting Cells/drug effects , Cornea/drug effects , Cornea/immunology , Dry Eye Syndromes/immunology , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Female , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Th17 Cells/drug effects
10.
Mol Imaging Biol ; 22(2): 377-383, 2020 04.
Article in English | MEDLINE | ID: mdl-31292915

ABSTRACT

PURPOSE: Neuroendocrine tumors (NETs) have reasonably high 5-year survival rates when diagnosed at an early stage but are significantly more lethal when discovered only after metastasis. Although several imaging modalities such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging can detect neuroendocrine tumors, their high false positive rates suggest that more specific diagnostic tests are required. Targeted imaging agents such as Octreoscan® have met some of this need for improved specificity, but their inability to image poorly differentiated NETs suggests that improved NET imaging agents are still needed. Because neurokinin 1 receptors (NK1Rs) are widely over-expressed in neuroendocrine tumors, but show limited expression in healthy tissues, we have undertaken to develop an NK1R-targeted imaging agent for improved diagnosis and staging of neuroendocrine tumors. PROCEDURE: A small molecule NK1R antagonist was conjugated via a flexible spacer to a Tc-99m chelating peptide. After complexation with Tc-99m, binding of the conjugate to human embryonic kidney (HEK293) cells transfected with the human NK1R was evaluated as a function of radioimaging agent concentration. In vivo imaging of HEK293-NK1R tumor xenografts in mice was also performed by single-photon emission computed tomography/computed tomography (γ-SPECT/CT), and the distribution of the conjugate in various tissues was quantified by tissue resection and γ-counting. RESULTS: NK1R-targeted Tc-99m-based radioimaging agent displayed excellent affinity (Kd = 16.8 nM) and specificity for HEK293-NK1R tumor xenograft. SPECT/CT analysis of tumor-bearing mice demonstrated significant tumor uptake and high tumor to background ratio as early as 2 h post injection. CONCLUSION: The excellent tumor contrast afforded by our NK1R-targeted radioimaging agent exhibits properties that could improve early diagnosis and staging of many neuroendocrine tumors.


Subject(s)
Neuroendocrine Tumors/diagnostic imaging , Receptors, Neurokinin-1/chemistry , Technetium/chemistry , Animals , Chelating Agents/chemistry , False Positive Reactions , Female , HEK293 Cells , Humans , Ligands , Mice , Mice, Nude , Neoplasm Transplantation , Peptides/chemistry , Single Photon Emission Computed Tomography Computed Tomography , Somatostatin/analogs & derivatives , Tomography, X-Ray Computed
11.
Nat Commun ; 10(1): 638, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733446

ABSTRACT

Neurokinin 1 receptor (NK1R) has key regulating functions in the central and peripheral nervous systems, and NK1R antagonists such as aprepitant have been approved for treating chemotherapy-induced nausea and vomiting. However, the lack of data on NK1R structure and biochemistry has limited further drug development targeting this receptor. Here, we combine NMR spectroscopy and X-ray crystallography to provide dynamic and static characterisation of the binding mode of aprepitant in complexes with human NK1R variants. 19F-NMR showed a slow off-rate in the binding site, where aprepitant occupies multiple substates that exchange with frequencies in the millisecond range. The environment of the bound ligand is affected by the amino acid in position 2.50, which plays a key role in ligand binding and receptor signaling in class A GPCRs. Crystal structures now reveal how receptor signaling relates to the conformation of the conserved NP7.50xxY motif in transmembrane helix VII.


Subject(s)
Aprepitant/metabolism , Crystallography/methods , Magnetic Resonance Spectroscopy/methods , Receptors, Neurokinin-1/metabolism , Aprepitant/chemistry , Humans , Protein Binding , Receptors, Neurokinin-1/chemistry
12.
Nat Commun ; 10(1): 17, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604743

ABSTRACT

Neurokinins (or tachykinins) are peptides that modulate a wide variety of human physiology through the neurokinin G protein-coupled receptor family, implicated in a diverse array of pathological processes. Here we report high-resolution crystal structures of the human NK1 receptor (NK1R) bound to two small-molecule antagonist therapeutics - aprepitant and netupitant and the progenitor antagonist CP-99,994. The structures reveal the detailed interactions between clinically approved antagonists and NK1R, which induce a distinct receptor conformation resulting in an interhelical hydrogen-bond network that cross-links the extracellular ends of helices V and VI. Furthermore, the high-resolution details of NK1R bound to netupitant establish a structural rationale for the lack of basal activity in NK1R. Taken together, these co-structures provide a comprehensive structural basis of NK1R antagonism and will facilitate the design of new therapeutics targeting the neurokinin receptor family.


Subject(s)
Neurokinin-1 Receptor Antagonists/chemistry , Receptors, Neurokinin-1/chemistry , Aprepitant/chemistry , Aprepitant/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Design , HEK293 Cells , Humans , Molecular Dynamics Simulation , Neurokinin-1 Receptor Antagonists/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Protein Structure, Secondary , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Neurokinin-1/isolation & purification , Receptors, Neurokinin-1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship
13.
Invest New Drugs ; 37(1): 17-26, 2019 02.
Article in English | MEDLINE | ID: mdl-29721755

ABSTRACT

The substance P/neurokinin-1 receptor system has been implicated in tumor cell proliferation. Neurokinin-1 receptor has been identified in different solid tumors but not frequently in hematopoietic malignant cells. We investigated the presence of the Neurokinin-1 receptor in acute myeloid leukemia cell lines (KG-1 and HL-60), demonstrating that acute myeloid leukemia cell lines overexpress the truncated Neurokinin-1 receptor isoform compared with lymphocytes from healthy donors. Using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) method, we demonstrated that substance P induced cell proliferation in both acute myeloid leukemia cell lines. We also observed that four different Neurokinin-1 receptor antagonists (L-733,060, L-732,138, CP 96-345 and aprepitant) elicited inhibition of acute myeloid leukemia cell growth lines in a concentration-dependent manner, while growth inhibition was only marginal in lymphocytes; the specific antitumor action of Neurokinin-1 receptor antagonists occurs via the Neurokinin-1 receptor, and leukemia cell death is due to apoptosis. Finally, administration of high doses of daily intraperitoneal fosaprepitant to NOD scid gamma mice previously xenografted with the HL60 cell line increased the median survival from 4 days (control group) to 7 days (treated group) (p = 0.059). Taken together, these findings suggest that Neurokinin-1 receptor antagonists suppress leukemic cell growth and may be considered to be potential antitumor drugs for the treatment of human acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Neurokinin-1 Receptor Antagonists/pharmacology , Receptors, Neurokinin-1/chemistry , Animals , Apoptosis , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Neurokinin-1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Proc Natl Acad Sci U S A ; 115(52): 13264-13269, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30538204

ABSTRACT

The NK1 tachykinin G-protein-coupled receptor (GPCR) binds substance P, the first neuropeptide to be discovered in mammals. Through activation of NK1R, substance P modulates a wide variety of physiological and disease processes including nociception, inflammation, and depression. Human NK1R (hNK1R) modulators have shown promise in clinical trials for migraine, depression, and emesis. However, the only currently approved drugs targeting hNK1R are inhibitors for chemotherapy-induced nausea and vomiting (CINV). To better understand the molecular basis of ligand recognition and selectivity, we solved the crystal structure of hNK1R bound to the inhibitor L760735, a close analog of the drug aprepitant. Our crystal structure reveals the basis for antagonist interaction in the deep and narrow orthosteric pocket of the receptor. We used our structure as a template for computational docking and molecular-dynamics simulations to dissect the energetic importance of binding pocket interactions and model the binding of aprepitant. The structure of hNK1R is a valuable tool in the further development of tachykinin receptor modulators for multiple clinical applications.


Subject(s)
Morpholines/metabolism , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism , Substance P/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Dynamics Simulation , Morpholines/chemistry , Protein Binding , Protein Conformation , Substance P/chemistry
15.
PLoS One ; 13(10): e0205894, 2018.
Article in English | MEDLINE | ID: mdl-30359406

ABSTRACT

A series of peptide NK2 receptor agonists was evaluated for affinity, potency, efficacy, and selectivity at human recombinant NK2 and NK1 receptors expressed in CHO cells to identify compounds with the greatest separation between NK2 and NK1 receptor agonist activity. Binding studies were performed using displacement of [125I]-NKA binding to NK2 receptors and displacement of [3H]-Septide binding to NK1 receptors expressed in CHO cells. Functional studies examining the increase in intracellular calcium levels and cyclic AMP stimulation were performed using the same cell lines. A correlation was demonstrated between binding affinities (Ki) and potency to increase intracellular calcium (EC50) for NK2 and NK1 receptors. Ranking compounds by their relative affinity (Ki) or potency (EC50) at NK2 or NK1 receptors indicated that the most selective NK2 agonists tested were [Lys5,MeLeu9,Nle10]-NKA(4-10) (NK1/NK2 Ki ratio = 674; NK1/NK2 EC50 ratio = 105) and [Arg5,MeLeu9,Nle10]-NKA(4-10) (NK1/NK2 Ki ratio = 561; NK1/NK2 EC50 ratio = 70). The endogenous peptide, NKA, lacked selectivity with an NK1/NK2 Ki ratio = 20 and NK1/NK2 EC50 ratio = 1. Of the compounds selected for evaluation in cyclic AMP stimulation assays, [ß-Ala8]-NKA(4-10) had the greatest selectivity for activation of NK2 over NK1 receptors (NK1/NK2 EC50 ratio = 244), followed by [Lys5,MeLeu9,Nle10]-NKA(4-10) (ratio = 74), and NKA exhibited marginal selectivity (ratio = 2.8).


Subject(s)
Neurokinin A/analogs & derivatives , Neurokinin A/chemistry , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-2/chemistry , Recombinant Proteins/chemistry , Animals , CHO Cells , Calcium/metabolism , Cell Membrane/metabolism , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Peptides/chemistry , Reproducibility of Results
16.
J Mol Model ; 24(7): 177, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29943287

ABSTRACT

Substance P is a neurotransmitter or modulator in both the central and peripheral nervous systems. In this work, modifications of the lysine in SP by homocysteine and an acetyl group as well as the conformational dynamics of the native and modified SP peptides and their complexes with the NK1 receptor were studied via MD simulation. It was found that modifying SP stabilizes the peptide structure, but the modified SP peptides are less likely to bind to the NK1 receptor, so the resulting complexes are less stable. The RMSD of native SP (~0.33 nm) is about twice as large as that of the modified SP peptides (~0.18 nm), while the RMSD for the receptor complexed with native SP is ~0.3 nm, and that for the receptor complexed with either of the modified peptides is ~0.35 nm, which demonstrates the high stability of the modified SP peptides as well as the receptor complexed with native SP. Such behavior was also observed in other structural analyses. The binding free energies of the native and modified SP peptides with the NK1 receptor were also compared. The ΔGbind values for the binding of homocysteinylated SP to the NK1 receptor and the binding of the acetylated SP and native SP to the NK1 receptor were -38.89, -64.46, and - 264.52 kJ mol-1, respectively. Modification of the lysine of SP decreases the binding affinity of the peptide to the NK1 receptor. In other words, homocysteinylation or acetylation of SP leads to weaker interactions of the peptide with the NK1 receptor compared to those between native SP and NK1. We propose that this phenomenon leads to increased levels of homocysteinylated SP in plasma in many diseases such as breast cancer. Graphical abstract Substance P (SP) is a neuropeptide which binds to the NK1 receptor. SP is of great pharmacological interest, as agonists and antagonists of SP can potentially be used to treat many chronic diseases. Therefore, in this work, the lysine (LYS) in SP was theoretically modified with a homocysteine or acetyl group to explore the effects of such a modification on the binding affinity of this peptide with the NK1 receptor and the structural dynamics of the resulting complex.


Subject(s)
Homocysteine/chemistry , Molecular Dynamics Simulation , Receptors, Neurokinin-1/chemistry , Substance P/chemistry , Amino Acids/chemistry , Binding Sites , Homocysteine/metabolism , Hydrogen Bonding , Molecular Docking Simulation , Peptide Fragments/chemistry , Protein Binding , Protein Conformation , Receptors, Neurokinin-1/metabolism , Structure-Activity Relationship , Substance P/metabolism
17.
Anticancer Res ; 37(11): 5911-5918, 2017 11.
Article in English | MEDLINE | ID: mdl-29061769

ABSTRACT

Neuroblastoma is the most common solid extracranial malignant tumor in children. Despite recent advances in the treatment of this heterogenous tumor with surgery and chemotherapy, the prognosis in advanced stages remains poor. Interestingly, neuroblastoma is one of the few solid tumors, to date, in which an effect for targeted immunotherapy has been proven in controlled clinical trials, giving hope for further advances in the treatment of this and other tumors by targeted therapy. A large array of novel therapeutic options for targeted therapy of neuroblastoma is on the horizon. To this repεrtoirε, the neurokinin-1 receptor (NK1R) system was recently added. The present article explores the most recent developments in targeting neuroblastoma cells via the NK1R and how this new knowledge could be helpful to create new anticancer therapies agains neuroblastoma and other cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Immunotherapy , Molecular Targeted Therapy , Neuroblastoma/therapy , Receptors, Neurokinin-1/chemistry , Child , Humans , Neuroblastoma/immunology , Receptors, Neurokinin-1/immunology
18.
Eur J Pain ; 21(7): 1277-1284, 2017 08.
Article in English | MEDLINE | ID: mdl-28493529

ABSTRACT

BACKGROUND: Substance P (SP) is a pain- and inflammation-related neuropeptide which preferentially binds to the neurokinin receptor 1 (NK1 ). SP and NK1 receptors have been implicated in joint pain, inflammation and damage in animal models and human studies of osteoarthritis (OA). The aim of this study was to test if genetic variation at the neurokinin 1 receptor gene (TACR1) is associated with pain in individuals with radiographic knee OA. METHODS: Participants from the Genetics of OA and Lifestyle study were used for the discovery group (n = 1615). Genotype data for six SNPs selected to cover most variation in the TACR1 gene were used to test for an association with symptomatic OA. Replication analysis was performed using data from the Chingford 1000 Women Study, Hertfordshire Cohort Study, Tasmanian Older Adult Cohort Study and the Clearwater OA Study. In total, n = 1715 symptomatic OA and n = 735 asymptomatic OA individuals were analysed. RESULTS: Out of six SNPs tested in the TACR1 gene, one (rs11688000) showed a nominally significant association with a decreased risk of symptomatic OA in the discovery cohort. This was then replicated in four additional cohorts. After adjusting for age, gender, body mass index and radiographic severity, the G (minor) allele at rs11688000 was associated with a decreased risk of symptomatic OA compared to asymptomatic OA cases (p = 9.90 × 10-4 , OR = 0.79 95% 0.68-0.90 after meta-analysis). CONCLUSIONS: This study supports a contribution from the TACR1 gene in human OA pain, supporting further investigation of this gene's function in OA. SIGNIFICANCE: This study contributes to the knowledge of the genetics of painful osteoarthritis, a condition which affects millions of individuals worldwide. Specifically, a contribution from the TACR1 gene to modulating pain sensitivity in osteoarthritis is suggested.


Subject(s)
Arthralgia/physiopathology , Genetic Variation/genetics , Osteoarthritis, Knee/physiopathology , Pain/genetics , Polymorphism, Single Nucleotide/physiology , Receptors, Neurokinin-1/chemistry , Substance P/chemistry , Animals , Cohort Studies , Female , Genotype , Humans , Pain/physiopathology , Phenotype , Receptors, Neurokinin-1/physiology
19.
Mol Med Rep ; 12(6): 8085-92, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26497672

ABSTRACT

[Sar9, Met(O2)11] termed Substance P (SP), is an effective and selective agonist for the neurokinin­1 (NK­1) receptors, which are synthetic peptides, similar in structure to SP. SP is an important neurotransmitter or neuromodulator mediated by neurokinin receptors, namely the SP receptor in the central nervous system. The excitatory effects induced by SP may be selectively inhibited by a neurokinin­1 receptor antagonist, such as SR140333B. It has been proposed that Parkinson's disease (PD) is primarily caused by the loss of trophic peptidergic neurotransmitter, possibly SP, which may lead to the degeneration of neurons. In previous studies, 1­methyl­4­phenylpyridinium (MPP+) has been frequently utilized to establish animal or cell models of PD. In the present study, to further investigate the effects of SP in PD, MPP+ was employed to investigate the promising anti­apoptotic effects of SP, and examine the underlying mechanisms of the pathology in the MES23.5 dopaminergic cell line. The results indicated that MPP+­triggered apoptosis was prevented by treatment with SP. SP treatment also decreased the MPP+­triggered Ca2+ influx, caspase­3 re­activity, reactive oxygen species production and mitochondrial membrane potential decrease. Treatment with MPP+ also induced phosphorylation of c­Jun N­terminal kinase and p38 mitogen­activated protein kinase. In addition, treatment with SP inhibited the MPP+­triggered neurotoxicity in MES23.5 cells. However, no changes were observed in SR140333B+SP+MPP+­treated MES23.5 cell lines. In conclusion, SP could protect the cells from MPP+­induced cytotoxicity by inhibiting the apoptosis via NK-1 receptors.


Subject(s)
1-Methyl-4-phenylpyridinium/toxicity , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Receptors, Neurokinin-1/metabolism , Substance P/pharmacology , Animals , Calcium/metabolism , Cell Line , Cell Survival/drug effects , DNA Fragmentation/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Phosphorylation/drug effects , Rats , Reactive Oxygen Species/metabolism , Receptors, Neurokinin-1/chemistry , Tropanes/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Biomed Res Int ; 2015: 495704, 2015.
Article in English | MEDLINE | ID: mdl-26421291

ABSTRACT

The neurokinin 1 receptor (NK-1R) is the main receptor for the tachykinin family of peptides. Substance P (SP) is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema). This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV). The first of these antagonists, aprepitant (oral administration) and fosaprepitant (intravenous administration), are prescribed for high and moderate emesis.


Subject(s)
Molecular Targeted Therapy , Receptors, Neurokinin-1/metabolism , Animals , Humans , Models, Biological , Receptors, Neurokinin-1/chemistry , Tachykinins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL