Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.499
Filter
1.
J Environ Sci (China) ; 149: 394-405, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181652

ABSTRACT

Heterogeneous crystallization is a common occurrence during the formation of solid wastes. It leads to the encapsulation of valuable/hazardous metals within the primary phase, presenting significant challenges for waste treatment and metal recovery. Herein, we proposed a novel method involving the in-situ formation of a competitive substrate during the precipitation of jarosite waste, which is an essential process for removing iron in zinc hydrometallurgy. We observed that the in-situ-formed competitive substrate effectively inhibits the heterogeneous crystallization of jarosite on the surface of anglesite, a lead-rich phase present in the jarosite waste. As a result, the iron content on the anglesite surface decreases from 34.8% to 1.65%. The competitive substrate was identified as schwertmannite, characterized by its loose structure and large surface area. Furthermore, we have elucidated a novel mechanism underlying this inhibition of heterogeneous crystallization, which involves the local supersaturation of jarosite caused by the release of ferric and sulfate ions from the competitive substrate. The local supersaturation promotes the preferential heterogeneous crystallization of jarosite on the competitive substrate. Interestingly, during the formation of jarosite, the competitive substrate gradually vanished through a dissolution-recrystallization process following the Ostwald rule, where a metastable phase slowly transitions to a stable phase. This effectively precluded the introduction of impurities and reduced waste volume. The goal of this study is to provide fresh insights into the mechanism of heterogeneous crystallization control, and to offer practical crystallization strategies conducive to metal separation and recovery from solid waste in industries.


Subject(s)
Crystallization , Ferric Compounds , Ferric Compounds/chemistry , Sulfates/chemistry , Iron Compounds/chemistry , Iron/chemistry , Refuse Disposal/methods
2.
Environ Monit Assess ; 196(11): 1022, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367882

ABSTRACT

The present study examines the current practices for managing construction and demolition waste (CDW) in two tier-2 cities of Karnataka state: Hubli-Dharwad and Davanagere. The research highlights the quantification, characterization, and effective management strategies for CDW. CDW dumping sites were identified through field visits conducted across all wards of the cities and recorded using a mobile-based app. At each site, data were collected on the types of vehicles dumping CDW, the frequency of dumping, the volume of waste in the vehicles, and the quantity of CDW removed for reuse. The dumping sites were categorized into large, medium, and small based on the area and volume of waste. In total, 130 unauthorised dumping sites were identified in Hubli-Dharwad and 62 in Davanagere. The study estimated that Hubli-Dharwad generates approximately 607 tonnes per day (TPD) of CDW, while Davanagere produces around 287 TPD. The characterization of CDW revealed that in Hubli-Dharwad, CDW consists of 14.4% concrete, 25.5% brick and mortar, 39.1% soil and aggregates, and 20% other materials. In Davanagere, the composition includes 19% concrete, 29% brick and mortar, 38% soil, and 14% other materials. Based on these findings, the study proposes a system for the collection and transportation of CDW and recommends suitable recycling technologies. While the approach outlined in this paper is well-suited for urban local bodies to assess CDW, the data on CDW reuse and recycling is primarily based on informal practices. This makes accurate quantification challenging and subject to variation over time due to a lack of regulatory oversight. Additionally, the study provides only a snapshot of CDW generation and management at a specific point in time, potentially missing seasonal variations or long-term trends in waste handling.


Subject(s)
Cities , Construction Materials , Environmental Monitoring , Waste Management , India , Waste Management/methods , Environmental Monitoring/methods , Construction Industry , Recycling , Industrial Waste , Refuse Disposal/methods
3.
Environ Monit Assess ; 196(10): 894, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230631

ABSTRACT

Solid waste refers to the material that is discarded because of human activity. In developing countries like Ethiopia, rapid urbanization leads to the production of large amounts of solid waste in towns. As a consequence, it causes severe problems to human health, aesthetics, and the environment, particularly in Dangila Town. Therefore, this study aimed to assess household solid waste characteristics, quantity, and management practices. Data was collected for seven days in January 2020 from 73 households, which were divided into three income groups. Observations, interviews, field measurements, sorting, and open-ended questionnaires were used as data collection tools. The research showed that food waste and ash and dust were the most dominant fractions, comprising 41.04% and 26.18%, respectively. It was also revealed that 77.88%, 12.74%, and 9.38% of household solid waste was decomposable, recyclable, and disposable waste, respectively. Furthermore, the waste components showed a significant statistical difference among income groups, except for the metal and miscellaneous groups. The quantification result indicated that the per capita household generation rate was 0.26 kg/day. The management practice assessment found that most households did not practice integrated solid waste management options. They disposed of waste indiscriminately, leading to environmental pollution. The results of this study suggest that the municipality needs to create awareness among households regarding proper solid waste management practices. It is crucial to apply appropriate solid waste management mechanisms and establish a well-organized institution that will collect solid waste in the town and achieve a circular economy.


Subject(s)
Family Characteristics , Refuse Disposal , Solid Waste , Waste Management , Ethiopia , Solid Waste/analysis , Refuse Disposal/methods , Refuse Disposal/statistics & numerical data , Waste Management/methods , Humans , Recycling , Environmental Pollution/statistics & numerical data
4.
J Environ Manage ; 369: 122411, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232317

ABSTRACT

To upcycle the nutrients from kitchen waste (KW), an integrated system consisting of anaerobic digestion (AD) reactor and microbial protein (MP) production reactor was established in this study. The subsystem I (AD system) demonstrated an efficient bio-energy production (282.37 mL CH4/g VS), with 553.54 mg/L of NH4+-N remained in the digestate. The subsystem II (MP production system) utilized the nitrogenous constituents of the digestate, with 2.04 g/L MP production. In order to further enhance the recovery efficiency, C/N ratio in the subsystem II was studied. NH4+-N recovery efficiency was 23.08% higher after C/N ratio optimization along with 0.24 g/L increment on MP production. Over 0.7 g/L of essential amino acids was obtained, according with the qualitative necessary for the feeds. Also, the key enzyme abundance of CO2 releasing and amino acid biosynthesis was obviously increased with max. 55.21%. Meanwhile, the integrated system was profitable via a simplified economic assessment.


Subject(s)
Bioreactors , Anaerobiosis , Nitrogen/metabolism , Nutrients/metabolism , Refuse Disposal/methods
5.
J Environ Manage ; 369: 122347, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39236606

ABSTRACT

Landfill is a significant source of atmospheric CH4 and CO2 emissions. In this study, four landfill reactor systems were constructed to investigate the effects of different ventilation methods, including continuous aeration (20 h d-1) and intermittent aeration (continuous aeration for 4 h d-1 and 2 h of aeration every 12 h, twice a day), on properties of landfilled waste and emissions of CH4 and CO2, in comparison to a traditional landfill. Compared with continuous aeration, intermittent aeration could reduce the potential global warming effect of the CH4 and CO2 emissions, especially multiple intermittent aeration. The CH4 and CO2 emissions could be predicted by the multiple linear regression model based on the contents of carbon, sulfur and/or pH during landfill stabilization. Both intermittent and continuous aeration could enhance the methane oxidation activity of landfilled waste. The aerobic methane oxidation activity of landfilled waste reached the maximums of 50.77-73.78 µg g-1 h-1 after aeration for 5 or 15 d, which was higher than the anaerobic methane oxidation activity (0.45-1.27 µg g-1 h-1). CO2 was the predominant form of organic carbon loss in the bioreactor landfills. Candidatus Methylomirabilis, Methylobacter, Methylomonas and Crenothrix were the main methane-oxidating microorganisms (MOM) in the landfills. Total, NO2--N, pH and Fe3+ were the main environmental variables influencing the MOM community, among which NO2--N and pH had the significant impact on the MOM community. Partial least squares path modelling indicated that aeration modes mainly influenced the emissions of CH4 and CO2 by affecting the degradation of landfilled waste, environmental variables and microbial activities. The results would be helpful for designing aeration systems to reduce the emissions of CH4 and CO2, and the cost during landfill stabilization.


Subject(s)
Carbon , Methane , Waste Disposal Facilities , Methane/metabolism , Carbon/chemistry , Carbon Dioxide , Refuse Disposal/methods , Air Pollutants/analysis , Bioreactors
6.
Waste Manag ; 189: 265-275, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39217801

ABSTRACT

High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.


Subject(s)
Bioreactors , Bioreactors/microbiology , Refuse Disposal/methods , Solid Waste/analysis , Biofuels/analysis , Methane/analysis , Methane/metabolism , RNA, Ribosomal, 16S , Bacteria/metabolism , Bacteria/genetics , Archaea/metabolism , Archaea/genetics
7.
Waste Manag ; 189: 290-299, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39222552

ABSTRACT

This study proposes a comprehensive evaluation method based on a two-stage model to assess greenhouse gas (GHG) emissions and reductions in high-food-waste-content (HFWC) municipal solid waste (MSW) landfills. The proposed method considers typical processes such as fugitive landfill gas (LFG), LFG collection, flaring, power generation, and leachate treatment. A case study of an HFWC MSW landfill in eastern China is considered to illustrate the evaluation. The findings revealed that the GHG emissions equivalent of the case landfill amounted to 21.23 million tons from 2007 to 2022, averaging 1.03 tons CO2-eq per ton of MSW. There was a potential underestimation of LFG generation at the landfill site during the initial stages, which led to delayed LFG collection and substantial fugitive LFG emissions. Additionally, the time distribution of GHG emissions from HFWC MSW was significantly different from that of low-food-waste-content (LFWC) MSW landfills, with peak emissions occurring much earlier. Owing to the rapid degradation characteristics of HFWC MSW, the cumulative LFG production of the landfill by 2022 (2 years after the final cover) was projected to reach 77 % of the total LFG potential. In contrast, it would take until 2030 for LFWC MSW landfills to reach this level. Furthermore, various scenarios were analyzed, in which if the rapid LFG generation characteristics of HFWC MSW are known in advance, and relevant facilities are constructed ahead of time, the collection efficiency can be improved from 31 % to over 78 %, resulting in less GHG emissions.


Subject(s)
Greenhouse Gases , Refuse Disposal , Solid Waste , Waste Disposal Facilities , China , Greenhouse Gases/analysis , Refuse Disposal/methods , Solid Waste/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Food
8.
Waste Manag ; 189: 314-324, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39226845

ABSTRACT

This study presents a comprehensive analysis of greenhouse gas (GHG) emissions associated with waste transfer and transport, incorporating derived leachate treatment-a factor often overlooked in existing research. Employing an integration model of life cycle assessment and a vehicle routing problem (VRP) methods, we evaluated the GHG reduction potential of waste transfer and transport system. Two Chinese counties with different topographies and demographics were selected, yielding 80 scenarios that factored in waste source separation as well as vehicle capacity, energy sources, and routes. The functional unit (FU) is transferring and transporting 1 tonne waste and treating derived leachate. The GHG emissions varied from 12 to 39 kg CO2 equivalent per FU. Waste source separation emerged as the most impactful mitigation strategy, not only for the studied system but for an integrated waste management system. Followings are the use of larger capacity vehicles and electrification of the vehicles. These insights are instrumental for policymakers and stakeholders in optimizing waste management systems to reduce GHG emissions.


Subject(s)
Greenhouse Gases , Waste Management , Greenhouse Gases/analysis , Waste Management/methods , China , Refuse Disposal/methods , Transportation , Models, Theoretical , Air Pollutants/analysis , Carbon Dioxide/analysis
9.
Waste Manag ; 189: 334-347, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39236469

ABSTRACT

Landfills in developing countries are typically characterized by high waste water content and elevated leachate levels. Despite the ongoing biodegradation of waste in the highly saturated regions of these landfills, which leads to gas accumulation and bubble formation, the associated gas pressure that poses a risk to landfill stability is often overlooked. This paper introduces a landfill gas (LFG) bubble generation model and a two-fluid model that considers bubble buoyancy and porous medium resistance. The entire process can be divided into two stages based on the force balance and velocity of bubbles: Bubble Development Stage and the Two-Fluid Flow Stage. The models were validated using a one-dimensional analytical solution of hydraulic distribution that considers bubble generation, as well as an experiment involving air injection into a saturated medium. The mechanisms of LFG accumulation and ascent, leachate level rise, and discontinuous leachate-gas flow were then investigated in conjunction with continuous flow in the unsaturated region. The results indicate that the generation of LFG bubbles below the leachate level can cause a rise in the level height of more than 20%. During the Bubble Development Stage, there is a critical height for bubble ascent, above which the buoyancy exceeds the combined forces of gravity and resistance, resulting in less than 10% of bubbles continuously flowing into the unsaturated zone for recovery. The developed model effectively captures the accumulation and flow of LFG bubbles below the leachate level and could be further utilized to study leachate-gas pumping in the future.


Subject(s)
Models, Theoretical , Waste Disposal Facilities , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Refuse Disposal/methods , Gases/analysis
10.
Waste Manag ; 189: 421-426, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39241560

ABSTRACT

The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 'ecotoxic'. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50-70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50-70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value.


Subject(s)
Coal Ash , Copper , Incineration , Solid Waste , Zinc , Coal Ash/chemistry , Coal Ash/analysis , Copper/analysis , Zinc/analysis , Solid Waste/analysis , Refuse Disposal/methods , Germany , X-Ray Absorption Spectroscopy
11.
Environ Monit Assess ; 196(10): 910, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251482

ABSTRACT

Selecting suitable Megacity Solid Waste Disposal (MSWD) sites is a challenging task in densely populated deltas of developing countries, exacerbated by limited public awareness about waste management. One of the major environmental concerns in Dhaka City, the world's densest megacity, is the presence of dumps close to surface water bodies resources. This study employed the Geographic Information System (GIS)-Analytic Hierarchy Process (AHP) framework to integrate geomorphological (slope and flow accumulation), geological (lithological and lineament), hydrogeological (depth to groundwater table and surface waterbody), socioeconomic (Land use land cover, distance to settlement, road, and airport), and climatological (wind direction) determinants, coupled by land-use and hydro-environmental analyses, to map optimal dumps (MSWDO) sites. The resulting preliminary (MSWDP) map revealed 15 potential landfill areas, covering approximately 5237 hectares (ha). Combining statistical analysis of restricted areas (settlements, water bodies, land use) with AHP-based ratings, the MSWDO map revealed two optimal locations (2285 ha). Additionally, the hydro-environmental analysis confirmed the unsuitability of northern sites due to shallow groundwater (< 5.43 m) and thin clay, leaving 11 options excluded. Sites 12 (Zone A, 2255 ha) and 15 (Zone B, 30 ha), with deeper groundwater tables and thicker clay layers, emerged as optimal choices for minimizing environmental risks and ensuring effective long-term waste disposal. This study successfully integrates remote sensing, geospatial data, and GIS-AHP modeling to facilitate the development of sustainable landfill strategies in similar South Asian delta megacities. Such an approach provides valuable insights for policymakers to implement cost-effective and sustainable waste management plans, potentially minimizing the environmental risks to achieve Sustainable Development Goals (SDGs) 6, 11, 13, and 15.


Subject(s)
Environmental Monitoring , Geographic Information Systems , Refuse Disposal , Bangladesh , Refuse Disposal/methods , Environmental Monitoring/methods , Waste Disposal Facilities , Remote Sensing Technology , Solid Waste/analysis , Cities , Waste Management/methods
12.
BMC Plant Biol ; 24(1): 887, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343905

ABSTRACT

The recent over production of municipal solid waste (MSW) poses a significant threat to both the ecosystem and human health. Utilizing MSW for agricultural purposes has emerged as a promising strategy to reduce solid waste disposal while simultaneously increasing soil fertility. To explore this potential solution further, an experiment was designed to assess the impact of varying concentrations of MSW (25%, 50%, and 75%) on the proximate composition of 15 different vegetable species. The experiment, conducted between 2018 and 2019, involved treating soil with different levels of solid waste and analyzing the proximate components, such as crude protein, dry matter, crude fiber, crude fat, and moisture content, in the 15 selected crops. The results indicate that the application of 25% MSW significantly increased the levels of crude protein, crude fiber, dry matter, and fat in Spinacia oleracea, Solanum tuberosum, Solanum melongena, and Abelmoschus esculentus. Conversely, the addition of 75% MSW notably elevated the moisture and ash content in Cucumis sativus. Correlation and scatter matrix analyses were conducted to elucidate the relationships between the protein, fiber, dry matter, ash, and fat contents. Principal component analysis and clustering confirmed the substantial impact of Treatment_1 (25% MSW) and Treatment_3 (75% MSW) on the proximate composition of the aforementioned vegetables, leading to their categorization into distinct groups. Our study highlights the efficacy of using 25% MSW to enhance the proximate composition and nutritional value of vegetables. Nonetheless, further research is warranted to investigate the mineral, antioxidant, vitamin, and heavy metal contents in the soil over an extended period of MSW application.


Subject(s)
Fertilizers , Solid Waste , Vegetables , Vegetables/chemistry , Solid Waste/analysis , Fertilizers/analysis , Humans , Refuse Disposal/methods , Soil/chemistry , Environment
13.
Environ Int ; 191: 109009, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39278046

ABSTRACT

Direct application of animal waste on farmlands was banned in China recently, rendering organic fertilizer production a sound solution for disposing of animal manures and recycling their materials and nutrients. Due to the overuse of antimicrobials in livestock and poultry farms, manure-based organic fertilizers often contain elevated residues of antimicrobials and abundant antimicrobial resistance genes. Land application of such products has caused significant concerns on the environmental pollution of antimicrobials, and the transmission and development of antimicrobial resistance (AMR), which is a major global health challenge. China's recent attempt to restrict the contents of antimicrobial residues in organic fertilizers encountered strong resistance from the industry as it would hinder the utilization of animal manures as a raw material. Reducing and even eliminating the use of antimicrobials in animal farms is the ultimate solution to the challenge of manure disposal posed by the elevated levels of antimicrobial residues and AMR. Phasing out the non-therapeutic use of antimicrobials, developing substitutes of antimicrobials, enhancing animal welfare in farms, promoting diversification of animal farms, and developing antimicrobial removal and disinfection technologies for animal waste are recommended to improve the veterinary antimicrobial stewardship and manure management in China's animal agriculture. These concerted measures would enhance the sustainability of crop and animal farming systems in China and mitigate the impact of antimicrobials and AMR to agro-environmental quality and human health.


Subject(s)
Anti-Infective Agents , Manure , China , Animals , Animal Husbandry/methods , Livestock , Fertilizers , Refuse Disposal/methods , Drug Resistance, Microbial , Waste Management/methods , Humans , Veterinary Drugs/analysis
14.
Chemosphere ; 365: 143365, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39303792

ABSTRACT

The annual increase in global organic waste generation emphasises the need to develop a sustainable management platform to address environmental concerns. This study aims to explore sustainable treatments for the conversion of organic waste into energy in pursuit of zero-waste. The organic waste generated from the animal feed industry (referred to as WF) was used for the model compound in this study. 8.5 wt% of lipids were extracted from the WF, which contained unidentified impurities. Acid-catalysed transesterification yielded less than 80 wt% biodiesel might be due to the reversible reaction. In contrast, non-catalytic transesterification resulted in a significantly higher biodiesel yield (95.6 wt%), suggesting that this method was more effective at converting impure lipids into biodiesel compared to acid-catalysed transesterification. These results indicate the potential advantages of the non-catalytic approach, particularly when dealing with impure lipid sources. To minimise the generation of waste in the process, the WF residue produced after lipid extraction was converted into combustible gas (syngas) through pyrolysis. CO2 was used as a reactive medium in pyrolysis. In one-stage pyrolysis, the gas yield under CO2 was comparable to that under N2, indicating that CO2 did not react effectively with the volatiles derived from the WF residue. Enhanced CO2 reactivity was achieved via catalytic pyrolysis using a nickel-impregnated catalyst. Consequently, the combustible gas yield under CO2 was much higher than that under N2. This approach might contribute to maximising the efficiency of converting organic waste into renewable energy while simultaneously consuming CO2 during pyrolysis, thereby enhancing the sustainability of this approach.


Subject(s)
Biofuels , Waste Management , Biofuels/analysis , Waste Management/methods , Esterification , Pyrolysis , Carbon Dioxide/chemistry , Carbon Dioxide/analysis , Catalysis , Animal Feed/analysis , Lipids/chemistry , Refuse Disposal/methods
15.
Chemosphere ; 365: 143337, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39277043

ABSTRACT

Legacy waste dumpsites have been a significant environmental concern in India for many years. These dumpsites are characterized by the uncontrolled disposal of Municipal Solid Waste (MSW) and have led to various types of pollution and disease outbreaks. As India faces the challenges of rapid urbanization and increased waste generation and with over 3000 legacy waste dumpsites in the country, the need to address these legacy waste dumpsites has become paramount. As we continue to struggle extensively for waste management as well as space, landfill mining has been recognized as a promising way of recovering resources in our country by employing various technological and engineering advancements to extract valuable materials and energy from legacy waste streams. Unlike existing waste management approaches, this review explores the application of a novel Recovery Potential Index (RPI) for legacy waste dumpsites in India, which evaluates the feasibility of waste treatment facilities based on waste compositions and recovered material quantities. Depending on the RPI, recovered fine fractions can be sold as city compost or used as fill material, while recyclable, combustible, and inert fractions could be directed towards appropriate recycling or landfill uses. Unscientific and uncontrolled landfill mining practices could lead to unanticipated impacts on the nearby environment in the form of heavy contamination, thereby presenting this practice as a challenge in addition to the immense opportunities it provides.


Subject(s)
Recycling , Refuse Disposal , Waste Disposal Facilities , Waste Management , India , Recycling/methods , Waste Management/methods , Refuse Disposal/methods , Solid Waste/analysis , Mining
16.
Waste Manag Res ; 42(10): 889-900, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39331361

ABSTRACT

This article investigates the pivotal role of non-hazardous waste landfills in achieving greenhouse gas (GHG) reduction objectives within the European Union (EU).1 This study leverages the experience of key stakeholders in the European landfilling, assesses the efficacy of 'best-in-class' landfill installations, evaluates their potential impact on GHG reduction, and offers concrete recommendations for operators and policymakers. 'Best-in-class' landfills exceed the commonly accepted best practices by implementing all the following practices: (1) an anticipated capture system during the operating phase, (2) prompt installation of the final cover and capture system, with use of an impermeable cover, (3) operated as bioreactor, keeping optimal humidity, (4) adequate maintenance and reporting, (5) recovery of captured gas and (6) treatment of residual methane emissions throughout the waste decomposition process. The main finding is that switching from the actual mix of practices to 'best in class' practices would reduce by ~21 MtCO2eq (-36%) the emissions due to the degradation of waste landfilled between 2024 and 2035, compared to the 'business-as-usual scenario', while also providing a renewable energy source, bringing potential avoided emissions and energy sovereignty. The findings underscore that in addition to implementing the organics diversion and waste reduction targets of the EU, adopting 'best-in class' landfill practices has the potential to bolster energy recovery, mitigate emissions and stimulate biomethane production, thereby advancing the EU environmental goals.


Subject(s)
European Union , Greenhouse Gases , Waste Disposal Facilities , Greenhouse Gases/analysis , Methane/analysis , Waste Management/methods , Refuse Disposal/methods , Air Pollution/prevention & control , Environmental Policy , Air Pollutants/analysis
17.
Chemosphere ; 365: 143358, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39299463

ABSTRACT

Biochar modification is an effective approach to enhance its ability to promote anaerobic digestion (AD). Focusing on the physical properties of biochar, the impact of different particle sizes of biochar on AD of food waste (FW) at high organic loading rate (OLR) was investigated. Four biochar with different sizes (40-200 mesh) were prepared and used in AD systems at OLR 30 g VS/L. The research results found that biochar with a volume particle size of 102 µm (RBC-P140) had top-performance in promoting cumulative methane production, increasing by 13.20% compared to the control group. The analysis results of the variety in volatile acids and alkalinity in the system did not show a correlation with the size of biochar, but small size has the potential to improve the environmental tolerance of the system to high acidity. Microbial community analysis showed that the abundance of aceticlastic methanogen and the composition of zoogloea were optimized through relatively small-sized biochar. Through revealing the effect of biochar particle size on AD system at high OLR, this work provided theoretical guidance for regulating fermentation systems using biochar.


Subject(s)
Charcoal , Methane , Microbiota , Charcoal/chemistry , Anaerobiosis , Methane/metabolism , Particle Size , Bioreactors/microbiology , Food , Fermentation , Refuse Disposal/methods , Garbage , Food Loss and Waste
18.
Waste Manag ; 188: 11-38, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39094219

ABSTRACT

Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.


Subject(s)
Biomass , Industrial Waste , Lignin , Lignin/chemistry , Industrial Waste/analysis , Waste Management/methods , Biofuels/analysis , Refuse Disposal/methods
19.
Bioresour Technol ; 409: 131252, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127359

ABSTRACT

Anaerobic digestion (AD) has the potential to catalyse the shift from a linear to a circular economy. However, effective treatment and management of both solid (DSF) and liquid (DLF) digestate fraction treatment and management require adopting sustainable technologies to recover valuable by-products like energy, biofuels, biochar, and nutrients. This study reviews state-of-the-art advanced technologies for DSF and DLF treatment and valorisation, using life cycle assessment (LCA) and techno-economic analysis (TEA) in integrated digestate management (IDM). Key findings highlight these technologies' potential in mitigating environmental impacts from digestate management, but there's a need to improve process efficiency, especially at larger scales. Future research should prioritize cost-effective and eco-friendly IDM technologies. This review emphasizes how LCA and TEA can guide decision-making and promote sustainable agricultural practices. Ultimately, sustainable IDM technologies can boost resource recovery and advance circular economy principles, enhancing the environmental and economic sustainability of AD processes.


Subject(s)
Agriculture , Agriculture/methods , Agriculture/economics , Anaerobiosis , Biofuels/economics , Refuse Disposal/methods , Refuse Disposal/economics
20.
Waste Manag ; 187: 306-316, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39089146

ABSTRACT

Plastic waste poses a critical environmental challenge for the world. The proliferation of waste plastic coffee pods exacerbates this issue. Traditional disposal methods such as incineration and landfills are environmentally unfriendly, necessitating the exploration of alternative management strategies. One promising avenue is the pyrolysis in-line reforming process, which converts plastic waste into hydrogen. However, traditional pyrolysis methods are costly due to inefficiencies and heat losses. To address this, for the first time, our study investigates the use of microwave to enhance the pyrolysis process. We explored microwave pyrolysis for polypropylene (PP), high-density polypropylene (HDPE), and waste coffee pods, with the latter primarily comprising polypropylene. Additionally, catalytic ex-situ pyrolysis of coffee pod pyrolysis over a nickel-based catalyst was investigated to convert the evolved gas into hydrogen. The single-stage microwave pyrolysis results revealed the highest gas yield at 500 °C for HDPE, and 41 % and 58 % (by mass) for waste coffee pods and polypropylene at 700 °C, respectively. Polypropylene exhibited the highest gaseous yield, suggesting its readiness for pyrolytic degradation. Waste coffee pods uniquely produced carbon dioxide and carbon monoxide gases because of the oxygen present in their structure. Catalytic reforming of evolved gas from waste coffee pods using a 5 % nickel loaded activated carbon catalyst, yielded 76 % (by volume) hydrogen at 900 °C. These observed results were supported by elemental balance analysis. These findings highlight that two-stage microwave and catalysis assisted pyrolysis could be a promising method for the efficient management of waste coffee pods, particularly for producing clean energy.


Subject(s)
Coffee , Hydrogen , Microwaves , Polyethylene , Polypropylenes , Pyrolysis , Polypropylenes/chemistry , Hydrogen/chemistry , Coffee/chemistry , Catalysis , Polyethylene/chemistry , Refuse Disposal/methods
SELECTION OF CITATIONS
SEARCH DETAIL