Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.921
Filter
1.
PLoS Genet ; 20(8): e1011366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102423

ABSTRACT

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.


Subject(s)
Chromatin , DNA Replication , G1 Phase , Origin Recognition Complex , Replication Origin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Replication Origin/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , Chromatin/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , G1 Phase/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , S Phase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Domains/genetics , Binding Sites , Protein Binding , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , Nucleosomes/metabolism , Nucleosomes/genetics
2.
ACS Synth Biol ; 13(8): 2515-2532, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39109796

ABSTRACT

Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.


Subject(s)
Genome, Bacterial , Plasmids , Replicon , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/genetics , Replicon/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Symbiosis/genetics , Genetic Engineering/methods , Nitrogen Fixation/genetics , Replication Origin/genetics , Bacterial Proteins/genetics , DNA Replication/genetics
3.
Nat Commun ; 15(1): 6018, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019870

ABSTRACT

In Escherichia coli, it is debated whether the two replisomes move independently along the two chromosome arms during replication or if they remain spatially confined. Here, we use high-throughput fluorescence microscopy to simultaneously determine the location and short-time-scale (1 s) movement of the replisome and a chromosomal locus throughout the cell cycle. The assay is performed for several loci. We find that (i) the two replisomes are confined to a region of ~250 nm and ~120 nm along the cell's long and short axis, respectively, (ii) the chromosomal loci move to and through this region sequentially based on their distance from the origin of replication, and (iii) when a locus is being replicated, its short time-scale movement slows down. This behavior is the same at different growth rates. In conclusion, our data supports a model with DNA moving towards spatially confined replisomes at replication.


Subject(s)
Chromosomes, Bacterial , DNA Replication , DNA, Bacterial , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Microscopy, Fluorescence , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Replication Origin , Cell Cycle/genetics , DNA-Directed DNA Polymerase , Multienzyme Complexes
4.
DNA Repair (Amst) ; 141: 103713, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959715

ABSTRACT

Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.


Subject(s)
DNA Replication , Replication Origin , Saccharomyces cerevisiae , Animals , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Origin Recognition Complex/metabolism , Origin Recognition Complex/genetics , Mammals/genetics , Genome , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics
5.
Cell Genom ; 4(8): 100610, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39053455

ABSTRACT

Gene/segmental duplications play crucial roles in genome evolution and variation. Here, we introduce paired nicking-induced amplification (PNAmp) for their experimental induction. PNAmp strategically places two Cas9 nickases upstream and downstream of a replication origin on opposite strands. This configuration directs the sister replication forks initiated from the origin to break at the nicks, generating a pair of one-ended double-strand breaks. If homologous sequences flank the two break sites, then end resection converts them to single-stranded DNAs that readily anneal to drive duplication of the region bounded by the homologous sequences. PNAmp induces duplication of segments as large as ∼1 Mb with efficiencies exceeding 10% in the budding yeast Saccharomyces cerevisiae. Furthermore, appropriate splint DNAs allow PNAmp to duplicate/multiplicate even segments not bounded by homologous sequences. We also provide evidence for PNAmp in mammalian cells. Therefore, PNAmp provides a prototype method to induce structural variations by manipulating replication fork progression.


Subject(s)
Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Humans , DNA Replication , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Gene Duplication , Replication Origin/genetics , DNA Breaks, Double-Stranded , CRISPR-Cas Systems/genetics
6.
Cell ; 187(15): 3992-4009.e25, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38866019

ABSTRACT

Metazoan genomes are copied bidirectionally from thousands of replication origins. Replication initiation entails the assembly and activation of two CMG helicases (Cdc45⋅Mcm2-7⋅GINS) at each origin. This requires several replication firing factors (including TopBP1, RecQL4, and DONSON) whose exact roles are still under debate. How two helicases are correctly assembled and activated at each origin is a long-standing question. By visualizing the recruitment of GINS, Cdc45, TopBP1, RecQL4, and DONSON in real time, we uncovered that replication initiation is surprisingly dynamic. First, TopBP1 transiently binds to the origin and dissociates before the start of DNA synthesis. Second, two Cdc45 are recruited together, even though Cdc45 alone cannot dimerize. Next, two copies of DONSON and two GINS simultaneously arrive at the origin, completing the assembly of two CMG helicases. Finally, RecQL4 is recruited to the CMG⋅DONSON⋅DONSON⋅CMG complex and promotes DONSON dissociation and CMG activation via its ATPase activity.


Subject(s)
Cell Cycle Proteins , DNA Replication , Single Molecule Imaging , Humans , Cell Cycle Proteins/metabolism , Replication Origin , Animals , DNA Helicases/metabolism , RecQ Helicases/metabolism , DNA-Binding Proteins/metabolism
7.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830843

ABSTRACT

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Subject(s)
BRCA2 Protein , DNA Replication , RNA Polymerase II , Ribonuclease H , Humans , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Ribonuclease H/metabolism , Ribonuclease H/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Transcription Termination, Genetic , DNA Damage , Replication Origin , R-Loop Structures , Cell Line, Tumor
8.
Nucleic Acids Res ; 52(12): 7063-7080, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808662

ABSTRACT

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , DNA Replication , DNA-Binding Proteins , Neural Stem Cells , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Chromatin/metabolism , Replication Origin , Histone Demethylases/metabolism , Histone Demethylases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Genome/genetics , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Mice, Knockout
9.
Genome Biol ; 25(1): 126, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773641

ABSTRACT

BACKGROUND: DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS: To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS: Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.


Subject(s)
DNA Replication , RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism , Humans , S Phase/genetics , DNA Damage , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Genome, Human , Replication Origin
10.
PLoS One ; 19(5): e0303976, 2024.
Article in English | MEDLINE | ID: mdl-38820537

ABSTRACT

The blaNDM-1 gene and its variants encode metallo-beta-lactamases that confer resistance to almost all beta-lactam antibiotics. Genes encoding blaNDM-1 and its variants can be found in several Acinetobacter species, and they are usually linked to two different plasmid clades. The plasmids in one of these clades contain a gene encoding a Rep protein of the Rep_3 superfamily. The other clade consists of medium-sized plasmids in which the gene (s) involved in plasmid replication initiation (rep)have not yet been identified. In the present study, we identified the minimal replication region of a blaNDM-1-carrying plasmid of Acinetobacter haemolyticus AN54 (pAhaeAN54e), a member of this second clade. This region of 834 paired bases encodes three small peptides, all of which have roles in plasmid maintenance. The plasmids containing this minimal replication region are closely related; almost all contain blaNDM genes, and they are found in multiple Acinetobacter species, including A. baumannii. None of these plasmids contain an annotated Rep gene, suggesting that their replication relies on the minimal replication region that they share with the plasmid pAhaeAN54e. These observations suggest that this plasmid lineage plays a crucial role in the dissemination of the blaNDM-1 gene and its variants.


Subject(s)
Acinetobacter , Plasmids , Replication Origin , beta-Lactamases , beta-Lactamases/genetics , Plasmids/genetics , Acinetobacter/genetics , Acinetobacter/drug effects , Replication Origin/genetics , DNA Replication/genetics , Bacterial Proteins/genetics
11.
Nat Struct Mol Biol ; 31(8): 1265-1276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38760633

ABSTRACT

To prevent detrimental chromosome re-replication, DNA loading of a double hexamer of the minichromosome maintenance (MCM) replicative helicase is temporally separated from DNA unwinding. Upon S-phase transition in yeast, DNA unwinding is achieved in two steps: limited opening of the double helix and topological separation of the two DNA strands. First, Cdc45, GINS and Polε engage MCM to assemble a double CMGE with two partially separated hexamers that nucleate DNA melting. In the second step, triggered by Mcm10, two CMGEs separate completely, eject the lagging-strand template and cross paths. To understand Mcm10 during helicase activation, we used biochemical reconstitution with cryogenic electron microscopy. We found that Mcm10 splits the double CMGE by engaging the N-terminal homo-dimerization face of MCM. To eject the lagging strand, DNA unwinding is started from the N-terminal side of MCM while the hexamer channel becomes too narrow to harbor duplex DNA.


Subject(s)
Cryoelectron Microscopy , DNA Replication , Minichromosome Maintenance Proteins , Replication Origin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/chemistry , Models, Molecular , DNA, Fungal/metabolism , DNA, Fungal/chemistry , Protein Multimerization
12.
Nat Commun ; 15(1): 4618, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816445

ABSTRACT

Entropic forces have been argued to drive bacterial chromosome segregation during replication. In many bacterial species, however, specifically evolved mechanisms, such as loop-extruding SMC complexes and the ParABS origin segregation system, contribute to or are even required for chromosome segregation, suggesting that entropic forces alone may be insufficient. The interplay between and the relative contributions of these segregation mechanisms remain unclear. Here, we develop a biophysical model showing that purely entropic forces actually inhibit bacterial chromosome segregation until late replication stages. By contrast, our model reveals that loop-extruders loaded at the origins of replication, as observed in many bacterial species, alter the effective topology of the chromosome, thereby redirecting and enhancing entropic forces to enable accurate chromosome segregation during replication. We confirm our model predictions with polymer simulations: purely entropic forces do not allow for concurrent replication and segregation, whereas entropic forces steered by specifically loaded loop-extruders lead to robust, global chromosome segregation during replication. Finally, we show how loop-extruders can complement locally acting origin separation mechanisms, such as the ParABS system. Together, our results illustrate how changes in the geometry and topology of the polymer, induced by DNA-replication and loop-extrusion, impact the organization and segregation of bacterial chromosomes.


Subject(s)
Chromosome Segregation , Chromosomes, Bacterial , DNA Replication , Entropy , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Replication Origin , Escherichia coli/genetics
13.
Environ Microbiol ; 26(5): e16638, 2024 May.
Article in English | MEDLINE | ID: mdl-38733104

ABSTRACT

Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.


Subject(s)
Gene Transfer, Horizontal , Plasmids , Plasmids/genetics , Bacteria/genetics , Bacteria/classification , Bacterial Proteins/genetics , Conjugation, Genetic , Phylogeny , Planctomycetales/genetics , Evolution, Molecular , Replication Origin/genetics
14.
PLoS One ; 19(5): e0301172, 2024.
Article in English | MEDLINE | ID: mdl-38696408

ABSTRACT

Horizontal gene transfer (HGT) is a powerful evolutionary force that considerably shapes the structure of prokaryotic genomes and is associated with genomic islands (GIs). A GI is a DNA segment composed of transferred genes that can be found within a prokaryotic genome, obtained through HGT. Much research has focused on detecting GIs in genomes, but here we pursue a new course, which is identifying possible preferred locations of GIs in the prokaryotic genome. Here, we identify the locations of the GIs within prokaryotic genomes to examine patterns in those locations. Prokaryotic GIs were analyzed according to the genome structure that they are located in, whether it be a circular or a linear genome. The analytical investigations employed are: (1) studying the GI locations in relation to the origin of replication (oriC); (2) exploring the distances between GIs; and (3) determining the distribution of GIs across the genomes. For each of the investigations, the analysis was performed on all of the GIs in the data set. Moreover, to void bias caused by the distribution of the genomes represented, the GIs in one genome from each species and the GIs of the most frequent species are also analyzed. Overall, the results showed that there are preferred sites for the GIs in the genome. In the linear genomes, these sites are usually located in the oriC region and terminus region, while in the circular genomes, they are located solely in the terminus region. These results also showed that the distance distribution between the GIs is almost exponential, which proves that GIs have preferred sites within genomes. The oriC and termniuns are preferred sites for the GIs and a possible natural explanation for this could be connected to the content of the oriC region. Moreover, the content of the GIs in terms of its protein families was studied and the results demonstrated that the majority of frequent protein families are close to identical in each section.


Subject(s)
Gene Transfer, Horizontal , Genomic Islands , Genome, Bacterial , Genome, Archaeal , Replication Origin/genetics , Prokaryotic Cells/metabolism
15.
Commun Biol ; 7(1): 519, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698198

ABSTRACT

DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.


Subject(s)
Chromosomes, Bacterial , DNA Replication , Vibrio , Vibrio/genetics , Chromosomes, Bacterial/genetics , Genome, Bacterial , Replication Origin , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
16.
Nucleic Acids Res ; 52(10): 5720-5731, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38597680

ABSTRACT

The Origin Recognition Complex (ORC) seeds replication-fork formation by binding to DNA replication origins, which in budding yeast contain a 17bp DNA motif. High resolution structure of the ORC-DNA complex revealed two base-interacting elements: a disordered basic patch (Orc1-BP4) and an insertion helix (Orc4-IH). To define the ORC elements guiding its DNA binding in vivo, we mapped genomic locations of 38 designed ORC mutants, revealing that different ORC elements guide binding at different sites. At silencing-associated sites lacking the motif, ORC binding and activity were fully explained by a BAH domain. Within replication origins, we reveal two dominating motif variants showing differential binding modes and symmetry: a non-repetitive motif whose binding requires Orc1-BP4 and Orc4-IH, and a repetitive one where another basic patch, Orc1-BP3, can replace Orc4-IH. Disordered basic patches are therefore key for ORC-motif binding in vivo, and we discuss how these conserved, minor-groove interacting elements can guide specific ORC-DNA recognition.


Subject(s)
Origin Recognition Complex , Replication Origin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Binding Sites , DNA Replication , DNA, Fungal/metabolism , DNA, Fungal/chemistry , DNA, Fungal/genetics , Mutation , Nucleotide Motifs , Origin Recognition Complex/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/chemistry , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry
17.
Nat Commun ; 15(1): 3594, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678011

ABSTRACT

Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unravel the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA reveals co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity uncovers that head-to-head interactions between replication and transcription machinery result in 60% DSB contribution to the head-on compared to 40% for co-directional. Taken together we reveal TTR as a fragile class and show how the linear interaction between transcription and replication impacts genome stability.


Subject(s)
DNA Breaks, Double-Stranded , DNA Replication , Genomic Instability , Transcription, Genetic , Animals , Mice , Neural Stem Cells/metabolism , DNA/metabolism , DNA/genetics , Replication Origin , Telomere/metabolism , Telomere/genetics , Centromere/metabolism , Centromere/genetics
18.
Sci Rep ; 14(1): 7708, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565932

ABSTRACT

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Subject(s)
RecQ Helicases , Replication Origin , Animals , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA Replication , Xenopus laevis/metabolism , DNA/metabolism
19.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567819

ABSTRACT

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Subject(s)
Origin Recognition Complex , Saccharomyces cerevisiae Proteins , Humans , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Replication Origin/genetics , Binding Sites , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromosomes, Human/metabolism , DNA/metabolism , Cell Cycle Proteins/metabolism
20.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548820

ABSTRACT

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Subject(s)
Bacillus subtilis , Chromosome Segregation , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chromosome Segregation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Origin Recognition Complex/metabolism , DNA Replication/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Replication Origin
SELECTION OF CITATIONS
SEARCH DETAIL