Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.948
Filter
1.
Sci Rep ; 14(1): 15175, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956251

ABSTRACT

In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.


Subject(s)
Copper , Disulfiram , Homeostasis , Inflammation , Mice, Inbred C57BL , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Disulfiram/pharmacology , Mice , Copper/metabolism , Homeostasis/drug effects , Male , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Down-Regulation/drug effects , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Iron-Sulfur Proteins/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Toll-Like Receptor 4/metabolism
2.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958951

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Subject(s)
Apigenin , Glucuronates , MAP Kinase Signaling System , Macrophages , Mice, Inbred C57BL , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Mice , Apigenin/pharmacology , Glucuronates/pharmacology , Glucuronates/therapeutic use , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Male , MAP Kinase Signaling System/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Apoptosis/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/prevention & control , Inflammation/pathology
3.
Ren Fail ; 46(2): 2365982, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39010816

ABSTRACT

This study aimed to explore the mechanism of Xiaoyu Xiezhuo decoction (XXD) on ischemia-reperfusion-induced acute kidney injury (IRI-AKI) using network pharmacology methods and gut microbiota analysis. A total of 1778 AKI-related targets were obtained, including 140 targets possibly regulated by AKI in XXD, indicating that the core targets were mainly enriched in inflammatory-related pathways, such as the IL-17 signaling pathway and TNF signaling pathway. The unilateral IRI-AKI animal model was established and randomly divided into four groups: the sham group, the AKI group, the sham + XXD group, and the AKI + XXD group. Compared with the rats in the AKI group, XXD improved not only renal function, urinary enzymes, and biomarkers of renal damage such as Kim-1, cystatin C, and serum inflammatory factors such as IL-17, TNF-α, IL-6, and IL 1-ß, but also intestinal metabolites including lipopolysaccharides, d-lactic acid, indoxyl sulfate, p-cresyl sulfate, and short-chain fatty acids. XXD ameliorated renal and colonic pathological injury as well as inflammation and chemokine gene abundance, such as IL-17, TNF-α, IL-6, IL-1ß, ICAM-1, and MCP-1, in AKI rats via the TLR4/NF-κB/NLRP3 pathway, reducing the AKI score, renal pathological damage, and improving the intestinal mucosa's inflammatory infiltration. It also repaired markers of the mucosal barrier, including claudin-1, occludin, and ZO-1. Compared with the rats in the AKI group, the α diversity was significantly increased, and the Chao1 index was significantly enhanced after XXD treatment in both the sham group and the AKI group. The treatment group significantly reversed this change in microbiota.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Kidney , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Acute Kidney Injury/etiology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Reperfusion Injury/complications , Reperfusion Injury/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Gastrointestinal Microbiome/drug effects , Rats , Male , Kidney/pathology , Kidney/drug effects , Signal Transduction/drug effects , Network Pharmacology , Toll-Like Receptor 4/metabolism
4.
J Nanobiotechnology ; 22(1): 394, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965594

ABSTRACT

DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.


Subject(s)
DNA , Liver , Nanostructures , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Mice , Liver/metabolism , DNA/chemistry , Nanostructures/chemistry , Male , Tissue Distribution , Mice, Inbred C57BL , Apoptosis/drug effects , Oxidative Stress/drug effects
5.
Cells ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920673

ABSTRACT

In the context of glaucoma, intraocular pressure (IOP) and age are recognized as the primary factors contributing to its onset and progression. However, significant reductions in IOP fail to completely halt its advancement. An emerging body of literature highlights the role of neuroinflammation in glaucoma. This study aimed to explore Bromfenac's anti-inflammatory properties in mitigating neuroinflammation associated with glaucoma using an ischemia-reperfusion (IR) glaucoma model. Bromfenac's impact on microglia and astrocytes under pressure was assessed via Western blotting and an enzyme-linked immunosorbent assay. Immunohistochemical staining was used to evaluate glial activation and changes in inflammatory marker expression in the IR model. Bromfenac led to the downregulation of inflammatory markers, which were elevated in the conditions of elevated pressure, and necroptosis markers were downregulated in astrocytes. In the IR model, elevated levels of GFAP and Iba-1 indicated glial activation. Following Bromfenac administration, levels of iNOS, COX-2, and PGE2-R were reduced, suggesting a decrease in neuroinflammation. Furthermore, Bromfenac administration in the IR model resulted in the improved survival of retinal ganglion cells (RGCs) and preservation of retinal function, as demonstrated by immunohistochemical staining and electroretinography. In summary, Bromfenac proved effective in diminishing neuroinflammation and resulted in enhanced RGC survival.


Subject(s)
Astrocytes , Benzophenones , Bromobenzenes , Disease Models, Animal , Glaucoma , Reperfusion Injury , Bromobenzenes/pharmacology , Bromobenzenes/therapeutic use , Animals , Benzophenones/pharmacology , Benzophenones/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/complications , Glaucoma/drug therapy , Glaucoma/pathology , Glaucoma/complications , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Male , Intraocular Pressure/drug effects , Rats
6.
Curr Med Sci ; 44(3): 578-588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38853191

ABSTRACT

OBJECTIVE: Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1), a component derived from medicinal plants, is known for its pharmacological benefits in IS, but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. METHODS: An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools, including gene set enrichment analysis (GSEA), Gene Ontology (GO) classification and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction network analysis, and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. RESULTS: Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically, GRb1 was found to modulate the interplay between oxidative stress, apoptosis, and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62), autophagy related 5 (ATG5), and hypoxia-inducible factor 1-alpha (HIF-1α) were identified, highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. CONCLUSION: GRbl protects BMECs against OGD/R injury by influencing oxidative stress, apoptosis, and autophagy. The identification of SQSTM1/p62, ATG5, and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS, providing a foundation for future research into its mechanisms and applications in IS treatment.


Subject(s)
Apoptosis , Autophagy , Endothelial Cells , Ginsenosides , Oxidative Stress , Ginsenosides/pharmacology , Oxidative Stress/drug effects , Autophagy/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Apoptosis/drug effects , Humans , Brain/drug effects , Brain/metabolism , Brain/pathology , Molecular Docking Simulation , Protein Interaction Maps/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Microvessels/drug effects , Microvessels/cytology , Microvessels/metabolism , Computational Biology/methods , Glucose/metabolism
7.
Drug Des Devel Ther ; 18: 1785-1797, 2024.
Article in English | MEDLINE | ID: mdl-38828020

ABSTRACT

Objective: Pancreatic surgeries inherently cause ischemia-reperfusion (IR) injury, affecting not only the pancreas but also distant organs. This study was conducted to explore the potential use of dexmedetomidine, a sedative with antiapoptotic, anti-inflammatory, and antioxidant properties, in mitigating the impacts of pancreatic IR on kidney and liver tissues. Methods: A total of 24 rats were randomly divided into four groups: control (C), dexmedetomidine (D), ischemia reperfusion (IR), and dexmedetomidine ischemia reperfusion (D-IR). Pancreatic ischemia was induced in the IR and D-IR groups. Dexmedetomidine was administered intraperitoneally to the D and D-IR groups. Liver and kidney tissue samples were subjected to microscopic examinations after hematoxylin and eosin staining. The levels of thiobarbituric acid reactive substances (TBARS), aryllesterase (AES), catalase (CAT), and glutathione S-transferase (GST) enzyme activity were assessed in liver and kidney tissues. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and creatinine were measured. Results: A comparison of the groups revealed that the IR group exhibited significantly elevated TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) levels in the liver and kidney compared to groups C and D. Group D-IR demonstrated notably reduced histopathological damage (p < 0.05) and low TBARS (p < 0.0001), AES (p = 0.004), and CAT enzyme activity (p < 0.0001) in the liver and kidney as well as low AST and ALT activity levels (p < 0.0001) in the serum compared to the IR group. Conclusion: The preemptive administration of dexmedetomidine before pancreatic IR provides significant protection to kidney and liver tissues, as evidenced by the histopathological and biochemical parameters in this study. The findings underscored the potential therapeutic role of dexmedetomidine in mitigating the multiorgan damage associated with pancreatic surgeries.


Subject(s)
Dexmedetomidine , Kidney , Liver , Pancreas , Reperfusion Injury , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/administration & dosage , Rats , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Rats, Sprague-Dawley
8.
Drug Des Devel Ther ; 18: 2125-2142, 2024.
Article in English | MEDLINE | ID: mdl-38882050

ABSTRACT

Background: Aconitum carmichaelii (Fuzi) has been conventionally used to cure a variety of ailments, such as pain, cold sensations, and numbness of limb muscles (Bi Zheng) in China. Our prior investigations identified Benzoylaconine (BAC) as a bioactive alkaloid derived from Aconitum carmichaelii, with other studies also demonstrating its significant pharmacological potential. Purpose: This study aimed to explore the potential of BAC as a protective agent against skeletal muscle ischemia-reperfusion (I/R) injury and to elucidate the underlying mechanisms. Methods: In vivo models involved subjecting Sprague-Dawley rats to I/R through femoral artery ligation followed by reperfusion, while in vitro models utilized C2C12 cells subjected to hypoxia/reoxygenation (H/R). CCK-8 assay was used to assess cell viability. TUNEL staining and flow cytometric analysis were used to measure cell apoptosis. Biochemical assay was used to assess skeletal muscle injury and oxidative stress. Immunofluorescence and Western blot were performed to determine protein levels. Results: BAC effectively protected muscle tissue from I/R injury, enhancing cell viability (p<0.01), elevating SOD levels (p<0.05), and reducing CK (p<0.01), LDH (p<0.01), ROS (p<0.01), MDA (p<0.01), and apoptosis-related molecules in vivo and in vitro (p<0.05, p<0.01). Mechanistically, BAC increased the expression of IF1, phosphorylated AMPK, facilitated the translocation of nuclear Nrf2, and induced the expression of HO-1 (p<0.01). Notably, AMPK inhibitor Compound C significantly hindered the ability of BAC to ameliorate H/R-induced cell injury (p<0.05), oxidative stress(p<0.01), and apoptosis (p<0.05), as well as promote Nrf2 nuclear translocation (p<0.01). Moreover, silencing of IF1 with siRNA abolished BAC-induced activation of AMPK/Nrf2 axis (p<0.01). Conclusion: Our study provides novel evidence supporting the potential of BAC as a myocyte-protective agent against I/R injury, and we establish a previously unknown mechanism involving the activation of the IF1-dependent AMPK/Nrf2 axis in mediating the protective effects of BAC.


Subject(s)
AMP-Activated Protein Kinases , Muscle, Skeletal , NF-E2-Related Factor 2 , Rats, Sprague-Dawley , Reperfusion Injury , Animals , NF-E2-Related Factor 2/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , AMP-Activated Protein Kinases/metabolism , Rats , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Male , Cell Survival/drug effects , Apoptosis/drug effects , Mice , Oxidative Stress/drug effects , Structure-Activity Relationship , Protective Agents/pharmacology , Protective Agents/chemistry , Cells, Cultured , Dose-Response Relationship, Drug
9.
Immun Inflamm Dis ; 12(6): e1271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888355

ABSTRACT

INTRODUCTION: Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS: This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS: High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS: This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.


Subject(s)
Diabetes Mellitus, Experimental , Liver , Morphinans , Oxidative Stress , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Oxidative Stress/drug effects , Morphinans/pharmacology , Morphinans/administration & dosage , Morphinans/therapeutic use , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Male , Liver/metabolism , Liver/drug effects , Liver/pathology , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects
10.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892459

ABSTRACT

The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia-reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery.


Subject(s)
Eucommiaceae , Flavonoids , Ischemic Stroke , Oxidative Stress , Plant Leaves , Animals , Rats , Flavonoids/pharmacology , Eucommiaceae/chemistry , Plant Leaves/chemistry , PC12 Cells , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Survival/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats, Sprague-Dawley , Malondialdehyde/metabolism
11.
Physiol Rep ; 12(11): e16050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839736

ABSTRACT

In posterior spine surgery, retractors exert pressure on paraspinal muscles, elevating intramuscular pressure and compromising blood flow, potentially causing muscle injury during ischemia-reperfusion. Ginkgo biloba extract (EGb 761), known for its antioxidant and free radical scavenging properties and its role in treating cerebrovascular diseases, is investigated for its protective effects against muscle ischemia-reperfusion injury in vitro and in vivo. Animals were randomly divided into the control group, receiving normal saline, and experimental groups, receiving varying doses of EGb761 (25/50/100/200 mg/kg). A 2-h hind limb tourniquet-induced ischemia was followed by reperfusion. Blood samples collected pre-ischemia and 24 h post-reperfusion, along with muscle tissue samples after 24 h, demonstrated that EGb761 at 1000 µg/mL effectively inhibited IL-6 and TNF-α secretion in RAW 264.7 cells without cytotoxicity. EGb761 significantly reduced nitric oxide (NO) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, and increased glutathione (GSH) levels compared to the control after 24 h. Muscle tissue sections revealed more severe damage in the control group, indicating EGb761's potential in mitigating inflammatory responses and oxidative stress during ischemia-reperfusion injury, effectively protecting against muscle damage.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Ginkgo biloba , Hindlimb , Muscle, Skeletal , Plant Extracts , Reperfusion Injury , Animals , Ginkgo biloba/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Hindlimb/blood supply , Male , Rats , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Ginkgo Extract
12.
Sci Rep ; 14(1): 12971, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839854

ABSTRACT

Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.


Subject(s)
Apoptosis , Gallic Acid , Parathyroid Glands , Reperfusion Injury , Signal Transduction , Signal Transduction/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/pathology , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Animals , Apoptosis/drug effects , Parathyroid Glands/metabolism , Parathyroid Glands/drug effects , Parathyroid Glands/pathology , Cell Proliferation/drug effects , Humans , Mice
13.
Mol Med ; 30(1): 77, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840035

ABSTRACT

BACKGROUND: Ischemic stroke presents a significant threat to human health due to its high disability rate and mortality. Currently, the clinical treatment drug, rt-PA, has a narrow therapeutic window and carries a high risk of bleeding. There is an urgent need to find new effective therapeutic drugs for ischemic stroke. Icariin (ICA), a key ingredient in the traditional Chinese medicine Epimedium, undergoes metabolism in vivo to produce Icaritin (ICT). While ICA has been reported to inhibit neuronal apoptosis after cerebral ischemia-reperfusion (I/R), yet its underlying mechanism remains unclear. METHODS: PC-12 cells were treated with 200 µM H2O2 for 8 h to establish a vitro model of oxidative damage. After administration of ICT, cell viability was detected by Thiazolyl blue tetrazolium Bromide (MTT) assay, reactive oxygen species (ROS) and apoptosis level, mPTP status and mitochondrial membrane potential (MMP) were detected by flow cytometry and immunofluorescence. Apoptosis and mitochondrial permeability transition pore (mPTP) related proteins were assessed by Western blotting. Middle cerebral artery occlusion (MCAO) model was used to establish I/R injury in vivo. After the treatment of ICA, the neurological function was scored by ZeaLonga socres; the infarct volume was observed by 2,3,5-Triphenyltetrazolium chloride (TTC) staining; HE and Nissl staining were used to detect the pathological state of the ischemic cortex; the expression changes of mPTP and apoptosis related proteins were detected by Western blotting. RESULTS: In vitro: ICT effectively improved H2O2-induced oxidative injury through decreasing the ROS level, inhibiting mPTP opening and apoptosis. In addition, the protective effects of ICT were not enhanced when it was co-treated with mPTP inhibitor Cyclosporin A (CsA), but reversed when combined with mPTP activator Lonidamine (LND). In vivo: Rats after MCAO shown cortical infarct volume of 32-40%, severe neurological impairment, while mPTP opening and apoptosis were obviously increased. Those damage caused was improved by the administration of ICA and CsA. CONCLUSIONS: ICA improves cerebral ischemia-reperfusion injury by inhibiting mPTP opening, making it a potential candidate drug for the treatment of ischemic stroke.


Subject(s)
Apoptosis , Flavonoids , Ischemic Stroke , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Rats , Flavonoids/pharmacology , Flavonoids/therapeutic use , Mitochondrial Permeability Transition Pore/metabolism , Apoptosis/drug effects , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/etiology , PC12 Cells , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Male , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Disease Models, Animal , Hydrogen Peroxide/metabolism , Cell Survival/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
14.
Fitoterapia ; 176: 106045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823597

ABSTRACT

Notoginseng leaf triterpenes (PNGL), derived from the dried stems and leaves of P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in vivo and in vitro of ischemic stroke. However, its impact on neurological restoration specifically in relation to angiogenesis following ischemic stroke remains unexplored. The aim of this study was to assess the effects of PNGL on angiogenesis subsequent to ischemic stroke. Male Sprague-Dawley rats were utilized in this study and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, PNGL were administered through intraperitoneal (i.p.) injection. The high-performance liquid chromatography (HPLC) fingerprinting, triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, network pharmacology and western blot analyses were assessed to determine the therapeutical effect and molecular mechanisms of PNGL on cerebral ischemia/reperfusion injury. Our findings demonstrate that PNGL effectively reduced infarct volume, enhanced cerebral blood flow, and induced angiogenesis in rats subjected to MCAO/R. Notably, PNGL also facilitated neuronal proliferation and migration in HUMECs in vitro. The proangiogenic effects of PNGL were found to be linked to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis, as well as the activation of neurological function. Our study provides evidence that PNGL hold promise as an active ingredient of inducing proangiogenic effects, potentially through the activation of the Nrf2 pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis. These findings contribute to the understanding of novel mechanisms involved in the restoration of neurological function following PNGL treatment for ischemic stroke.


Subject(s)
Ischemic Stroke , NF-E2-Related Factor 2 , Panax notoginseng , Plant Leaves , Rats, Sprague-Dawley , Sirtuin 1 , Triterpenes , Animals , Male , NF-E2-Related Factor 2/metabolism , Rats , Sirtuin 1/metabolism , Ischemic Stroke/drug therapy , Triterpenes/pharmacology , Triterpenes/isolation & purification , Panax notoginseng/chemistry , Plant Leaves/chemistry , Humans , Neuroprotective Agents/pharmacology , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neovascularization, Physiologic/drug effects , China , Reperfusion Injury/drug therapy , Angiogenesis Inducing Agents/pharmacology , Angiogenesis
15.
Brain Res Bull ; 214: 111006, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852654

ABSTRACT

BACKGROUND: Limb remote ischemic postconditioning (LRIP) and paeoniflorin (PF) both can ameliorate cerebral ischemia reperfusion (I/R) injury. At present, whether LRIP combined with PF can achieve better therapeutic effect is unknown. PURPOSE: This study explored the alleviating effect and mechanism of LRIP in combination with PF on cerebral I/R injury in rats. METHODS: Middle cerebral artery occlusion (MCAO) surgery was performed on rats except Sham group. Then PF (2.5 mg/kg, 5 mg/kg, 10 mg/kg) was administrated by intraperitoneal injection 10 min before the start of reperfusion. LRIP was operated on the left femoral artery at 0 h of reperfusion. Behavioral testing was used to assess neurological impairment, while TTC staining was used to examine infarct volume. Protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox in neutrophils from rat peripheral blood were tested by Western blot. Rat bone marrow neutrophils were extracted and incubated for 24 h with serum from rats after LRIP combined with PF. p38 MAPK inhibitor group was administrated SB203580 while the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor group was administrated Apocynin. Neutrophils were stimulated by fMLP (10 µM). Reactive oxygen species (ROS) production and protein expression of MyD88, TRAF6, p38 MAPK, and p47phox (ser 304 and ser 345) were detected. RESULTS: LRIP combined with PF (5 mg/kg) reduced cerebral infarct volume, ameliorated neurological deficit score (NDS), decreased fMLP-stimulated ROS release and downregulated the protein expression of MyD88, TRAF6, p38-MAPK and phosphorylation of p47phox (ser 304 and ser 345) in neutrophils. CONCLUSION: The protective effect of LRIP combined with PF on cerebral I/R injury was better than either alone. Taken together, we provided solid evidence to demonstrate that the combination of LRIP and PF had potential to alleviate cerebral I/R injury, which was regulated by MyD88-TRAF6-p38 MAPK pathway and neutrophil NADPH oxidase pathway.


Subject(s)
Brain Ischemia , Glucosides , Ischemic Postconditioning , Monoterpenes , Neutrophils , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Neutrophils/drug effects , Neutrophils/metabolism , Male , Ischemic Postconditioning/methods , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Glucosides/pharmacology , Rats , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , NADPH Oxidases/metabolism , Infarction, Middle Cerebral Artery , p38 Mitogen-Activated Protein Kinases/metabolism , NADP/metabolism , Signal Transduction/drug effects
16.
J Med Chem ; 67(11): 9536-9551, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38822802

ABSTRACT

The concept of ferroptosis inhibition has gained growing recognition as a promising therapeutic strategy for addressing a wide range of diseases. Here, we present the discovery of four series of ortho-aminophenol derivatives as potential ferroptosis inhibitors beginning with the endogenous substance 3-hydroxyanthranilic acid (3-HA) by employing quantum chemistry techniques, in vitro and in vivo assays. Our findings reveal that these ortho-aminophenol derivatives exhibit unique intra-H bond interactions, compelling ortho-amines to achieve enhanced alignment with the aromatic π-system, thereby expanding their activity. Notably, compounds from all four series display remarkable activity against RSL3-induced ferroptosis, showcasing an activity 100 times more than that of 3-HA. Furthermore, these compounds also demonstrate robust in vivo efficacy in protecting mice from kidney ischemia-reperfusion injury and acetaminophen-induced hepatotoxicity. In summary, we provide four distinct series of active scaffolds that significantly expand the chemical space of ferroptosis inhibitors, serving as valuable insights for future structural modifications.


Subject(s)
Aminophenols , Ferroptosis , Lipid Peroxidation , Animals , Aminophenols/pharmacology , Aminophenols/chemistry , Ferroptosis/drug effects , Mice , Lipid Peroxidation/drug effects , Humans , Structure-Activity Relationship , Acetaminophen/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Male , Drug Discovery , Mice, Inbred C57BL
17.
Sci Rep ; 14(1): 14350, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906975

ABSTRACT

Cardiac ischemic preconditioning (Pre) reduces cardiac ischemia-reperfusion injury (IRI) by stimulating opioid receptors. Chronic use of opioids can alter the signaling pathways. We investigated the effects of chronic methadone use on IRI and Pre. The experiments were performed on isolated hearts of male Wistar rats in four groups: IRI, Methadone + IRI (M-IRI), Pre + IRI (Pre-IRI), Methadone + Pre + IRI (M-Pre-IRI). The infarct size (IS) in the Pre-IRI group was smaller than the IRI group (26.8% vs. 47.8%, P < 0.05). In the M-IRI and M-Pre-IRI groups, the infarct size was similar to the IRI group. Akt (Ak strain transforming) phosphorylation in the Pre-IRI, M-IRI, and M-Pre-IRI groups was significantly higher than in the IRI group (0.56 ± 0.15, 0.63 ± 0.20, and 0.93 ± 0.18 vs 0.28 ± 0.17 respectively). STAT3 (signal transducer and activator of transcription 3) phosphorylation in the Pre-IRI and M-Pre-IRI groups (1.38 ± 0.14 and 1.46 ± 0.33) was significantly higher than the IRI and M-IRI groups (0.99 ± 0.1 and 0.98 ± 0.2). Thus, chronic use of methadone not only has no protective effect against IRI but also destroys the protective effects of ischemic preconditioning. This may be due to the hyperactivation of Akt and changes in signaling pathways.


Subject(s)
Ischemic Preconditioning, Myocardial , Methadone , Myocardial Reperfusion Injury , Proto-Oncogene Proteins c-akt , Rats, Wistar , STAT3 Transcription Factor , Animals , Methadone/pharmacology , STAT3 Transcription Factor/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation/drug effects , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Ischemic Preconditioning, Myocardial/methods , Signal Transduction/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
18.
Int Immunopharmacol ; 136: 112421, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850786

ABSTRACT

Intestinal ischemia/reperfusion (I/R) injury is a serious condition that causes intestinal dysfunction and can be fatal. Previous research has shown that toll-like receptor 4 (TLR4) inhibitors have a protective effect against this injury. This study aimed to investigate the protective effects of TLR4 inhibitors, specifically cyclobenzaprine, ketotifen, amitriptyline, and naltrexone, in rats with intestinal (I/R) injury. Albino rats were divided into seven groups: vehicle control, sham-operated, I/R injury, I/R-cyclobenzaprine (10 mg/kg body weight), I/R-ketotifen (1 mg/kg body weight), I/R-amitriptyline (10 mg/kg body weight), and I/R-naltrexone (4 mg/kg body weight) groups. Anesthetized rats (urethane 1.8 g/kg) underwent 30 min of intestinal ischemia by occluding the superior mesenteric artery (SMA), followed by 2 h of reperfusion. Intestinal tissue samples were collected to measure various parameters, including malondialdehyde (MDA), nitric oxide synthase (NO), myeloperoxidase (MPO), superoxide dismutase (SOD), TLR4, intercellular adhesion molecule-1 (ICAM-1), nuclear factor kappa bp65 (NF-ĸBP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), macrophages CD68, myeloid differentiation factor 88 (MYD88), and toll interleukin receptor-domain-containing adaptor-inducing interferon ß (TRIF). The use of TLR4 inhibitors significantly reduced MDA, MPO, and NO levels, while increasing SOD activity. Furthermore, it significantly decreased TLR4, ICAM-1, TNF-α, MCP-1, MYD88, and TRIF levels. These drugs also showed partial restoration of normal cellular structure with reduced inflammation. Additionally, there was a decrease in NF-ĸBP65 and macrophages CD68 staining compared to rats in the I/R groups. This study focuses on how TLR4 inhibitors enhance intestinal function and protect against intestinal (I/R) injury by influencing macrophages CD86 through (MYD88-TRIF) pathway, as well as their effects on oxidation and inflammation.


Subject(s)
Adaptor Proteins, Vesicular Transport , Myeloid Differentiation Factor 88 , Reperfusion Injury , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/antagonists & inhibitors , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats , Adaptor Proteins, Vesicular Transport/metabolism , Male , Signal Transduction/drug effects , Intestines/drug effects , Intestines/pathology
19.
Bull Exp Biol Med ; 176(6): 827-829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890211

ABSTRACT

The severity of ischemic injury was evaluated by densitometry of brain samples stained with 2,3,5-triphenyltetrazolium chloride (TTC) on a rat model of cerebral ischemia/reperfusion (common carotid artery occlusion) and the neuroprotective activity of an extract of Astragalus membranaceus, Scutellaria baicalensis, and Phlojodicarpus sibiricus was assessed. Occlusion of the common carotid arteries led to a weakening of TTC staining of the brain tissue: densitometric indicators of the staining intensity for the cortex and striatum were lower than the corresponding indicators of sham-operated rats by 18.3 and 10.4%. The mean intensity of staining of brain samples did not differ in rats treated with the extract and sham-operated animals, which attested to its neuroprotective effect. The applied method is convenient for evaluation of the severity of ischemic brain damage at the early stages and screening potential neuroprotective agents.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Plant Extracts , Animals , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Astragalus propinquus/chemistry , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Tetrazolium Salts/chemistry , Brain/drug effects , Brain/pathology , Rats, Wistar , Disease Models, Animal , Scutellaria baicalensis
20.
Bull Exp Biol Med ; 176(6): 736-742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38907060

ABSTRACT

Intranasal administration of total bovine brain gangliosides (6 mg/kg) to rats protected the CA1 hippocampal neurons from the death caused by two-vessel occlusion model (with hypotension) of forebrain ischemia/reperfusion injury. The immunohistochemical reaction of specific antibodies to marker proteins of activated microglia (Iba1) and astrocytes (GFAP) in hippocampal slices revealed the neuroprotective effect of exogenous gangliosides which can be mostly explained by their ability to suppress neuroinflammation and gliosis. The expression of neurotrophic factor BDNF in the CA1 region of hippocampus did not differ in sham-operated rats and animals exposed to ischemia/reperfusion. However, the administration of gangliosides increased the BDNF expression in both control and ischemic groups. The intranasal route of administration allows using lower concentrations of gangliosides preventing the death of hippocampal neurons.


Subject(s)
Administration, Intranasal , Brain-Derived Neurotrophic Factor , CA1 Region, Hippocampal , Gangliosides , Neurons , Neuroprotective Agents , Reperfusion Injury , Animals , Reperfusion Injury/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Gangliosides/pharmacology , Rats , Male , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Rats, Wistar , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Brain Ischemia/metabolism , Prosencephalon/drug effects , Prosencephalon/pathology , Prosencephalon/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Cell Survival/drug effects , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...