Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.072
Filter
1.
Sci Rep ; 14(1): 15407, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965251

ABSTRACT

The kidney and brain play critical roles in the regulation of blood pressure. Neuropeptide FF (NPFF), originally isolated from the bovine brain, has been suggested to contribute to the pathogenesis of hypertension. However, the roles of NPFF and its receptors, NPFF-R1 and NPFF-R2, in the regulation of blood pressure, via the kidney, are not known. In this study, we found that the transcripts and proteins of NPFF and its receptors, NPFF-R1 and NPFF-R2, were expressed in mouse and human renal proximal tubules (RPTs). In mouse RPT cells (RPTCs), NPFF, but not RF-amide-related peptide-2 (RFRP-2), decreased the forskolin-stimulated cAMP production in a concentration- and time-dependent manner. Furthermore, dopamine D1-like receptors colocalized and co-immunoprecipitated with NPFF-R1 and NPFF-R2 in human RPTCs. The increase in cAMP production in human RPTCs caused by fenoldopam, a D1-like receptor agonist, was attenuated by NPFF, indicating an antagonistic interaction between NPFF and D1-like receptors. The renal subcapsular infusion of NPFF in C57BL/6 mice decreased renal sodium excretion and increased blood pressure. The NPFF-mediated increase in blood pressure was prevented by RF-9, an antagonist of NPFF receptors. Taken together, our findings suggest that autocrine NPFF and its receptors in the kidney regulate blood pressure, but the mechanisms remain to be determined.


Subject(s)
Autocrine Communication , Blood Pressure , Cyclic AMP , Oligopeptides , Signal Transduction , Animals , Humans , Mice , Cyclic AMP/metabolism , Oligopeptides/pharmacology , Oligopeptides/metabolism , Receptors, Neuropeptide/metabolism , Kidney Tubules, Proximal/metabolism , Male , Kidney/metabolism , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism
2.
Sci Rep ; 14(1): 13540, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866832

ABSTRACT

Mast cells are immune cells minimally present in normal tendon tissue. The increased abundance of mast cells in tendinopathy biopsies and at the sites of tendon injury suggests an unexplored role of this cell population in overuse tendon injuries. Mast cells are particularly present in tendon biopsies from patients with more chronic symptom duration and a history of intensive mechanical loading. This study, therefore, examined the cross talk between mast cells and human tendon cells in either static or mechanically active conditions in order to explore the potential mechanistic roles of mast cells in overuse tendon injuries. A coculture of isolated human tenocytes and mast cells (HMC-1) combined with Flexcell Tension System for cyclic stretching of tenocytes was used. Additionally, human tenocytes were exposed to agonists and antagonists of substance P (SP) receptors. Mast cell degranulation was assessed by measuring ß-hexosaminidase activity. Transwell and cell adhesion assays were used to evaluate mast cell migration and binding to tendon extracellular matrix components (collagen and fibronectin), respectively. Gene expressions were analyzed using real time qRT-PCR. Our results indicate that mechanical stimulation of human tenocytes leads to release of SP which, in turn, activates mast cells through the Mas-related G-protein-coupled receptor X2 (MRGPRX2). The degranulation and migration of mast cells in response to MRGPRX2 activation subsequently cause human tenocytes to increase their expression of inflammatory factors, matrix proteins and matrix metalloproteinase enzymes. These observations may be important in understanding the mechanisms by which tendons become tendinopathic in response to repetitive mechanical stimulation.


Subject(s)
Mast Cells , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Substance P , Tendons , Tenocytes , Humans , Substance P/metabolism , Substance P/pharmacology , Mast Cells/metabolism , Tenocytes/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics , Tendons/metabolism , Tendons/pathology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Degranulation , Tendinopathy/metabolism , Tendinopathy/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Coculture Techniques , Cells, Cultured , Adult , Cell Movement
4.
Curr Opin Allergy Clin Immunol ; 24(4): 195-202, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38814742

ABSTRACT

PURPOSE OF REVIEW: Patients with mast cell disorders frequently experience symptoms from excessive mediator release like histamine and tryptase, ranging from mild flushing to severe anaphylactic responses. Hypersensitivity reactions (HRs) to drugs are a major cause of anaphylaxis in these patients, who often worry about triggering mast cell degranulation when taking medications. The aim of this review is to explore the complex interactions between mast cell disorders and drug HRs, focusing on the clinical challenges of managing these conditions effectively to enhance understanding and guide safer clinical practices. RECENT FINDINGS: Among the drugs most commonly associated with hypersensitivity reactions in patients with mast cell disorders are non-steroidal anti-inflammatory drugs, antibiotics, and perioperative agents. Recent studies have highlighted the role of Mas-related G-protein coupled receptor member X2 (MRGPRX2) - a receptor involved in non-immunoglobulin E mediated mast cell degranulation - in exacerbating HRs. Investigations reveal varied drug tolerance among patients, underscoring the need for individual risk assessments. SUMMARY: Tailored diagnostic approaches are crucial for confirming drug allergies and assessing tolerance in patients with mastocytosis, preventing unnecessary medication avoidance and ensuring safety before acute situations arise.


Subject(s)
Drug Hypersensitivity , Mast Cells , Receptors, G-Protein-Coupled , Humans , Mast Cells/immunology , Drug Hypersensitivity/diagnosis , Drug Hypersensitivity/immunology , Drug Hypersensitivity/therapy , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Anaphylaxis/immunology , Anaphylaxis/diagnosis , Receptors, Neuropeptide/immunology , Receptors, Neuropeptide/metabolism , Cell Degranulation/immunology , Mastocytosis/immunology , Mastocytosis/diagnosis , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Animals , Anti-Bacterial Agents/adverse effects , Nerve Tissue Proteins
5.
Cell Tissue Res ; 397(1): 61-76, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727755

ABSTRACT

Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.


Subject(s)
Motilin , Oryzias , Receptors, Gastrointestinal Hormone , Animals , Oryzias/metabolism , Oryzias/genetics , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Motilin/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Animals, Genetically Modified , Dopaminergic Neurons/metabolism , Brain/metabolism
6.
Gen Comp Endocrinol ; 355: 114560, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38806133

ABSTRACT

Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek's pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek's pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.


Subject(s)
Growth Hormone-Releasing Hormone , Lancelets , Receptors, Neuropeptide , Receptors, Pituitary Hormone-Regulating Hormone , Animals , Lancelets/metabolism , Lancelets/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/genetics , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Receptors, Pituitary Hormone-Regulating Hormone/genetics , Hypothalamo-Hypophyseal System/metabolism
7.
Front Immunol ; 15: 1399459, 2024.
Article in English | MEDLINE | ID: mdl-38812508

ABSTRACT

Initiation of the bradykinin generation cascade is responsible for the occurrence of attacks in some types of angioedema without wheals. Hereditary angioedema due to C1 inhibitor deficiency (HAE-C1-INH) is one such clinical entity. In this paper, we explore the existing evidence that mast cells (MCs) degranulation may contribute to the activation of the kallikrein-kinin system cascade, followed by bradykinin formation and angioedema. We present the multidirectional effects of MC-derived heparin and other polyanions on the major components of the kinin-kallikrein system, particularly on the factor XII activation. Although, bradykinin- and histamine-mediated symptoms are distinct clinical phenomena, they share some common features, such as some similar triggers and a predilection to occur at sites where mast cells reside, namely the skin and mucous membranes. In addition, recent observations indicate a high incidence of hypersensitivity reactions associated with MC degranulation in the HAE-C1-INH patient population. However, not all of these can be explained by IgE-dependent mechanisms. Mast cell-related G protein-coupled receptor-X2 (MRGPRX2), which has recently attracted scientific interest, may be involved in the activation of MCs through a different pathway. Therefore, we reviewed MRGPRX2 ligands that HAE-C1-INH patients may be exposed to in their daily lives and that may affect MCs degranulation. We also discussed the known inter- and intra-individual variability in the course of HAE-C1-INH in relation to factors responsible for possible variability in the strength of the response to MRGPRX2 receptor stimulation. The above issues raise several questions for future research. It is not known to what extent a prophylactic or therapeutic intervention targeting the pathways of one mechanism (mast cell degranulation) may affect the other (bradykinin production), or whether the number of mast cells at a specific body site and their reactivity to triggers such as pressure, allergens or MRGPRX2 agonists may influence the occurrence of HAE-C1-INH attacks at that site.


Subject(s)
Bradykinin , Cell Degranulation , Mast Cells , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Humans , Mast Cells/immunology , Mast Cells/metabolism , Bradykinin/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Angioedema/metabolism , Angioedema/immunology , Angioedema/etiology , Nerve Tissue Proteins/metabolism , Kallikrein-Kinin System/physiology
8.
Front Immunol ; 15: 1406438, 2024.
Article in English | MEDLINE | ID: mdl-38817611

ABSTRACT

Introduction: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterised by itching, erythema, and epidermal barrier dysfunction. The pathogenesis of AD is complex and multifactorial; however,mast cell (MC) activation has been reported to be one of the crucial mechanisms in the pathogenesis of AD. The MC receptor Mas related G protein-coupled receptor-X2 (MRGPRX2) has been identified as a prominent alternative receptor to the IgE receptor in causing MC activation and the subsequent release of inflammatory mediators. The current study aimed to evaluate the therapeutic effect of a novel small molecule MRGPRX2 antagonist GE1111 in AD using in vitro and in vivo approaches. Methods: We developed an in vitro cell culture disease model by using LAD-2 MC, HaCaT keratinocytes and RAW 264.7 macrophage cell lines. We challenged keratinocytes and macrophage cells with CST-14 treated MC supernatant in the presence and absence of GE1111 and measured the expression of tight junction protein claudin 1, inflammatory cytokines and macrophage phagocytosis activity through immunohistochemistry, western blotting, RT-qPCR and fluorescence imaging techniques. In addition to this, we developed a DFNB-induced AD model in mice and evaluated the protective effect and underlying mechanism of GE1111. Results and Discussion: Our in vitro findings demonstrated a potential therapeutic effect of GE1111, which inhibits the expression of TSLP, IL-13, MCP-1, TNF-a, and IL-1ß in MC and keratinocytes. In addition to this, GE1111 was able to preserve the expression of claudin 1 in keratinocytes and the phagocytotic activity of macrophage cells. The in vivo results demonstrated that GE1111 treatment significantly reduced phenotypic changes associated with AD (skin thickening, scaling, erythema and epidermal thickness). Furthermore, immunohistochemical analysis demonstrated that GE1111 treatment preserved the expression of the tight junction protein Involucrin and reduced the expression of the inflammatory mediator periostin in the mouse model of AD. These findings were supported by gene and protein expression analysis, where GE1111 treatment reduced the expression of TSLP, IL-13, and IL-1ß, as well as downstream signalling pathways of MRGPRX2 in AD skin lesions. In conclusion, our findings provide compelling in vitro and in vivo evidence supporting the contribution of MRGPRX2-MC interaction with keratinocytes and macrophages in the pathogenesis of AD.


Subject(s)
Cytokines , Dermatitis, Atopic , Disease Models, Animal , Keratinocytes , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Mice , Cytokines/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Humans , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Keratinocytes/drug effects , Keratinocytes/metabolism , HaCaT Cells , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mast Cells/drug effects , Mast Cells/immunology , Mast Cells/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , RAW 264.7 Cells , Inflammation Mediators/metabolism
9.
J Sep Sci ; 47(11): e2300924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819784

ABSTRACT

Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-ß-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through ß-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both ß-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.


Subject(s)
Fallopia japonica , Receptors, G-Protein-Coupled , Receptors, Neuropeptide , Receptors, G-Protein-Coupled/metabolism , Fallopia japonica/chemistry , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/antagonists & inhibitors , Humans , Mass Spectrometry , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/chemistry , Chromatography, Liquid , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Mast Cells/drug effects , Mast Cells/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Glucosides/analysis , Molecular Structure , Liquid Chromatography-Mass Spectrometry
10.
Int Immunopharmacol ; 134: 112256, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744172

ABSTRACT

The incidence of allergic reactions has risen steadily in recent years, prompting growing interest in the identification of efficacious and safe natural compounds that can prevent or treat allergic diseases. Phellodendron amurense Rupr. has long been applied as a treatment for allergic diseases, whose primary component is phellodendrine. However, the efficacy of phellodendrine as a treatment for allergic diseases remains to be assessed. Mast cells are the primary effectors of allergic reactions, which are not only activated by IgE-dependent pathway, but also by IgE-independent pathways via human MRGPRX2, rat counterpart MRGPRB3. As such, this study explored the effect and mechanism of phellodendrine through this family receptors in treating allergic diseases in vitro and in vivo. These analyses revealed that phellodendrine administration was sufficient to protect against C48/80-induced foot swelling and Evans blue exudation in mice, and suppressed C48/80-induced RBL-2H3 rat basophilic leukemia cells degranulation, and ß-HEX, HIS, IL-4, and TNF-α release. Moreover, phellodendrine could reduce the mRNA expression of MRGPRB3 and responsiveness of MRGPRX2 by altering its structure. It was able to decrease Ca2+ levels, phosphorylation levels of CaMK, PLCß1, PKC, ERK, JNK, p38, and p65, and inhibit the degradation of IκB-α. These analyses indicate that berberine inhibits the activation of PLC and downregulates the release of Ca2+ in the endoplasmic reticulum by altering the conformation of MRGPRB3/MRGPRX2 protein, thereby inhibiting the activation of PKC and subsequently inhibiting downstream MAPK and NF-κB signaling, ultimately suppressing allergic reactions. There may thus be further value in studies focused on developing phellodendrine as a novel anti-allergic drug.


Subject(s)
Cell Degranulation , Hypersensitivity , Mast Cells , Receptors, G-Protein-Coupled , Animals , Rats , Mast Cells/drug effects , Mast Cells/immunology , Cell Degranulation/drug effects , Mice , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Receptors, G-Protein-Coupled/metabolism , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Cytokines/metabolism , p-Methoxy-N-methylphenethylamine , Male , Phellodendron/chemistry , Cell Line, Tumor , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Inbred BALB C , NF-kappa B/metabolism , Signal Transduction/drug effects , Receptors, Neuropeptide
11.
Curr Opin Allergy Clin Immunol ; 24(4): 183-188, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38743470

ABSTRACT

PURPOSE OF REVIEW: Perioperative anaphylaxis has historically been attributed to IgE/FcεRI-mediated reactions; there is now recognition of allergic and nonallergic triggers encompassing various reactions beyond IgE-mediated responses. This review aims to present recent advancements in knowledge regarding the mechanisms and pathophysiology of perioperative anaphylaxis. RECENT FINDINGS: Emerging evidence highlights the role of the mast-cell related G-coupled protein receptor X2 pathway in direct mast cell degranulation, shedding light on previously unknown mechanisms. This pathway, alongside traditional IgE/FcεRI-mediated reactions, contributes to the complex nature of anaphylactic reactions. Investigations into the microbiota-anaphylaxis connection are ongoing, with potential implications for future treatment strategies. While serum tryptase levels serve as mast cell activation indicators, identifying triggers remains challenging. A range of mediators have been associated with anaphylaxis, including vasoactive peptides, proteases, lipid molecules, cytokines, chemokines, interleukins, complement components, and coagulation factors. SUMMARY: Further understanding of clinical endotypes and the microenvironment where anaphylactic reactions unfold is essential for standardizing mediator testing and characterization in perioperative anaphylaxis. Ongoing research aims to elucidate the mechanisms, pathways, and mediators involved across multiple organ systems, including the cardiovascular, respiratory, and integumentary systems, which will be crucial for improving patient outcomes.


Subject(s)
Anaphylaxis , Mast Cells , Perioperative Period , Anaphylaxis/immunology , Anaphylaxis/diagnosis , Anaphylaxis/physiopathology , Anaphylaxis/etiology , Humans , Mast Cells/immunology , Animals , Immunoglobulin E/immunology , Cell Degranulation/immunology , Tryptases/blood , Tryptases/metabolism , Receptors, IgE/immunology , Microbiota/immunology , Nerve Tissue Proteins , Receptors, Neuropeptide , Receptors, G-Protein-Coupled
12.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714013

ABSTRACT

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Subject(s)
Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
13.
Trends Immunol ; 45(5): 371-380, 2024 May.
Article in English | MEDLINE | ID: mdl-38653601

ABSTRACT

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Subject(s)
Sensory Receptor Cells , Skin , Humans , Animals , Sensory Receptor Cells/immunology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Skin/immunology , Neuropeptides/metabolism , Neuropeptides/immunology , Dendritic Cells/immunology , Neuroimmunomodulation , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/immunology
14.
Int Immunopharmacol ; 133: 112113, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38657498

ABSTRACT

BACKGROUND: Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS: The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the ß-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS: Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS: Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.


Subject(s)
Cell Degranulation , Histamine , Mast Cells , Receptors, G-Protein-Coupled , TRPV Cation Channels , Animals , Humans , Male , Mice , Antipruritics/pharmacology , Antipruritics/therapeutic use , Calcium/metabolism , Cell Degranulation/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , HEK293 Cells , Histamine/metabolism , Mast Cells/drug effects , Mast Cells/immunology , Mice, Inbred C57BL , Molecular Docking Simulation , Nerve Tissue Proteins/metabolism , Pruritus/drug therapy , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/metabolism , TRPV Cation Channels/metabolism
15.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672450

ABSTRACT

Motilin is a gastrointestinal hormone that is mainly produced in the duodenum of mammals, and it is responsible for regulating appetite. However, the role and expression of motilin are poorly understood during starvation and the weaning stage, which is of great importance in the seeding cultivation of fish. In this study, the sequences of Yangtze sturgeon (Acipenser dabryanus Motilin (AdMotilin)) motilin receptor (AdMotilinR) were cloned and characterized. The results of tissue expression showed that by contrast with mammals, AdMotilin mRNA was richly expressed in the brain, whereas AdMotilinR was highly expressed in the stomach, duodenum, and brain. Weaning from a natural diet of T. Limnodrilus to commercial feed significantly promoted the expression of AdMotilin in the brain during the period from day 1 to day 10, and after re-feeding with T. Limnodrilus the change in expression of AdMotilin was partially reversed. Similarly, it was revealed that fasting increased the expression of AdMotilin in the brain (3 h, 6 h) and duodenum (3 h), and the expression of AdMotilinR in the brain (1 h) in a time-dependent manner. Furthermore, it was observed that peripheral injection of motilin-NH2 increased food intake and the filling index of the digestive tract in the Yangtze sturgeon, which was accompanied by the changes of AdMotilinR and appetite factors expression in the brain (POMC, CART, AGRP, NPY and CCK) and stomach (CCK). These results indicate that motilin acts as an indicator of nutritional status, and also serves as a novel orexigenic factor that stimulates food intake in Acipenser dabryanus. This study lays a strong foundation for the application of motilin as a biomarker in the estimation of hunger in juvenile Acipenser dabryanu during the weaning phase, and enhances the understanding of the role of motilin as a novel regulator of feeding in fish.


Subject(s)
Feeding Behavior , Fishes , Motilin , Animals , Brain/metabolism , Fish Proteins/metabolism , Fishes/metabolism , Fishes/genetics , Fishes/physiology , Motilin/genetics , Motilin/metabolism , Motilin/pharmacology , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
16.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643940

ABSTRACT

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Ovary , Female , Animals , Mice , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Ovary/drug effects , Ovary/metabolism , Growth Hormone-Releasing Hormone/metabolism , Fertility/drug effects , Receptors, Neuropeptide/metabolism , Humans , Allosteric Regulation/drug effects , Receptors, Ghrelin/metabolism , Cricetinae , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Dimerization
17.
Expert Opin Ther Targets ; 28(4): 295-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622072

ABSTRACT

BACKGROUND: Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS: In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS: Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS: GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.


Subject(s)
Antidepressive Agents , Brain-Derived Neurotrophic Factor , Cell Survival , Depressive Disorder, Major , Neurons , Rats, Sprague-Dawley , Receptor, Galanin, Type 2 , Receptors, Neuropeptide Y , Animals , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Receptor, Galanin, Type 2/metabolism , Rats , Brain-Derived Neurotrophic Factor/metabolism , Male , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Cell Survival/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Disease Models, Animal , Peptides , Receptors, Neuropeptide , Receptors, G-Protein-Coupled
18.
Front Immunol ; 15: 1360296, 2024.
Article in English | MEDLINE | ID: mdl-38638437

ABSTRACT

Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.


Subject(s)
Anti-Infective Agents , Hypersensitivity , Humans , Animals , Mice , Anti-Infective Agents/metabolism , Cytokines/metabolism , Immunoglobulin E , Immunity, Innate , Mast Cells , Nerve Tissue Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, G-Protein-Coupled/metabolism
19.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667284

ABSTRACT

This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.


Subject(s)
Cell Proliferation , Cognition , Doublecortin Protein , Ketamine , Neurons , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled , Receptors, Neuropeptide Y , Receptors, Neuropeptide , Animals , Male , Ketamine/pharmacology , Ketamine/administration & dosage , Cognition/drug effects , Rats , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/metabolism , Neurons/drug effects , Neurons/metabolism , Cell Proliferation/drug effects , Receptor, trkB/agonists , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Neurogenesis/drug effects
20.
J Med Chem ; 67(9): 7603-7619, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38687204

ABSTRACT

The design of bifunctional compounds is a promising approach toward the development of strong analgesics with reduced side effects. We here report the optimization of the previously published lead peptide KGFF09, which contains opioid receptor agonist and neuropeptide FF receptor antagonist pharmacophores and is shown to induce potent antinociception and reduced side effects. We evaluated the novel hybrid peptides for their in vitro activity at MOP, NPFFR1, and NPFFR2 and selected four of them (DP08/14/32/50) for assessment of their acute antinociceptive activity in mice. We further selected DP32 and DP50 and observed that their antinociceptive activity is mostly peripherally mediated; they produced no respiratory depression, no hyperalgesia, significantly less tolerance, and strongly attenuated withdrawal syndrome, as compared to morphine and the recently FDA-approved TRV130. Overall, these data suggest that MOP agonist/NPFF receptor antagonist hybrids might represent an interesting strategy to develop novel analgesics with reduced side effects.


Subject(s)
Receptors, Neuropeptide , Receptors, Opioid, mu , Animals , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Mice , Receptors, Neuropeptide/agonists , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/metabolism , Male , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/therapeutic use , Analgesics/chemical synthesis , Humans , Structure-Activity Relationship , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...