Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.025
1.
Nat Commun ; 15(1): 4839, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844462

Comparative genomics has revealed the rapid expansion of multiple gene families involved in immunity. Members within each gene family often evolved distinct roles in immunity. However, less is known about the evolution of their epigenome and cis-regulation. Here we systematically profile the epigenome of the recently expanded murine Ly49 gene family that mainly encode either inhibitory or activating surface receptors on natural killer cells. We identify a set of cis-regulatory elements (CREs) for activating Ly49 genes. In addition, we show that in mice, inhibitory and activating Ly49 genes are regulated by two separate sets of proximal CREs, likely resulting from lineage-specific losses of CRE activity. Furthermore, we find that some Ly49 genes are cross-regulated by the CREs of other Ly49 genes, suggesting that the Ly49 family has begun to evolve a concerted cis-regulatory mechanism. Collectively, we demonstrate the different modes of cis-regulatory evolution for a rapidly expanding gene family.


Evolution, Molecular , Multigene Family , NK Cell Lectin-Like Receptor Subfamily A , Animals , Mice , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation , Killer Cells, Natural/immunology , Mice, Inbred C57BL
2.
Sci Rep ; 14(1): 13453, 2024 06 11.
Article En | MEDLINE | ID: mdl-38862513

Individuals with type 1 diabetes (T1D) carry a markedly increased risk of stroke, with distinct clinical and neuroimaging characteristics as compared to those without diabetes. Using whole-exome or whole-genome sequencing of 1,051 individuals with T1D, we aimed to find rare and low-frequency genomic variants associated with stroke in T1D. We analysed the genome comprehensively with single-variant analyses, gene aggregate analyses, and aggregate analyses on genomic windows, enhancers and promoters. In addition, we attempted replication in T1D using a genome-wide association study (N = 3,945) and direct genotyping (N = 3,263), and in the general population from the large-scale population-wide FinnGen project and UK Biobank summary statistics. We identified a rare missense variant on SREBF1 exome-wide significantly associated with stroke (rs114001633, p.Pro227Leu, p-value = 7.30 × 10-8), which replicated for hemorrhagic stroke in T1D. Using gene aggregate analysis, we identified exome-wide significant genes: ANK1 and LRRN1 displayed replication evidence in T1D, and LRRN1, HAS1 and UACA in the general population (UK Biobank). Furthermore, we performed sliding-window analyses and identified 14 genome-wide significant windows for stroke on 4q33-34.1, of which two replicated in T1D, and a suggestive genomic window on LINC01500, which replicated in T1D. Finally, we identified a suggestively stroke-associated TRPM2-AS promoter (p-value = 5.78 × 10-6) with borderline significant replication in T1D, which we validated with an in vitro cell-based assay. Due to the rarity of the identified genetic variants, future replication of the genomic regions represented here is required with sequencing of individuals with T1D. Nevertheless, we here report the first genome-wide analysis on stroke in individuals with diabetes.


Ankyrins , Diabetes Mellitus, Type 1 , Genetic Predisposition to Disease , Genome-Wide Association Study , Stroke , Whole Genome Sequencing , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Ankyrins/genetics , Stroke/genetics , Male , Female , Polymorphism, Single Nucleotide , Membrane Proteins/genetics , Adult , Middle Aged , Regulatory Sequences, Nucleic Acid/genetics
3.
Methods Mol Biol ; 2792: 251-264, 2024.
Article En | MEDLINE | ID: mdl-38861093

The cis-regulatory elements (CREs) are the short stretches of noncoding DNA upstream of a gene, which play a critical role in fine-tuning gene expression. Photorespiration is a multi-organellar, energy-expensive biochemical process that remains intricately linked to photosynthesis and is conserved in plants. Recently, much focus has been devoted in generating plants with engineered alternative photorespiratory bypasses to enhance photosynthetic efficiency without compromising the beneficial aspect of photorespiration. Varied constitutive or inducible promoters for generating transgenic plants harboring multiple transgenes have been introduced over years; however, most of them suffer from unintended effects. Consequently, a demand for synthetic tunable promoters based on canonical CRE signatures derived from native genes is on the rise. Here, in this chapter, we have provided a detailed method for in silico identification and characterization of CREs associated with photorespiration. In addition to the detailed protocol, we have presented an example of a typical result and explained the significance of the result. Specifically, the method covers how to identify and generate tunable synthetic promoters based on native CREs using three key photorespiratory genes from Arabidopsis and two web-based tools, namely, PlantPAN3.0 and AthaMap. Finally, we have also furnished a protocol on how to test the efficacies of the synthetic promoters harboring predicted CREs using transient tobacco expression coupled with luciferase-based promoter assay in response to ambient conditions and under short-term abiotic stress conditions.


Arabidopsis , Gene Expression Regulation, Plant , Photosynthesis , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological , Stress, Physiological/genetics , Arabidopsis/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Regulatory Sequences, Nucleic Acid/genetics
4.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article En | MEDLINE | ID: mdl-38745948

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
5.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791553

Long non-coding RNAs (lncRNAs) have been shown to modulate gene expression and are involved in the initiation and progression of various cancer types. Despite the wealth of studies describing transcriptome changes upon lncRNA knockdown, there is limited information describing lncRNA-mediated effects on regulatory elements (REs) modulating gene expression. In this study, we investigated how the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA regulates primary target genes using time-resolved MALAT1 knockdown followed by parallel RNA-seq and ATAC-seq assays. The results revealed that MALAT1 primarily regulates specific protein-coding genes and a substantial decrease in the accessibility downstream of the NR4A1 gene that was associated with a decreased NR4A1 expression. Moreover, the presence of an NR4A1-downstream RE was demonstrated by CRISPR-i assays to define a functional MALAT1/NR4A1 axis. By analyzing TCGA data, we identified a positive correlation between NR4A1 expression and NR4A1-downstream RE accessibility in breast cancer but not in pancreatic cancer. Accordingly, this regulatory mechanism was experimentally validated in breast cancer cells (MCF7) but not in pancreatic duct epithelial carcinoma (PANC1) cells. Therefore, our results demonstrated that MALAT1 is involved in a molecular mechanism that fine-tunes NR4A1 expression by modulating the accessibility of a downstream RE in a cell type-specific manner.


Gene Expression Regulation, Neoplastic , Nuclear Receptor Subfamily 4, Group A, Member 1 , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Cell Line, Tumor , MCF-7 Cells , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Female , Regulatory Sequences, Nucleic Acid
7.
Sci Adv ; 10(21): eadj4452, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781344

Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.


Brain , Epigenesis, Genetic , Regulatory Sequences, Nucleic Acid , Humans , Brain/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Evolution, Molecular , Mental Disorders/genetics , Regulatory Elements, Transcriptional/genetics , Neurons/metabolism , Gene Expression Regulation , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Genome Biol Evol ; 16(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38788745

Adaptation to extreme environments often involves the evolution of dramatic physiological changes. To better understand how organisms evolve these complex phenotypic changes, the repeatability and predictability of evolution, and possible constraints on adapting to an extreme environment, it is important to understand how adaptive variation has evolved. Poeciliid fishes represent a particularly fruitful study system for investigations of adaptation to extreme environments due to their repeated colonization of toxic hydrogen sulfide-rich springs across multiple species within the clade. Previous investigations have highlighted changes in the physiology and gene expression in specific species that are thought to facilitate adaptation to hydrogen sulfide-rich springs. However, the presence of adaptive nucleotide variation in coding and regulatory regions and the degree to which convergent evolution has shaped the genomic regions underpinning sulfide tolerance across taxa are unknown. By sampling across seven independent lineages in which nonsulfidic lineages have colonized and adapted to sulfide springs, we reveal signatures of shared evolutionary rate shifts across the genome. We found evidence of genes, promoters, and putative enhancer regions associated with both increased and decreased convergent evolutionary rate shifts in hydrogen sulfide-adapted lineages. Our analysis highlights convergent evolutionary rate shifts in sulfidic lineages associated with the modulation of endogenous hydrogen sulfide production and hydrogen sulfide detoxification. We also found that regions with shifted evolutionary rates in sulfide spring fishes more often exhibited convergent shifts in either the coding region or the regulatory sequence of a given gene, rather than both.


Adaptation, Physiological , Evolution, Molecular , Hydrogen Sulfide , Animals , Hydrogen Sulfide/metabolism , Adaptation, Physiological/genetics , Regulatory Sequences, Nucleic Acid , Phylogeny , Poecilia/genetics
9.
Biosci Rep ; 44(5)2024 May 29.
Article En | MEDLINE | ID: mdl-38743016

Varicose vein disease (VVD) is a common health problem worldwide. Microfibril-associated protein 5 (MFAP5) is one of the potential key players in its pathogenesis. Our previous microarray analysis revealed the cg06256735 and cg15815843 loci in the regulatory regions of the MFAP5 gene as hypomethylated in varicose veins which correlated with its up-regulation. The aim of this work was to validate preliminary microarray data, estimate the level of 5-hydroxymethylcytosine (5hmC) at these loci, and determine the methylation status of one of them in different layers of the venous wall. For this, methyl- and hydroxymethyl-sensitive restriction techniques were used followed by real-time PCR and droplet digital PCR, correspondingly, as well as bisulfite pyrosequencing of +/- oxidized DNA. Our microarray data on hypomethylation at the cg06256735 and cg15815843 loci in whole varicose vein segments were confirmed and it was also demonstrated that the level of 5hmC at these loci is increased in VVD. Specifically, among other layers of the venous wall, tunica (t.) intima is the main contributor to hypomethylation at the cg06256735 locus in varicose veins. Thus, it was shown that hypomethylation at the cg06256735 and cg15815843 loci takes place in VVD, with evidence to suggest that it happens through their active demethylation leading to up-regulation of the MFAP5 gene, and t. intima is most involved in this biochemical process.


5-Methylcytosine , DNA Methylation , Varicose Veins , Varicose Veins/genetics , Varicose Veins/metabolism , Humans , Male , Female , Middle Aged , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adult , Aged , Regulatory Sequences, Nucleic Acid/genetics , Genetic Loci
11.
Science ; 384(6698): eadh0559, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781390

Nucleotide changes in gene regulatory elements are important determinants of neuronal development and diseases. Using massively parallel reporter assays in primary human cells from mid-gestation cortex and cerebral organoids, we interrogated the cis-regulatory activity of 102,767 open chromatin regions, including thousands of sequences with cell type-specific accessibility and variants associated with brain gene regulation. In primary cells, we identified 46,802 active enhancer sequences and 164 variants that alter enhancer activity. Activity was comparable in organoids and primary cells, suggesting that organoids provide an adequate model for the developing cortex. Using deep learning we decoded the sequence basis and upstream regulators of enhancer activity. This work establishes a comprehensive catalog of functional gene regulatory elements and variants in human neuronal development.


Cerebral Cortex , Neurogenesis , Organoids , Humans , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Chromatin/metabolism , Chromatin/genetics , Deep Learning , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Neurogenesis/genetics , Neurons/metabolism , Organoids/metabolism , Regulatory Sequences, Nucleic Acid , Promoter Regions, Genetic , Regulatory Elements, Transcriptional
12.
Nat Commun ; 15(1): 3699, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698035

In silico identification of viral anti-CRISPR proteins (Acrs) has relied largely on the guilt-by-association method using known Acrs or anti-CRISPR associated proteins (Acas) as the bait. However, the low number and limited spread of the characterized archaeal Acrs and Aca hinders our ability to identify Acrs using guilt-by-association. Here, based on the observation that the few characterized archaeal Acrs and Aca are transcribed immediately post viral infection, we hypothesize that these genes, and many other unidentified anti-defense genes (ADG), are under the control of conserved regulatory sequences including a strong promoter, which can be used to predict anti-defense genes in archaeal viruses. Using this consensus sequence based method, we identify 354 potential ADGs in 57 archaeal viruses and 6 metagenome-assembled genomes. Experimental validation identified a CRISPR subtype I-A inhibitor and the first virally encoded inhibitor of an archaeal toxin-antitoxin based immune system. We also identify regulatory proteins potentially akin to Acas that can facilitate further identification of ADGs combined with the guilt-by-association approach. These results demonstrate the potential of regulatory sequence analysis for extensive identification of ADGs in viruses of archaea and bacteria.


Archaea , Archaeal Viruses , Archaeal Viruses/genetics , Archaea/genetics , Archaea/virology , Archaea/immunology , Promoter Regions, Genetic/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Regulatory Sequences, Nucleic Acid/genetics , Viral Proteins/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Metagenome/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics
13.
Nat Methods ; 21(6): 983-993, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724692

The inability to scalably and precisely measure the activity of developmental cis-regulatory elements (CREs) in multicellular systems is a bottleneck in genomics. Here we develop a dual RNA cassette that decouples the detection and quantification tasks inherent to multiplex single-cell reporter assays. The resulting measurement of reporter expression is accurate over multiple orders of magnitude, with a precision approaching the limit set by Poisson counting noise. Together with RNA barcode stabilization via circularization, these scalable single-cell quantitative expression reporters provide high-contrast readouts, analogous to classic in situ assays but entirely from sequencing. Screening >200 regions of accessible chromatin in a multicellular in vitro model of early mammalian development, we identify 13 (8 previously uncharacterized) autonomous and cell-type-specific developmental CREs. We further demonstrate that chimeric CRE pairs generate cognate two-cell-type activity profiles and assess gain- and loss-of-function multicellular expression phenotypes from CRE variants with perturbed transcription factor binding sites. Single-cell quantitative expression reporters can be applied in developmental and multicellular systems to quantitatively characterize native, perturbed and synthetic CREs at scale, with high sensitivity and at single-cell resolution.


Gene Expression Regulation, Developmental , Single-Cell Analysis , Single-Cell Analysis/methods , Animals , Mice , Genes, Reporter , Regulatory Sequences, Nucleic Acid , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Regulatory Elements, Transcriptional , Gene Expression Profiling/methods
14.
Sci Data ; 11(1): 467, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719891

Angiogenesis is extensively involved in embryonic development and requires complex regulation networks, whose defects can cause a variety of vascular abnormalities. Cis-regulatory elements control gene expression at all developmental stages, but they have not been studied or profiled in angiogenesis yet. In this study, we exploited public DNase-seq and RNA-seq datasets from a VEGFA-stimulated in vitro angiogenic model, and carried out an integrated analysis of the transcriptome and chromatin accessibility across the entire process. Totally, we generated a bank of 47,125 angiogenic cis-regulatory elements with promoter (marker by H3K4me3) and/or enhancer (marker by H3K27ac) activities. Motif enrichment analysis revealed that these angiogenic cis-regulatory elements interacted preferentially with ETS family TFs. With this tool, we performed an association study using our WES data of TAPVC and identified rs199530718 as a cis-regulatory SNP associated with disease risk. Altogether, this study generated a genome-wide bank of angiogenic cis-regulatory elements and illustrated its utility in identifying novel cis-regulatory SNPs for TAPVC, expanding new horizons of angiogenesis as well as vascular abnormality genetics.


Polymorphism, Single Nucleotide , Humans , Regulatory Sequences, Nucleic Acid , Vascular Endothelial Growth Factor A/genetics , Genome-Wide Association Study , Neovascularization, Pathologic/genetics
15.
Sci Rep ; 14(1): 10078, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698030

Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.


Drosophila melanogaster , Genes, Reporter , Genetic Vectors , Promoter Regions, Genetic , Tribolium , Animals , Genetic Vectors/genetics , Tribolium/genetics , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Insecta/genetics , Animals, Genetically Modified
16.
Mol Biol Rep ; 51(1): 612, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704770

BACKGROUND: The α-Major Regulatory Element (α-MRE), also known as HS-40, is located upstream of the α-globin gene cluster and has a crucial role in the long-range regulation of the α-globin gene expression. This enhancer is polymorphic and several haplotypes were identified in different populations, with haplotype D almost exclusively found in African populations. The purpose of this research was to identify the HS-40 haplotype associated with the 3.7 kb α-thalassemia deletion (-α3.7del) in the Portuguese population, and determine its ancestry and influence on patients' hematological phenotype. METHODS AND RESULTS: We selected 111 Portuguese individuals previously analyzed by Gap-PCR to detect the presence of the -α3.7del: 50 without the -α3.7del, 34 heterozygous and 27 homozygous for the -α3.7del. The HS-40 region was amplified by PCR followed by Sanger sequencing. Four HS-40 haplotypes were found (A to D). The distribution of HS-40 haplotypes and genotypes are significantly different between individuals with and without the -α3.7del, being haplotype D and genotype AD the most prevalent in patients with this deletion in homozygosity. Furthermore, multiple correspondence analysis revealed that individuals without the -α3.7del are grouped with other European populations, while samples with the -α3.7del are separated from these and found more closely related to the African population. CONCLUSION: This study revealed for the first time an association of the HS-40 haplotype D with the -α3.7del in the Portuguese population, and its likely African ancestry. These results may have clinical importance as in vitro analysis of haplotype D showed a decrease in its enhancer activity on α-globin gene.


Haplotypes , Sequence Deletion , alpha-Globins , alpha-Thalassemia , Female , Humans , Male , alpha-Globins/genetics , alpha-Thalassemia/genetics , Black People/genetics , Gene Frequency/genetics , Genotype , Haplotypes/genetics , Portugal , Regulatory Sequences, Nucleic Acid/genetics , Sequence Deletion/genetics
17.
Nat Commun ; 15(1): 3839, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714659

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


CRISPR-Cas Systems , Exons , Introns , RNA Splicing , RNA, Guide, CRISPR-Cas Systems , Survival of Motor Neuron 2 Protein , Humans , RNA Splicing/genetics , Survival of Motor Neuron 2 Protein/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Introns/genetics , Exons/genetics , HEK293 Cells , Oligonucleotides, Antisense/genetics , Muscular Atrophy, Spinal/genetics , Regulatory Sequences, Nucleic Acid/genetics , RNA Precursors/genetics , RNA Precursors/metabolism
18.
BMC Bioinformatics ; 25(1): 179, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714913

BACKGROUND: As genomic studies continue to implicate non-coding sequences in disease, testing the roles of these variants requires insights into the cell type(s) in which they are likely to be mediating their effects. Prior methods for associating non-coding variants with cell types have involved approaches using linkage disequilibrium or ontological associations, incurring significant processing requirements. GaiaAssociation is a freely available, open-source software that enables thousands of genomic loci implicated in a phenotype to be tested for enrichment at regulatory loci of multiple cell types in minutes, permitting insights into the cell type(s) mediating the studied phenotype. RESULTS: In this work, we present Regulatory Landscape Enrichment Analysis (RLEA) by GaiaAssociation and demonstrate its capability to test the enrichment of 12,133 variants across the cis-regulatory regions of 44 cell types. This analysis was completed in 134.0 ± 2.3 s, highlighting the efficient processing provided by GaiaAssociation. The intuitive interface requires only four inputs, offers a collection of customizable functions, and visualizes variant enrichment in cell-type regulatory regions through a heatmap matrix. GaiaAssociation is available on PyPi for download as a command line tool or Python package and the source code can also be installed from GitHub at https://github.com/GreallyLab/gaiaAssociation . CONCLUSIONS: GaiaAssociation is a novel package that provides an intuitive and efficient resource to understand the enrichment of non-coding variants across the cis-regulatory regions of different cells, empowering studies seeking to identify disease-mediating cell types.


Software , Genetic Variation , Humans , Genomics/methods , Computational Biology/methods , Phenotype , Regulatory Sequences, Nucleic Acid/genetics , Linkage Disequilibrium
19.
Genome Biol ; 25(1): 123, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760655

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Chromatin , Retina , Retinal Diseases , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/metabolism , Chromatin/metabolism , Retinal Diseases/genetics , Retinal Diseases/metabolism , Retina/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Promoter Regions, Genetic , Genetic Loci , Zebrafish/genetics , Regulatory Sequences, Nucleic Acid , Genome, Human
20.
Nat Genet ; 56(4): 615-626, 2024 Apr.
Article En | MEDLINE | ID: mdl-38594305

Translating genome-wide association study (GWAS) loci into causal variants and genes requires accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building enhancer-gene maps is essential but challenging with current experimental methods in primary human tissues. Here we developed a nonparametric statistical method, SCENT (single-cell enhancer target gene mapping), that models association between enhancer chromatin accessibility and gene expression in single-cell or nucleus multimodal RNA sequencing and ATAC sequencing data. We applied SCENT to 9 multimodal datasets including >120,000 single cells or nuclei and created 23 cell-type-specific enhancer-gene maps. These maps were highly enriched for causal variants in expression quantitative loci and GWAS for 1,143 diseases and traits. We identified likely causal genes for both common and rare diseases and linked somatic mutation hotspots to target genes. We demonstrate that application of SCENT to multimodal data from disease-relevant human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene maps, essential for defining noncoding variant function.


Genome-Wide Association Study , Regulatory Sequences, Nucleic Acid , Humans , Alleles , Genome-Wide Association Study/methods , Chromosome Mapping , Phenotype , Chromatin/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease/genetics
...