Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.138
Filter
1.
J Extracell Vesicles ; 13(7): e12473, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965648

ABSTRACT

Extracellular vesicles (EVs) derived from dental pulp stem cells (DPSC) have been shown an excellent efficacy in a variety of disease models. However, current production methods fail to meet the needs of clinical treatment. In this study, we present an innovative approach to substantially enhance the production of 'Artificial Cell-Derived Vesicles (ACDVs)' by extracting and purifying the contents released by the DPSC lysate, namely intracellular vesicles. Comparative analysis was performed between ACDVs and those obtained through ultracentrifugation. The ACDVs extracted from the cell lysate meet the general standard of EVs and have similar protein secretion profile. The new ACDVs also significantly promoted wound healing, increased or decreased collagen regeneration, and reduced the production of inflammatory factors as the EVs. More importantly, the extraction efficiency is improved by 16 times compared with the EVs extracted using ultracentrifuge method. With its impressive attributes, this new subtype of ACDVs emerge as a prospective candidate for the future clinical applications in regenerative medicine.


Subject(s)
Dental Pulp , Extracellular Vesicles , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Extracellular Vesicles/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Humans , Animals , Wound Healing , Regenerative Medicine/methods
2.
Medicine (Baltimore) ; 103(27): e38846, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968451

ABSTRACT

The field of regenerative medicine for sports injuries has grown significantly in the 21st century. This study attempted to provide an overview of the current state of research and key findings regarding the relationship between sport and regenerative medicine in general, identifying trends and hotspots in research topics. We gathered the literature from the Web of Science (WOS) database covering the last 10 years (2013-2023) pertaining to regenerative medicine for sporter and applied Citespace to assess the knowledge mapping. The findings demonstrated that there were 572, with a faster increase after 2018. The country, institution, and author with the most publications are the USA, Harvard University, and Maffulli Nicola. In addition, the most co-cited reference is J Acad Nutr Diet (2016) (199). Adipose tissue, high tibial osteotomy, and bone marrow are the hot spots in this field in the next few years.


Subject(s)
Bibliometrics , Regenerative Medicine , Regenerative Medicine/methods , Regenerative Medicine/trends , Humans , Sports Medicine/trends , Sports Medicine/methods , Biomedical Research/trends , Athletic Injuries/therapy
3.
Stem Cell Res Ther ; 15(1): 185, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926793

ABSTRACT

Cartilage, an important connective tissue, provides structural support to other body tissues, and serves as a cushion against impacts throughout the body. Found at the end of the bones, cartilage decreases friction and averts bone-on-bone contact during joint movement. Therefore, defects of cartilage can result from natural wear and tear, or from traumatic events, such as injuries or sudden changes in direction during sports activities. Overtime, these cartilage defects which do not always produce immediate symptoms, could lead to severe clinical pathologies. The emergence of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine, providing a promising platform for generating various cell types for therapeutic applications. Thus, chondrocytes differentiated from iPSCs become a promising avenue for non-invasive clinical interventions for cartilage injuries and diseases. In this review, we aim to highlight the current strategies used for in vitro chondrogenic differentiation of iPSCs and to explore their multifaceted applications in disease modeling, drug screening, and personalized regenerative medicine. Achieving abundant functional iPSC-derived chondrocytes requires optimization of culture conditions, incorporating specific growth factors, and precise temporal control. Continual improvements in differentiation methods and integration of emerging genome editing, organoids, and 3D bioprinting technologies will enhance the translational applications of iPSC-derived chondrocytes. Finally, to unlock the benefits for patients suffering from cartilage diseases through iPSCs-derived technologies in chondrogenesis, automatic cell therapy manufacturing systems will not only reduce human intervention and ensure sterile processes within isolator-like platforms to minimize contamination risks, but also provide customized production processes with enhanced scalability and efficiency.


Subject(s)
Cell Differentiation , Chondrogenesis , Induced Pluripotent Stem Cells , Precision Medicine , Regenerative Medicine , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Regenerative Medicine/methods , Precision Medicine/methods , Chondrocytes/cytology , Chondrocytes/metabolism , Animals
4.
Cells ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38920693

ABSTRACT

Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.


Subject(s)
Bone Regeneration , Dentistry , Stem Cells , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Animals , Stem Cells/cytology , Dentistry/methods , Tissue Engineering/methods , Dental Pulp/cytology , Stem Cell Transplantation/methods , Regenerative Medicine/methods
5.
Stem Cell Res Ther ; 15(1): 183, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902814

ABSTRACT

In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.


Subject(s)
Organoids , Tissue Engineering , Organoids/cytology , Organoids/metabolism , Humans , Tissue Engineering/methods , Animals , Cartilage/cytology , Regenerative Medicine/methods , Bone and Bones/cytology , Bone and Bones/physiology
6.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906095

ABSTRACT

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Subject(s)
Chimera , Organogenesis , Animals , Humans , Chimera/embryology , Embryo Implantation , Embryo, Mammalian/cytology , Embryonic Development , Embryonic Stem Cells , Models, Biological , Organoids , Regenerative Medicine , Tissue Engineering/methods
7.
ACS Biomater Sci Eng ; 10(7): 4145-4174, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38822783

ABSTRACT

3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.


Subject(s)
Bioprinting , Nanostructures , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering , Bioprinting/methods , Humans , Regenerative Medicine/methods , Nanostructures/chemistry , Tissue Engineering/methods , Ink , Tissue Scaffolds/chemistry , Animals
8.
J Nanobiotechnology ; 22(1): 316, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844939

ABSTRACT

Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Mesenchymal Stem Cells , Regenerative Medicine , Humans , Extracellular Vesicles/metabolism , Regenerative Medicine/methods , Adipose Tissue/cytology , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wound Healing , Regeneration
9.
Croat Med J ; 65(3): 268-287, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868973

ABSTRACT

This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.


Subject(s)
Cartilage, Articular , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Regenerative Medicine/trends , Regenerative Medicine/methods , Cartilage, Articular/injuries , Cartilage, Articular/physiology , Knee Injuries/therapy , Knee Injuries/surgery , Genetic Therapy/trends , Genetic Therapy/methods , Regeneration
10.
Stem Cell Res Ther ; 15(1): 169, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886773

ABSTRACT

With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Skin/cytology , Regenerative Medicine/methods , Skin Diseases/therapy , Wound Healing , Animals
11.
Stem Cell Res Ther ; 15(1): 176, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886861

ABSTRACT

AIMS AND OBJECTIVES: The aim of this study is to systematically review randomized controlled clinical trials (RCTs) studying various types of regenerative medicine methods (such as platelet-rich plasma, stromal vascular fraction, cell therapy, conditioned media, etc.) in treating specific dermatologic diseases. Rejuvenation, scarring, wound healing, and other secondary conditions of skin damage were not investigated in this study. METHOD: Major databases, including PubMed, Scopus, and Web of Science, were meticulously searched for RCTs up to January 2024, focusing on regenerative medicine interventions for specific dermatologic disorders (such as androgenetic alopecia, vitiligo, alopecia areata, etc.). Key data extracted encompassed participant characteristics and sample sizes, types of regenerative therapy, treatment efficacy, and adverse events. RESULTS: In this systematic review, 64 studies involving a total of 2888 patients were examined. Women constituted 44.8% of the study population, while men made up 55.2% of the participants, with an average age of 27.64 years. The most frequently studied skin diseases were androgenetic alopecia (AGA) (45.3%) and vitiligo (31.2%). The most common regenerative methods investigated for these diseases were PRP and the transplantation of autologous epidermal melanocyte/keratinocyte cells, respectively. Studies reported up to 68.4% improvement in AGA and up to 71% improvement in vitiligo. Other diseases included in the review were alopecia areata, melasma, lichen sclerosus et atrophicus (LSA), inflammatory acne vulgaris, chronic telogen effluvium, erosive oral lichen planus, and dystrophic epidermolysis bullosa. Regenerative medicine was found to be an effective treatment option in all of these studies, along with other methods. The regenerative medicine techniques investigated in this study comprised the transplantation of autologous epidermal melanocyte/keratinocyte cells, isolated melanocyte transplantation, cell transplantation from hair follicle origins, melanocyte-keratinocyte suspension in PRP, conditioned media injection, a combination of PRP and basic fibroblast growth factor, intravenous injection of mesenchymal stem cells, concentrated growth factor, stromal vascular fraction (SVF), a combination of PRP and SVF, and preserving hair grafts in PRP. CONCLUSION: Regenerative medicine holds promise as a treatment for specific dermatologic disorders. To validate our findings, it is recommended to conduct numerous clinical trials focusing on various skin conditions. In our study, we did not explore secondary skin lesions like scars or ulcers. Therefore, assessing the effectiveness of this treatment method for addressing these conditions would necessitate a separate study.


Subject(s)
Randomized Controlled Trials as Topic , Regenerative Medicine , Skin Diseases , Adult , Female , Humans , Male , Platelet-Rich Plasma , Regenerative Medicine/methods , Skin Diseases/therapy
12.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892052

ABSTRACT

Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.


Subject(s)
Extracellular Vesicles , Nerve Regeneration , Stem Cells , Humans , Extracellular Vesicles/metabolism , Animals , Stem Cells/metabolism , Stem Cells/cytology , Tissue Engineering/methods , Exosomes/metabolism , Regenerative Medicine/methods
13.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892249

ABSTRACT

Mesenchymal stromal cell (MSC)-based advanced therapy medicinal products (ATMPs) are being tried in a vast range of clinical applications. These cells can be isolated from different donor tissues by using several methods, or they can even be derived from induced pluripotent stem cells or embryonic stem cells. However, ATMP heterogeneity may impact product identity and potency, and, consequently, clinical trial outcomes. In this review, we discuss these topics and the need to establish minimal criteria regarding the manufacturing of MSCs so that these innovative therapeutics may be better positioned to contribute to the advancement of regenerative medicine.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Regenerative Medicine , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Regenerative Medicine/methods , Animals , Induced Pluripotent Stem Cells/cytology , Cell Differentiation
14.
J Mater Chem B ; 12(23): 5571-5572, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832500

ABSTRACT

Injectable hydrogels have emerged as intelligent and versatile materials that have been proven to possess huge potential for many biomedical applications including drug delivery, tissue engineering, and regenerative medicine. Hydrogels are a class of polymers with highly hydrated 3D networks that have microenvironmental properties such as oxygen/nutrient permeability that are similar to the native extracellular matrix. In addition to possessing the typical advantages of conventional hydrogels, injectable hydrogels offer extra unique features, enabling minimally invasive injectability and durability for irregularly shaped sites, and the possibility of processing these materials via, e.g., additive manufacturing techniques. As such, there has been a growing interest in using injectable hydrogels as scaffolds/carriers for therapeutic agents, including but not limited to drugs, cells, proteins, and bioactive molecules, targeted to treat chronic diseases including cancer, but also to facilitate the repair and regeneration of damaged organs/tissues. In this themed collection of Journal of Materials Chemistry B and Biomaterials Science, we include outstanding contributions covering recent developments in this rapidly evolving field of injectable hydrogels including emerging chemistries, synthesis pathways, fabrication methods, cell-material interaction, in vitro, ex vivo and in vivo performances, and subsequent targeted applications (drug delivery, tissue engineering and regenerative medicine) of injectable hydrogels.


Subject(s)
Biocompatible Materials , Hydrogels , Injections , Tissue Engineering , Hydrogels/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Regenerative Medicine/methods , Drug Delivery Systems , Animals
15.
Recenti Prog Med ; 115(6): 286-289, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38853731

ABSTRACT

Stem cell biology today represents the cornerstone of studies on cell therapies and regenerative medicine and is about to become the basis of clinical practice. It is not easy to predict the times and ways of science; however, the results achieved on multiple fronts demonstrate that this is a very promising area of research, as it could open important new horizons in the fight against human diseases.


Subject(s)
Regenerative Medicine , Stem Cell Transplantation , Stem Cells , Humans , Regenerative Medicine/methods , Stem Cell Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Stem Cell Research
16.
J Nanobiotechnology ; 22(1): 322, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849858

ABSTRACT

The ideal tissue engineering scaffold should facilitate rapid cell infiltration and provide an optimal immune microenvironment during interactions with the host. Electrospinning can produce two-dimensional (2D) membranes mimicking the extracellular matrix. However, their dense structure hinders cell penetration, and their thin form restricts scaffold utility. In this study, latticed hydrogels were three-dimensional (3D) printed onto electrospun membranes. This technique allowed for layer-by-layer assembly of the membranes into 3D scaffolds, which maintained their resilience impressively under both dry and wet conditions. We assessed the cellular and host responses of these 3D nanofiber scaffolds by comparing random membranes and mesh-like membranes with three different mesh sizes (250, 500, and 750 µm). It was found that scaffolds with a mesh size of 500 µm were superior for M2 macrophage phenotype polarization, vascularization, and matrix deposition. Furthermore, it was confirmed by subsequent experiments such as RNA sequencing that the mesh-like topology may promote polarization to the M2 phenotype by affecting the PI3K/AKT pathway. In conclusion, our work offers a novel method for transforming 2D nanofiber membranes into 3D scaffolds. This method boasts flexibility, allowing for the use of varied electrospun membranes and hydrogels in terms of structure and composition. It has vast potential in tissue repair and regeneration.


Subject(s)
Hydrogels , Nanofibers , Printing, Three-Dimensional , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Regenerative Medicine/methods , Hydrogels/chemistry , Animals , Mice , Macrophages/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , RAW 264.7 Cells , Humans
17.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891792

ABSTRACT

Bioproducts derived from platelets have been extensively used across various medical fields, with a recent notable surge in their application in dermatology and aesthetic procedures. These products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), play crucial roles in inducing blood vessel proliferation through growth factors derived from peripheral blood. PRP and PRF, in particular, facilitate fibrin polymerization, creating a robust structure that serves as a reservoir for numerous growth factors. These factors contribute to tissue regeneration by promoting cell proliferation, differentiation, and migration and collagen/elastin production. Aesthetic medicine harnesses these effects for diverse purposes, including hair restoration, scar treatment, striae management, and wound healing. Furthermore, these biological products can act as adjuvants with other treatment modalities, such as laser therapy, radiofrequency, and microneedling. This review synthesizes the existing evidence, offering insights into the applications and benefits of biological products in aesthetic medicine.


Subject(s)
Platelet-Rich Fibrin , Platelet-Rich Plasma , Regenerative Medicine , Humans , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Regenerative Medicine/methods , Platelet-Rich Fibrin/metabolism , Wound Healing , Blood Platelets/metabolism , Animals , Regeneration , Cell Proliferation
18.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891960

ABSTRACT

Heart failure (HF) is a life-threatening disorder and is treated by drug therapies and surgical interventions such as heart transplantation and left ventricular assist device (LVAD). However, these treatments can lack effectiveness in the long term and are associated with issues such as donor shortage in heart transplantation, and infection, stroke, or gastrointestinal bleeding in LVADs. Therefore, alternative therapeutic strategies are still needed. In this respect, stem cell therapy has been introduced for the treatment of HF and numerous preclinical and clinical studies are employing a range of stem cell varieties. These stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have been shown to improve cardiac function and attenuate left ventricular remodeling. IPSCs, which have a capacity for unlimited proliferation and differentiation into cardiomyocytes, are a promising cell source for myocardial regeneration therapy. In this review, we discuss the following topics: (1) what are iPSCs; (2) the limitations and solutions for the translation of iPSC-CMs practically; and (3) the current therapeutic clinical trials.


Subject(s)
Heart Failure , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Regenerative Medicine , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Regenerative Medicine/methods , Heart Failure/therapy , Animals , Regeneration , Stem Cell Transplantation/methods , Cell Differentiation
19.
J Nanobiotechnology ; 22(1): 327, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858689

ABSTRACT

Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.


Subject(s)
Magnetic Fields , Magnetite Nanoparticles , Signal Transduction , Humans , Animals , Magnetite Nanoparticles/chemistry , Cell Differentiation , Regenerative Medicine/methods , Neurons/metabolism , Stem Cells/metabolism , Neoplasms
20.
Int J Nanomedicine ; 19: 5459-5478, 2024.
Article in English | MEDLINE | ID: mdl-38863648

ABSTRACT

Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.


Subject(s)
Graphite , Nanostructures , Regenerative Medicine , Tissue Engineering , Humans , Regenerative Medicine/methods , Graphite/chemistry , Nanostructures/chemistry , Tissue Engineering/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...