Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.106
Filter
1.
J Med Virol ; 96(9): e29833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233489

ABSTRACT

Rhinoviruses (RVs) are a leading cause of acute respiratory infections (ARI) in children. The relationship between RV viral loads (VL), RV/viral-co-detections and disease severity, is incompletely understood. We studied children and adolescents ≤21 years with RV-ARI that were identified as inpatients or outpatients using a PCR panel from 2011-2013. RV VL were stratified according to cycle threshold (CT) values in high (≤25), intermediate (26-32) and low (>32). Adjusted analyses were performed to assess the role RV VL and RV/viral codetections on hospital admission, oxygen requirement, PICU care, and length of stay. Of 1,899 children with RV-ARI, 78% had chronic comorbidities and 24% RV/viral co-detections. Single RV vs RV/viral co-detections was associated with higher VL (24.74 vs 26.62 CT; p = 0.001) and older age (14.9 vs 9.5 months; p = 0.0001). Frequency of RV/viral co-detections were inversely proportional to RV loads: 32% with low; 28% with intermediate, and 19% with high VL, p = 0.0001. Underlying conditions were independently associated with all clinical outcomes, high VL with PICU care, and single RV-ARI with higher odds of hospitalization. In summary, single RV vs RV/viral co-detections were associated with higher VL and older age. Underlying diseases, rather than RV loads or RV/viral co-detections, consistently predicted worse clinical outcomes.


Subject(s)
Coinfection , Comorbidity , Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Severity of Illness Index , Viral Load , Humans , Rhinovirus/genetics , Rhinovirus/isolation & purification , Male , Female , Child , Child, Preschool , Adolescent , Infant , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Coinfection/virology , Coinfection/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Hospitalization/statistics & numerical data , Young Adult
2.
J Med Virol ; 96(9): e29876, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233491

ABSTRACT

Viral lower respiratory tract infections (LRTIs), including rhinovirus and respiratory syncytial virus during early childhood, have been linked to subsequent asthma. However, the impact of other respiratory viruses remains unclear. We analyzed nationwide Korean data from January 1, 2008, to December 31, 2018, utilizing the national health insurance database. Our study focused on 19 169 meticulously selected children exposed to severe respiratory infections requiring hospitalization with documented viral pathogens, matched with 191 690 unexposed children at a ratio of 1:10 using incidence density sampling. Our findings demonstrate that asthma exacerbation rates were higher among the exposed cohort than the unexposed cohort over a mean follow-up of 7.8 years. We observed elevated risks of asthma exacerbation and newly developed asthma compared to the unexposed cohort. Hospitalization due to rhinovirus, respiratory syncytial virus, influenza, metapneumovirus, and adenovirus was related to increased asthma exacerbations. Notably, we found a stronger association in cases of multiple LRTI hospitalizations. In conclusion, our study shows that early childhood respiratory viral infections are related to subsequent asthma exacerbations and new asthma diagnoses.


Subject(s)
Asthma , Hospitalization , Respiratory Tract Infections , Humans , Asthma/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Hospitalization/statistics & numerical data , Male , Child, Preschool , Female , Infant , Republic of Korea/epidemiology , Child , Virus Diseases/epidemiology , Incidence , Risk Factors , Respiratory Syncytial Virus Infections/epidemiology , Rhinovirus/isolation & purification
3.
J Med Virol ; 96(8): e29804, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092809

ABSTRACT

Although rhinoviruses play a major role in exacerbations of childhood asthma, the presence of rhinovirus (RV) RNA in plasma, referred to as viremia, has been investigated in a few studies. The aim of the study was to investigate the presence of rhinovirus viremia at the time of asthma exacerbation and to describe the molecular characteristics of rhinoviruses associated with viremia. We conducted an observational, prospective, multicenter study in eight pediatric hospitals (VIRASTHMA2). Preschool-aged recurrent wheezers (1-5 years) hospitalized for a severe exacerbation were included. Reverse-transcription polymerase chain reaction (RT-PCR) and molecular typing for RV/enteroviruses (EV) were performed on nasal swabs and plasma. Plasma specimens were available for 105 children with positive RT-PCR for RV/EV in respiratory specimens. Thirty-six (34.3%) had positive viremia. In plasma, 28 (82.4%) of the typable specimens were RV-C, five (14.7%) were EV-D68, and one was RV-A (2.9%). In all cases, the RV/EV type was identical in the plasma and respiratory specimens. In conclusion, RV/EV viremia is frequent in severe exacerbations of preschool recurrent wheezers, particularly in RV-C infections.


Subject(s)
Asthma , Picornaviridae Infections , Rhinovirus , Viremia , Humans , Viremia/virology , Child, Preschool , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Asthma/virology , Male , Female , Prospective Studies , Picornaviridae Infections/virology , Infant , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Plasma/virology
4.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205178

ABSTRACT

Equine rhinitis A (ERAV) and B (ERBV) viruses are respiratory pathogens with worldwide distribution. The current study aimed to determine the frequency of infection of ERAV and ERBV among horses and foals at Polish national studs, and to determine genetic variability within the viruses obtained. Virus-specific quantitative RT-PCR assays targeting a 5' untranslated region were used to screen nasal swabs collected from 621 horses at 16 national horse studs from throughout Poland, including 553 healthy horses and 68 horses with respiratory disease. A partial DNA polymerase gene was amplified and sequenced from the qRT-PCR-positive samples. The obtained sequences were analysed using phylogeny and genetic network analysis. None of the nasal swabs were positive for ERAV, whereas ERBV was found in 11/621 (1.78%) samples collected from 10 healthy horses and one foal affected by respiratory disease. Partial DNA polymerase gene sequence variability was correlated with individual horses and studs from which samples were collected when only Polish sequences were analysed, but there was no correlation between country of origin and ERBV sequence when Polish and international sequences were included in the network. The report presents the first detection of ERBV in Poland.


Subject(s)
Horse Diseases , Phylogeny , Picornaviridae Infections , Horses/virology , Animals , Poland/epidemiology , Horse Diseases/virology , Horse Diseases/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology , Prevalence , Genetic Variation , Erbovirus/genetics , Erbovirus/isolation & purification , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Sequence Analysis, DNA
5.
J Med Virol ; 96(8): e29890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39188069

ABSTRACT

Prolonged positive polymerase chain reaction (PCR) results, irrespective of the transmission risk, can lead to prolonged restrictions on daily activities and infection precaution interventions. Studies evaluating the duration of PCR positivity for multiple pathogens in a single patient cohort are scarce. This study aimed to evaluate and compare the durations of PCR positivity for multiple respiratory viruses among children and adolescents. This retrospective study was conducted between April 2018 and March 2024 using a multiplex PCR respiratory panel for symptomatic children and adolescents who had at least two tests within 90 days of study period, with the first PCR test positive. The rate and likelihood of persistent PCR positivity were evaluated for multiple respiratory viruses. For 1325 positive results, repeat tests were conducted within 90 days. The persistent PCR positivity rate at repeat testing decreased over time (60.6%, Days 1-15 and 21.7%, Days 76-90, after the first test). In multivariate logistic regression analysis, an increased likelihood of persistent PCR positivity was observed for rhinovirus/enterovirus and adenovirus, whereas decreased likelihood of persistent positivity was seen in influenza and seasonal coronaviruses, compared with parainfluenza viruses. Persistent PCR positivity is common for multiple respiratory viruses in symptomatic children.


Subject(s)
Multiplex Polymerase Chain Reaction , Respiratory Tract Infections , Humans , Multiplex Polymerase Chain Reaction/methods , Child , Retrospective Studies , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Child, Preschool , Female , Male , Adolescent , Infant , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Virus Diseases/diagnosis , Virus Diseases/virology , Time Factors , Rhinovirus/genetics , Rhinovirus/isolation & purification , Enterovirus/genetics , Enterovirus/isolation & purification , Enterovirus/classification
6.
J Med Virol ; 96(7): e29797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988215

ABSTRACT

Temperature and humidity are studied in the context of seasonal infections in temperate and tropical zones, but the relationship between viral trends and climate variables in temperate subtropical zones remains underexplored. Our retrospective study analyzes respiratory pathogen incidence and its correlation with climate data in a subtropical zone. Retrospective observational study at Moinhos de Vento Hospital, South Brazil, aiming to assess seasonal trends in respiratory pathogens, correlating them with climate data. The study included patients of all ages from various healthcare settings, with data collected between April 2022 and July 2023. Biological samples were analyzed for 24 pathogens using polymerase chain reaction and hybridization techniques; demographic variables were also collected. The data was analyzed descriptively and graphically. Spearman tests and Poisson regression were used as correlation tests. Tests were clustered according to all pathogens, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza viruses, rhinovirus, and respiratory syncytial virus (RSV). Between April 2022 and July 2023, 3329 tests showed a 71.6% positivity rate. Rhinovirus and RSV predominated, exhibiting seasonal patterns. Temperature was inversely correlated with the viruses, notably rhinovirus, but SARS-CoV-2 was positively correlated. Air humidity was positively correlated with all pathogens, RSV, rhinovirus, and atmospheric pressure with all pathogens and rhinovirus. Our results showed statistically significant correlations, with modest effect sizes. Our study did not evaluate causation effects. Despite the correlation between climate and respiratory pathogens, our work suggests additional factors influencing transmission dynamics. Our findings underscore the complex interplay between climate and respiratory infections in subtropical climates.


Subject(s)
COVID-19 , Humidity , Seasons , Temperature , Humans , Retrospective Studies , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Brazil/epidemiology , Female , Male , Adult , Middle Aged , Child , Adolescent , Child, Preschool , Aged , Young Adult , Infant , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Climate , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Tropical Climate , Infant, Newborn , Rhinovirus/genetics , Rhinovirus/isolation & purification , Incidence , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Aged, 80 and over
7.
Environ Microbiol Rep ; 16(4): e13303, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982659

ABSTRACT

The development of effective methods for the surveillance of seasonal respiratory viruses is required for the timely management of outbreaks. We aimed to survey Influenza-A, Influenza-B, RSV-A, Rhinovirus and SARS-CoV-2 surveillance in a tertiary hospital and a campus over 5 months. The effectiveness of air screening as an early warning system for respiratory viruses was evaluated in correlation with respiratory tract panel test results. The overall viral positivity was higher on the campus than in the hospital (55.0% vs. 38.0%). Influenza A was the most prevalent pathogen in both locations. There were two influenza peaks (42nd and 49th weeks) in the hospital air, and a delayed peak was detected on campus in the 1st-week of January. Panel tests indicated a high rate of Influenza A in late December. RSV-A-positivity was higher on the campus than the hospital (21.6% vs. 7.4%). Moreover, we detected two RSV-A peaks in the campus air (48th and 51st weeks) but only one peak in the hospital and panel tests (week 49). Although rhinovirus was the most common pathogen in panel tests, rhinovirus positivity was low in air samples. The air screening for Influenza-B and SARS-Cov-2 revealed comparable positivity rates with panel tests. Air screening can be integrated into surveillance programs to support infection control programs for potential epidemics of respiratory virus infections except for rhinoviruses.


Subject(s)
COVID-19 , Rhinovirus , SARS-CoV-2 , Humans , Rhinovirus/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Aerosols/analysis , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/diagnosis , Air Microbiology , Influenza, Human/epidemiology , Influenza, Human/virology , Air Pollution, Indoor/analysis , Influenza A virus/isolation & purification , Seasons , Epidemics , Environmental Monitoring/methods , Influenza B virus/isolation & purification , Viruses/isolation & purification , Viruses/classification , Viruses/genetics
8.
J Infect ; 89(2): 106218, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950866

ABSTRACT

OBJECTIVES: Children are generally considered main drivers of transmission for respiratory viruses, but the emergence of SARS-CoV-2 challenged this paradigm. Human rhinovirus (RV) continued to co-circulate throughout the pandemic, allowing for direct comparison of age-specific infectivity and susceptibility within households between these viruses during a time of low SARS-CoV-2 population immunity. METHODS: Households with children were prospectively monitored for ≥23 weeks between August 2020 and July 2021. Upon onset of respiratory symptoms in a household, an outbreak study was initiated, including questionnaires and repeated nasal self-sampling in all household members. Swabs were tested by PCR. Age-stratified within-household secondary attack rates (SARs) were compared between SARS-CoV-2 and RV. RESULTS: A total of 307 households participated, including 582 children and 627 adults. Overall, SAR was lower for SARS-CoV-2 than for RV (aOR 0.55) and age distributions differed between both viruses (p < 0.001). Following household exposure, children were significantly less likely to become infected with SARS-CoV-2 compared to RV (aOR 0.16), whereas this was opposite in adults (aOR 1.71). CONCLUSION: In households, age-specific susceptibility to SARS-CoV-2 and RV differs and drives differences in household transmission between these pathogens. This highlights the importance of characterizing age-specific transmission risks, particularly for emerging infections, to guide appropriate infection control interventions.


Subject(s)
COVID-19 , Family Characteristics , Rhinovirus , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , Rhinovirus/isolation & purification , Adult , Child , Female , Male , SARS-CoV-2/isolation & purification , Child, Preschool , Adolescent , Middle Aged , Young Adult , Infant , Prospective Studies , Picornaviridae Infections/transmission , Picornaviridae Infections/epidemiology , Age Factors , Aged , Pandemics
9.
J Med Virol ; 96(6): e29755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922896

ABSTRACT

Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.


Subject(s)
COVID-19 , Genetic Variation , Phylogeny , Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Humans , Rhinovirus/genetics , Rhinovirus/classification , Rhinovirus/isolation & purification , China/epidemiology , Infant , Child, Preschool , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Child , Female , Male , COVID-19/epidemiology , COVID-19/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Infant, Newborn , Seasons , Adolescent , Prevalence , Child, Hospitalized/statistics & numerical data , SARS-CoV-2/genetics , Hospitalization/statistics & numerical data
10.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932250

ABSTRACT

This study aimed to determine the incidence and etiological, seasonal, and genetic characteristics of respiratory viral coinfections involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Between October 2020 and January 2024, nasopharyngeal samples were collected from 2277 SARS-CoV-2-positive patients. Two multiplex approaches were used to detect and sequence SARS-CoV-2, influenza A/B viruses, and other seasonal respiratory viruses: multiplex real-time polymerase chain reaction (PCR) and multiplex next-generation sequencing. Coinfections of SARS-CoV-2 with other respiratory viruses were detected in 164 (7.2%) patients. The most common co-infecting virus was respiratory syncytial virus (RSV) (38 cases, 1.7%), followed by bocavirus (BoV) (1.2%) and rhinovirus (RV) (1.1%). Patients ≤ 16 years of age had the highest rate (15%) of mixed infections. Whole-genome sequencing produced 19 complete genomes of seasonal respiratory viral co-pathogens, which were subjected to phylogenetic and amino acid analyses. The detected influenza viruses were classified into the genetic groups 6B.1A.5a.2a and 6B.1A.5a.2a.1 for A(H1N1)pdm09, 3C.2a1b.2a.2a.1 and 3C.2a.2b for A(H3N2), and V1A.3a.2 for the B/Victoria lineage. The RSV-B sequences belonged to the genetic group GB5.0.5a, with HAdV-C belonging to type 1, BoV to genotype VP1, and PIV3 to lineage 1a(i). Multiple amino acid substitutions were identified, including at the antibody-binding sites. This study provides insights into respiratory viral coinfections involving SARS-CoV-2 and reinforces the importance of genetic characterization of co-pathogens in the development of therapeutic and preventive strategies.


Subject(s)
COVID-19 , Coinfection , Phylogeny , SARS-CoV-2 , Humans , Coinfection/virology , Coinfection/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , Middle Aged , Adult , Female , Male , Adolescent , Child, Preschool , Child , Aged , Young Adult , Infant , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , Rhinovirus/classification , Rhinovirus/isolation & purification , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/classification , Nasopharynx/virology , Whole Genome Sequencing , China/epidemiology , Seasons , Aged, 80 and over , Genome, Viral , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification
11.
Viruses ; 16(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38793579

ABSTRACT

Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country.


Subject(s)
COVID-19 , Genetic Variation , Phylogeny , Respiratory Tract Infections , Humans , Gabon/epidemiology , COVID-19/epidemiology , COVID-19/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Male , Adult , Female , Child , Middle Aged , Adolescent , Child, Preschool , Young Adult , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Metapneumovirus/classification , Genome, Viral , Nasopharynx/virology , Infant , Aged , Pandemics , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification
12.
Microbiol Spectr ; 12(7): e0385323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38780281

ABSTRACT

Allergic rhinitis (AR) is a global health challenge that particularly affects the quality of life of children. Human rhinovirus (HRV) infection usually causes common cold in the upper respiratory tract (URT) and can also affect airway allergy development, such as asthma exacerbation, but its relationship with AR is poorly understood. The study aimed to gain insight into the characteristics of HRV that is prevalent in AR children and its role in AR severity. A total of 362 children with symptomatic AR were enrolled from southwestern China during 2022-2023, and nasal lavage samples were collected for HRV molecular characterization and cytokine measurement. HRV was detected in 40% of the AR children, with peak detection in autumn. The positive rate was not correlated with whether the subjects were under allergen-specific immunotherapy (AIT). Among the detected HRVs, 42% were species A, 36% were species B, and 22% were species C, involving 21 A genotypes, 6 B genotypes, and 7 C genotypes. HRV positivity was significantly associated with symptom severity (visual analog scale [VAS] score) and elevated levels of local nasal IgE, interleukin-25 (IL-25), IL-4, and CXCL13 in AR children who did not receive antiallergic treatment. All three species of HRV strains (A1B, A21, B27, B70, and C17) had been isolated and were able to infect respiratory epithelial tissue in vitro. Complete genome sequencing showed that the antigenic epitopes of the isolated HRVs had certain variations. Our work reveals the etiological characteristics of URT-HRV in AR children and suggests a role of HRV infection in the pathogenesis of childhood AR. IMPORTANCE: Our study revealed high human rhinovirus (HRV) detection rate in children with allergic rhinitis (AR), and HRV infection (A, B, or C species) is positively associated with the symptom severity in AR children. Elevated nasal IgE, interleukin-25 (IL-25), IL-4, and CXCL13 levels suggest a potential pathogenic mechanism by which HRV infection induces nasal type 2 immune/inflammation responses and local IgE production in AR patients. In addition, etiological analysis found that the main prevalent HRV species in AR children are A and B (~80%), which is different from acute respiratory infection and asthma exacerbation, where species A and C are dominant. The data reveal the distinct species prevalence characteristics of HRV infection in AR. Finally, we isolated all three species of HRV strains from nasal cavity of AR children with varying degrees of antigenic epitope mutations and in vitro infectivity, highlighting the importance of strengthening monitoring and intervention for respiratory HRV infection in AR children.


Subject(s)
Picornaviridae Infections , Rhinitis, Allergic , Rhinovirus , Humans , Rhinovirus/genetics , Rhinovirus/immunology , Rhinovirus/isolation & purification , Rhinovirus/classification , Child , Male , Female , Picornaviridae Infections/virology , Picornaviridae Infections/immunology , Picornaviridae Infections/epidemiology , Child, Preschool , China/epidemiology , Rhinitis, Allergic/virology , Rhinitis, Allergic/immunology , Immunoglobulin E/immunology , Immunoglobulin E/blood , Severity of Illness Index , Cytokines/metabolism , Cytokines/immunology , Genotype , Respiratory Tract Infections/virology , Respiratory Tract Infections/immunology , Adolescent , Phylogeny , Common Cold/virology , Common Cold/immunology , Common Cold/epidemiology
13.
Sci Rep ; 14(1): 10431, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714841

ABSTRACT

Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.


Subject(s)
Common Cold , Pan troglodytes , Animals , Humans , Child , Female , Male , Child, Preschool , Common Cold/epidemiology , Common Cold/virology , Adult , Uganda/epidemiology , Prospective Studies , Zoonoses/epidemiology , Zoonoses/virology , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Ape Diseases/epidemiology , Ape Diseases/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/veterinary , Rhinovirus/isolation & purification , Rhinovirus/genetics , SARS-CoV-2/isolation & purification , Incidence
14.
Front Cell Infect Microbiol ; 14: 1380855, 2024.
Article in English | MEDLINE | ID: mdl-38803572

ABSTRACT

Introduction: Acute respiratory infections (ARI) are the most common infections in the general population and are mainly caused by respiratory viruses. Detecting several viruses in a respiratory sample is common. To better understand these viral codetections and potential interferences, we tested for the presence of viruses and developed quantitative PCR (Polymerase Chain Reaction) for the viruses most prevalent in coinfections: human rhinovirus (HRV) and respiratory syncytial virus (RSV), and quantified their viral loads according to coinfections and health status, age, cellular abundance and other variables. Materials and methods: Samples from two different cohorts were analyzed: one included hospitalized infants under 12 months of age with acute bronchiolitis (n=719) and the other primary care patients of all ages with symptoms of ARI (n=685). We performed Multiplex PCR on nasopharyngeal swabs, and quantitative PCR on samples positive for HRV or/and RSV to determine viral loads (VL). Cellular abundance (CA) was also estimated by qPCR targeting the GAPDH gene. Genotyping was performed either directly from first-line molecular panel or by PCR and sequencing for HRV. Results: The risks of viral codetection were 4.1 (IC95[1.8; 10.0]) and 93.9 1 (IC95[48.7; 190.7]) higher in infants hospitalized for bronchiolitis than in infants in primary care for RSV and HRV respectively (p<0.001). CA was higher in samples positive for multiple viruses than in mono-infected or negative samples (p<0.001), and higher in samples positive for RSV (p<0.001) and HRV (p<0.001) than in negative samples. We found a positive correlation between CA and VL for both RSV and HRV. HRV VL was higher in children than in the elderly (p<0.05), but not RSV VL. HRV VL was higher when detected alone than in samples coinfected with RSV-A and with RSV-B. There was a significant increase of RSV-A VL when codetecting with HRV (p=0.001) and when co-detecting with RSV-B+HRV versus RSV-A+ RSV-B (p=0.02). Conclusions: Many parameters influence the natural history of respiratory viral infections, and quantifying respiratory viral loads can help disentangle their contributions to viral outcome.


Subject(s)
Coinfection , Respiratory Tract Infections , Rhinovirus , Viral Load , Humans , Coinfection/virology , Infant , Respiratory Tract Infections/virology , Female , Child, Preschool , Male , Rhinovirus/isolation & purification , Rhinovirus/genetics , Child , Health Status , Adult , Respiratory Syncytial Virus Infections/virology , Adolescent , Middle Aged , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Nasopharynx/virology , Infant, Newborn , Young Adult , Aged , Real-Time Polymerase Chain Reaction , Acute Disease , Genotype , Multiplex Polymerase Chain Reaction , Aged, 80 and over
15.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38717926

ABSTRACT

Background. Respiratory tract infections are among the most important causes of mortality and morbidity in children worldwide. The COVID-19 pandemic has affected the distribution of seasonal respiratory viruses as in all areas of life. In this study, we have aimed to evaluate the changes in the rates of seasonal respiratory viruses with the onset of the pandemic.Methods. This study included patients who were admitted to the Pediatrics Clinic of Eskisehir Osmangazi University Faculty of Medicine Hospital between December 2018 and February 2022 with respiratory tract infections and in whom pathogens were detected from nasopharyngeal swab samples analysed by multiplex PCR method.Results. A total of 833 respiratory tract pathogens were detected in 684 cases consisting of male (55.3 %), and female (44.7 %), patients with a total mean age of 42 months. Single pathogen was revealed in 550, and multiple pathogens in 134 cases. Intensive care was needed in 14 % of the cases. Most frequently influenza A/B, rhinovirus and respiratory syncytial virus (RSV) were detected during the pre-pandemic period, while rhinovirus, RSV, and adenovirus were observed during the lockdown period. In the post-lockdown period, the incidence rates of rhinovirus, RSV, human bocavirus (HboV) (12 %), influenza virus infections increased, and patients with RSV and bocavirus infections required intensive care hospitalization.Conclusion. It is thought that the COVID-9 pandemic lockdown measures may have an impact on the distribution of seasonal respiratory viruses, especially RSV and influenza. Current, prospective and large case series regarding the mechanism of action and dynamics are needed.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Seasons , Humans , Female , Male , COVID-19/epidemiology , COVID-19/virology , Child, Preschool , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Infant , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Child , Rhinovirus/isolation & purification , Rhinovirus/genetics , Nasopharynx/virology , Adolescent , Influenza, Human/epidemiology , Influenza, Human/virology , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology
16.
Viruses ; 16(4)2024 03 30.
Article in English | MEDLINE | ID: mdl-38675883

ABSTRACT

This study aims to analyze the epidemiological and pathogenic characteristics of an outbreak primarily caused by respiratory syncytial virus (RSV), human rhinovirus (HRV), and human metapneumovirus (HMPV) in a kindergarten and primary school. The outbreak was investigated by field epidemiological investigation, and the common respiratory pathogens were screened by RT-PCR detection technology. The attack rate of this outbreak was 63.95% (110/172). Main symptoms included cough (85.45%), sore throat (60.91%), and sneezing (60.00%). Multifactorial logistic regression analysis revealed that continuous handwashing and mouth and nose covering when sneezing were protective factors. All 15 collected throat swab specimens tested positive for viruses, with HMPV as the predominant pathogen (80.00%), followed by HRV (53.33%), and two cases of positive respiratory syncytial virus (13.33%). Among them, six samples showed coinfections of HMPV and HRV, and one had coinfections of HMPV and RSV, resulting in a coinfection rate of 46.67%. Genetic sequencing indicated that the HMPV genotype in this outbreak was A2c, and the HRV genotype was type A, resulting in a coinfection outbreak of HMPV, HRV, and RSV in schools and kindergartens, suggesting that multi-pathogen surveillance of respiratory tract infections should be strengthened.


Subject(s)
Coinfection , Disease Outbreaks , Metapneumovirus , Molecular Epidemiology , Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Humans , China/epidemiology , Coinfection/epidemiology , Coinfection/virology , Male , Child, Preschool , Female , Child , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Genotype , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Phylogeny , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Schools
17.
Indian J Gastroenterol ; 43(2): 475-484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460057

ABSTRACT

BACKGROUND: Sepsis remains a global health burden associated with significant morbidity and mortality. Bacteria are known to be the predominant pathogens in sepsis; however, viral etiologies in sepsis are still under diagnosed. Respiratory viral pathogens have been previously linked to sepsis, but the knowledge of incidence, disease burden and mortality of viral-induced sepsis remains limited. This study aimed at understanding the role of respiratory viral infections in the causation of sepsis in liver disease patients. METHODS: In this retrospective study, the clinical records of liver disease patients with influenza-like illness, whose requests for respiratory viral testing were received from January 2019 to December 2022, were reviewed. Respiratory viruses were identified using FilmArray 2.0 respiratory panel (BioFire Diagnostics, Utah, USA). RESULTS: Of 1391 patients tested, a respiratory viral etiology was detected in 23%. The occurrence of sepsis was seen in 35%. Among these, isolated viral etiology with no other bacterial/fungal coinfection was found in 55% of patients. Rhinovirus/Enterovirus was found as the most common underlying viral etiology (23.4%). The sepsis prevalence was higher among patients with associated comorbidities (45%) and decompensated cirrhosis (84%). On multi-variable analysis, no factor was found independently associated with sepsis-related mortality. CONCLUSION: This study underlines the importance of isolated viral etiology in causation of sepsis among liver disease patients. Patients with comorbidities, older age and decompensated cirrhosis are at an increased risk of developing sepsis and are associated with poorer outcomes. Accurate and timely identification of the viral etiology in sepsis would prevent the misuse of antibiotics and improve overall patient care.


Subject(s)
Liver Diseases , Respiratory Tract Infections , Sepsis , Virus Diseases , Humans , Liver Diseases/complications , Respiratory Tract Infections/virology , Sepsis/mortality , Sepsis/virology , Retrospective Studies , Male , Female , Adult , Middle Aged , Comorbidity , Virus Diseases/complications , Rhinovirus/isolation & purification , Rhinovirus/physiology , Enterovirus/isolation & purification , Enterovirus/physiology
18.
Intern Med ; 63(12): 1683-1687, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38494719

ABSTRACT

Objective To survey the epidemiology of respiratory pathogens during the coronavirus disease 2019 (COVID-19) pandemic using multiplex polymerase chain reaction (PCR). Methods Specimens were assayed using multiplex nested PCR. Materials Specimens were obtained from outpatients who presented with symptoms of upper respiratory tract infection and asymptomatic outpatients who had contact with patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection at Tohoku Medical and Pharmaceutical University Hospital in Sendai, Japan, from November 1, 2020, to May 31, 2023. The analysis included multiple specimens collected from the same patients at different time-points. Data were collected from the electronic records after testing. Results This study included 8,335 patients (4,311 men) with a median age of 59 years old, and 11,741 total specimens were collected. At least 1 positive SARS-CoV-2 result was obtained for 1,710 (14.6%) specimens. Furthermore, 15 pathogens were identified in the positive specimens, and rhinovirus/enterovirus was detected more frequently than other viruses. We identified a larger number of SARS-CoV-2-positive specimens in patients ≥10 years old. In contrast, in patients 0-9 years old, we identified a larger number of specimens positive for rhinovirus/enterovirus than for other viruses. Conclusion In this study, we examined the epidemiology of circulating respiratory pathogens during the COVID-19 pandemic era.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/diagnosis , Middle Aged , Male , Female , Aged , Adult , Japan/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Adolescent , Child, Preschool , Young Adult , Child , Infant , Multiplex Polymerase Chain Reaction , Aged, 80 and over , Infant, Newborn , Pandemics , Rhinovirus/isolation & purification , Rhinovirus/genetics
19.
Pediatr Infect Dis J ; 43(7): 708-710, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38451987

ABSTRACT

Human rhinovirus (HRV) has been sporadically detected in patients with acute flaccid myelitis (AFM). We report a case of AFM in a 2-year-old boy with severe neurologic sequelae, whose nasopharyngeal and stool samples tested positive for HRV-A19. Clinical information related to AFM with HRV is limited. Further study of the association of AFM with HRV is warranted.


Subject(s)
Central Nervous System Viral Diseases , Myelitis , Neuromuscular Diseases , Picornaviridae Infections , Rhinovirus , Humans , Male , Myelitis/virology , Myelitis/diagnosis , Child, Preschool , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Neuromuscular Diseases/virology , Neuromuscular Diseases/diagnosis , Rhinovirus/isolation & purification , Rhinovirus/genetics , Central Nervous System Viral Diseases/virology , Central Nervous System Viral Diseases/diagnosis , Feces/virology , Nasopharynx/virology
20.
Front Immunol ; 13: 792716, 2022.
Article in English | MEDLINE | ID: mdl-35173718

ABSTRACT

Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in infants with BPD. Hyperoxia induces cell injury and release of damage-associated molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+ DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV) infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We analyzed lung gene expression two days after RV infection. For in vitro studies, lung CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin blocked hyperoxia-induced Il12p40, TNF-α and IFN-γ mRNA and protein expression in response to RV infection. Similar effects were observed when gelsolin was co-administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization. Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively, our findings demonstrate a promising role for gelsolin, administered by inhalation into the airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.


Subject(s)
Bronchopulmonary Dysplasia/drug therapy , Gelsolin/administration & dosage , Hyperoxia/physiopathology , Lectins, C-Type/metabolism , Picornaviridae Infections/drug therapy , Receptors, Immunologic/metabolism , Administration, Inhalation , Animals , Animals, Newborn/metabolism , Antigens, CD/metabolism , Bronchopulmonary Dysplasia/virology , Female , Humans , Infant, Newborn , Integrin alpha Chains/metabolism , Interleukin-12/metabolism , Lectins, C-Type/genetics , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Oxygen Inhalation Therapy/adverse effects , Picornaviridae Infections/virology , Receptors, Immunologic/genetics , Respiratory Function Tests , Rhinovirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL