Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 836
Filter
1.
Antimicrob Agents Chemother ; 68(8): e0035424, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39037240

ABSTRACT

In adults requiring protease inhibitor (PI)-based antiretroviral therapy (ART), replacing rifampicin with rifabutin is a preferred option, but there is lack of evidence to guide rifabutin dosing in children, especially with PIs. We aimed to characterize the population pharmacokinetics of rifabutin and 25-O-desacetyl rifabutin (des-rifabutin) in children and optimize its dose. We included children from three age cohorts: (i) <1-year-old cohort and (ii) 1- to 3-year-old cohort, who were ART naïve and received 15- to 20-mg/kg/day rifabutin for 2 weeks followed by lopinavir/ritonavir (LPV/r)-based ART with 5.0- or 2.5 mg/kg/day rifabutin, respectively, while the (iii) >3-year-old cohort was ART-experienced and received 2.5-mg/kg/day rifabutin with LPV/r-based ART. Non-linear mixed-effects modeling was used to interpret the data. Monte Carlo simulations were performed to evaluate the study doses and optimize dosing using harmonized weight bands. Twenty-eight children were included, with a median age of 10 (range 0.67-15.0) years, a median weight of 11 (range 4.5-45) kg, and a median weight-for-age z score of -3.33 (range -5.15 to -1.32). A two-compartment disposition model, scaled allometrically by weight, was developed for rifabutin and des-rifabutin. LPV/r increased rifabutin bioavailability by 158% (95% confidence interval: 93.2%-246.0%) and reduced des-rifabutin clearance by 76.6% (74.4%-78.3%). Severely underweight children showed 26% (17.9%-33.7%) lower bioavailability. Compared to adult exposures, simulations resulted in higher median steady-state rifabutin and des-rifabutin exposures in 6-20 kg during tuberculosis-only treatment with 20 mg/kg/day. During LPV/r co-treatment, the 2.5-mg/kg/day dose achieved similar exposures to adults, while the 5-mg/kg/day dose resulted in higher exposures in children >7 kg. All study doses maintained a median Cmax of <900 µg/L. The suggested weight-band dosing matches adult exposures consistently across weights and simplifies dosing.


Subject(s)
HIV Infections , Lopinavir , Rifabutin , Ritonavir , Humans , Rifabutin/pharmacokinetics , Rifabutin/therapeutic use , Lopinavir/therapeutic use , Lopinavir/pharmacokinetics , Ritonavir/therapeutic use , Ritonavir/pharmacokinetics , HIV Infections/drug therapy , Child, Preschool , Male , Female , Infant , Tuberculosis/drug therapy , Child , Coinfection/drug therapy , HIV Protease Inhibitors/therapeutic use , HIV Protease Inhibitors/pharmacokinetics , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use
2.
Antimicrob Agents Chemother ; 68(8): e0053924, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38990016

ABSTRACT

GST-HG171 is a potent, broad-spectrum, orally bioavailable small-molecule 3C-like (3CL) protease inhibitor that was recently approved for treating mild to moderate coronavirus disease 2019 patients in China. Since cytochrome P450 (CYP) enzymes, primarily CYP3A, are the main metabolic enzymes of GST-HG171, hepatic impairment may affect its pharmacokinetic (PK) profile. Aiming to guide clinical dosing for patients with hepatic impairment, this study, using a non-randomized, open-label, single-dose design, assessed the impact of hepatic impairment on the PK, safety, and tolerability of GST-HG171. Patients with mild and moderate hepatic impairment along with healthy subjects were enrolled (n = 8 each), receiving a single oral dose of 150 mg GST-HG171, with concurrent administration of 100 mg ritonavir to sustain CYP3A inhibition before and after GST-HG171 administration (-12, 0, 12, and 24 hours). Compared to subjects with normal hepatic function, the geometric least-squares mean ratios (90% confidence intervals) for GST-HG171's maximum plasma concentration (Cmax), area under the concentration-time curve up to the last quantifiable time (AUC0-t), and area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC0-∞) in subjects with mild hepatic impairment were 1.14 (0.99, 1.31), 1.07 (0.88, 1.30), and 1.07 (0.88, 1.29), respectively. For moderate hepatic impairment, the ratios were 0.87 (0.70, 1.07), 0.82 (0.61, 1.10), and 0.82 (0.61, 1.10), respectively. Hepatic impairment did not significantly alter GST-HG171's peak time (Tmax) and elimination half-life (T1/2). GST-HG171 exhibited good safety and tolerability in the study. Taken together, mild to moderate hepatic impairment minimally impacted GST-HG171 exposure, suggesting no need to adjust GST-HG171 dosage for patients with mild to moderate hepatic impairment in the clinic.Clinical TrialsRegistered at ClinicalTrials.gov (NCT06106113).


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Liver , Protease Inhibitors , Adult , Aged , Female , Humans , Male , Middle Aged , Area Under Curve , China , COVID-19 Drug Treatment , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , East Asian People , Liver/drug effects , Liver Diseases , Protease Inhibitors/adverse effects , Protease Inhibitors/pharmacokinetics , Ritonavir/adverse effects , Ritonavir/pharmacokinetics
3.
Int J Antimicrob Agents ; 64(2): 107199, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795931

ABSTRACT

OBJECTIVES: To establish a population pharmacokinetics (PopPK) model of nirmatrelvir in Chinese COVID-19 patients and provide reference for refining the dosing strategy of nirmatrelvir in patients confirmed to be infected with SARS-CoV-2. METHODS: A total of 80 blood samples were obtained from 35 mild to moderate COVID-19 patients who were orally administered nirmatrelvir/ritonavir tablets. The PopPK model of nirmatrelvir was developed using a nonlinear mixed effects modelling approach. The stability and prediction of the final model were assessed through a combination of goodness-of-fit and bootstrap method. The exposure of nirmatrelvir across various clinical scenarios was simulated using Monte Carlo simulations. RESULTS: The pharmacokinetics of nirmatrelvir was well characterised by a one-compartment model with first-order absorption, and with creatinine clearance (Ccr) as the significant covariate. Typical population parameter estimates of apparent clearance and distribution volume for a patient with a Ccr of 95.5 mL·min-1were 3.45 L·h-1 and 48.71 L, respectively. The bootstrap and visual predictive check procedures demonstrated satisfactory predictive performance and robustness of the final model. CONCLUSION: The final model was capable of offering an early prediction of drug concentration ranges for different nirmatrelvir dosing regimens and optimise the dose regimen of nirmatrelvir in individuals with confirmed SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Drug Monitoring , Ritonavir , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , China , COVID-19 , Drug Combinations , East Asian People , Monte Carlo Method , Ritonavir/pharmacokinetics , Ritonavir/therapeutic use
4.
Sci Rep ; 14(1): 10709, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729980

ABSTRACT

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Subject(s)
Leukocytes, Mononuclear , Ritonavir , SARS-CoV-2 , Animals , Rats , Ritonavir/pharmacokinetics , SARS-CoV-2/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Humans , Male , Brain/metabolism , Brain/virology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/cerebrospinal fluid , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Rats, Sprague-Dawley , Central Nervous System/metabolism , Central Nervous System/virology
5.
Eur J Clin Pharmacol ; 80(8): 1219-1227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38691139

ABSTRACT

OBJECTIVES: To describe the pharmacokinetic (PK) characteristics of nirmatrelvir/ritonavir in renal transplant recipients and explore the potential factors that related to the PK variance of nirmatrelvir/ritonavir and its interaction with calcineurin inhibitor (CNI). METHODS: Renal transplant recipients treated with CNI and nirmatrelvir/ritonavir were prospectively enrolled. Steady-state plasma concentrations of nirmatrelvir/ritonavir were determined by high-performance liquid chromatography-tandem mass spectrometry, and the PK parameters were calculated using non-compartmental analysis. Spearman correlation analysis was used for exploring influencing factors. RESULTS: A total of eight recipients were enrolled; for nirmatrelvir and ritonavir, AUC/dose was 0.24179 ± 0.14495 and 0.06196 ± 0.03767 µg·h·mL-1·mg-1. Red blood cell (RBC), hematocrit (Ht), hemoglobins (Hb), and creatinine clearance (Ccr) were negatively correlated with AUC/dose of nirmatrelvir, while Ccr, CYP3A5 genotype, and CYP3A4 genotype were related to the AUC/dose of ritonavir. Ccr was negatively correlated with the C0/dose of tacrolimus (TAC) after termination of nirmatrelvir/ritonavir (rs = -0.943, p = 0.008). CONCLUSIONS: The PK characteristics of nirmatrelvir/ritonavir vary greatly among renal transplant recipients. Factors including Ccr and CYP3A5 genotype were related to the in vivo exposure of nirmatrelvir/ritonavir. During the whole process before and after nirmatrelvir/ritonavir therapy, it is recommended to adjust the CNI basing on renal function to avoid CNI toxicity exposure.


Subject(s)
Calcineurin Inhibitors , Drug Interactions , Kidney Transplantation , Ritonavir , Humans , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Male , Calcineurin Inhibitors/pharmacokinetics , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/administration & dosage , Female , Middle Aged , Adult , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Prospective Studies , Tacrolimus/pharmacokinetics , Tacrolimus/administration & dosage , Tacrolimus/pharmacology , Genotype , Area Under Curve , Transplant Recipients
6.
J Pharm Biomed Anal ; 245: 116162, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38678857

ABSTRACT

Ritonavir, an excellent inhibitor of CYP3A4, has recently been combined with nirmatrelvir to form Paxlovid for the treatment of severe acute respiratory syndrome coronavirus 2 infections. The root of Scutellaria baicalensis Georgi (S. baicalensis), a traditional Chinese medicinal (TCM) herb commonly used to treat heat/inflammation in the lung and digestive tracts, which are major organs targeted by viral infections, contains flavones that can influence the CYP3A metabolism pathway. To investigate the ability of ritonavir to cross the bloodbrain barrier (BBB) and its potential herb-drug interactions with an equivalent TCM clinical dose of S. baicalensis, multisite microdialysis coupled with an LCMS/MS system was developed using rat model. Pretreatment with S. baicalensis extract for 5 days, which contains less flavones than those used in previous studies, had a significant influence on ritonavir, resulting in a 2-fold increase in the total concentration of flavones in the blood and brain. Treatment also boosted the maximum blood concentration of flavones by 1.5-fold and the maximum brain concentration of flavones by 2-fold, all the while exerting no noticeable influence on the transfer ratio across the bloodbrain barrier. These experimental results demonstrated that the use of a typical traditional Chinese medicinal dose of S. baicalensis is sufficient to influence the metabolic pathway and synergistically increase the concentration of ritonavir in rats.


Subject(s)
Antiviral Agents , Blood-Brain Barrier , Herb-Drug Interactions , Microdialysis , Plant Extracts , Rats, Sprague-Dawley , Ritonavir , Scutellaria baicalensis , Animals , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Scutellaria baicalensis/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Rats , Microdialysis/methods , Male , Antiviral Agents/pharmacokinetics , Plant Extracts/pharmacokinetics , Plant Extracts/pharmacology , Tandem Mass Spectrometry/methods , Brain/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage
7.
Clin Pharmacol Ther ; 116(2): 363-371, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38429919

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis superinfection with cytokine storm is associated with increased mortality. This study aimed to establish a physiologically-based pharmacokinetic (PK) model to investigate the disease-drug-drug interactions between voriconazole and nirmatrelvir/ritonavir in patients with COVID-19 with elevated interleukin-6 (IL-6) levels carrying various CYP2C19 phenotypes. The model was constructed and validated using PK data on voriconazole, ritonavir, and IL-6, and was subsequently verified against clinical data from 78 patients with COVID-19. As a result, the model predicted voriconazole, ritonavir, and IL-6 PK parameters and drug-drug interaction-related fold changes in healthy subjects and patients with COVID-19 with acceptable prediction error, demonstrating its predictive capability. Simulations indicated ritonavir could increase voriconazole exposure to CYP2C19 intermediate and poor metabolizers rather than decrease it, in contrast to what is indicated in the drug package insert. However, the predicted ritonavir exposures were comparable across subjects. In patients with COVID-19, both ritonavir and IL-6 increased voriconazole trough concentrations, which may lead to CYP2C19 phenotype-dependent overexposure. In conclusion, COVID-19-induced IL-6 elevation and ritonavir increased voriconazole exposure, and the magnitude of interactions was influenced by CYP2C19 phenotype. Thus, caution is warranted when prescribing voriconazole concomitantly with Paxlovid in patients with COVID-19.


Subject(s)
Antifungal Agents , COVID-19 Drug Treatment , Cytochrome P-450 CYP2C19 , Drug Interactions , Interleukin-6 , Models, Biological , Phenotype , Ritonavir , Voriconazole , Humans , Voriconazole/pharmacokinetics , Cytochrome P-450 CYP2C19/genetics , Ritonavir/pharmacokinetics , Ritonavir/therapeutic use , Male , Female , Middle Aged , Adult , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Antifungal Agents/adverse effects , Interleukin-6/blood , Aged , COVID-19
8.
Cancer Chemother Pharmacol ; 94(1): 79-87, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38456955

ABSTRACT

PURPOSE: An oral docetaxel formulation boosted by the Cytochrome P450 (CYP) 3 A inhibitor ritonavir, ModraDoc006/r, is currently under clinical investigation. Based on clinical data, the incidence of grade 1-2 diarrhea is increased with this oral docetaxel formulation compared to the conventional intravenous administration. Loperamide, a frequently used diarrhea inhibitor, could be added to the regimen as symptomatic treatment. However, loperamide is also a substrate of the CYP3A enzyme, which could result in competition between ritonavir and loperamide for this protein. Therefore, we were interested in the impact of coadministered loperamide on the pharmacokinetics of ritonavir-boosted oral docetaxel. METHODS: We administered loperamide simultaneously or with an 8-hour delay to humanized CYP3A4 mice (with expression in liver and intestine) receiving oral ritonavir and docetaxel. Concentrations of docetaxel, ritonavir, loperamide and two of its active metabolites were measured. RESULTS: The plasma exposure (AUC and Cmax) of docetaxel was not altered during loperamide treatment, nor were the ritonavir plasma pharmacokinetics. However, the hepatic and intestinal dispositions of ritonavir were somewhat changed in the simultaneous, but not 8-hour loperamide treatment groups, possibly due to loperamide-induced delayed drug absorption. The pharmacokinetics of loperamide itself did not seem to be influenced by ritonavir. CONCLUSION: These results suggest that delayed loperamide administration can be added to ritonavir-boosted oral docetaxel treatment, without affecting the overall systemic exposure of docetaxel.


Subject(s)
Cytochrome P-450 CYP3A , Docetaxel , Drug Interactions , Loperamide , Ritonavir , Taxoids , Ritonavir/administration & dosage , Ritonavir/pharmacokinetics , Docetaxel/administration & dosage , Docetaxel/pharmacokinetics , Loperamide/administration & dosage , Loperamide/pharmacokinetics , Animals , Mice , Cytochrome P-450 CYP3A/metabolism , Administration, Oral , Taxoids/pharmacokinetics , Taxoids/administration & dosage , Humans , Tissue Distribution , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Area Under Curve , Antidiarrheals/administration & dosage , Antidiarrheals/pharmacokinetics , Mice, Transgenic
9.
Fundam Clin Pharmacol ; 38(4): 767-779, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38342488

ABSTRACT

BACKGROUND: The pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of nirmatrelvir (NMV) are unknown in Chinese patients with COVID-19. OBJECTIVES: To understand the PK, as well as PK-PD characteristics of NMV for optimizing the dose in Chinese patients with COVID-19. METHODS: We enrolled 141 participants who received NMV 300 mg/ritonavir (RTV) 100 mg b.i.d. for 5 days. The NMV concentrations were analyzed using 251 blood samples. PK/PD of NMV was investigated in these COVID-19 patients using a nonlinear mixed-effects model. RESULTS: The patients had a mean age of 82 years (range, 34-97). The absorption rate constant and apparent clearance of NMV in this Chinese cohort were 0.253 h-1 and 6.83 L/h, respectively, similar to Caucasian patients. No covariates affected NMV clearance. Predicted peak (Cmax) and trough concentration (Cmin) under 300 mg NMV/100 mg RTV b.i.d. were 4004 and 1498 ng/mL, respectively. Although higher AUC and Cmin were weakly associated with a slight increase in the number of cycle threshold (CT) of viral genes, no significant correlation was found, indicating a weak relationship between drug exposure and efficacy (CT). CONCLUSIONS: In all, our findings suggest no ethnic PK differences, a weak and clinically insignificant relationship between drug exposure and efficacy, suitable dosage for Chinese patients (including the elderly) based on PK parameters, and the need for further studies to determine optimal regimens for high-risk patients due to inter-individual variability.


Subject(s)
COVID-19 Drug Treatment , Ritonavir , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Asian People , China , COVID-19 , East Asian People , Ritonavir/administration & dosage , Ritonavir/pharmacokinetics , Ritonavir/therapeutic use
10.
J Pharm Sci ; 113(6): 1653-1663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382809

ABSTRACT

Drug-Combination Nanoparticles (DcNP) are a novel drug delivery system designed for synchronized delivery of multiple drugs in a single, long-acting, and targeted dose. Unlike depot formulations, slowly releasing drug at the injection site into the blood, DcNP allows multiple-drug-in-combination to collectively distribute from the injection site into the lymphatic system. Two distinct classes of long-acting injectables products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site. Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access as a part of the PBPK model validation. For clinical development, Class II long-acting drug-combination products, we leverage data from 3 nonhuman primate studies consisting of nine PK datasets: Study 1, varying fixed-dose ratios; Study 2, short multiple dosing with kinetic tails; Study 3, long multiple dosing (chronic). PBPK validation criteria were established to validate each scenario for all drugs. The models passed validation in 8 of 9 cases, specifically to predict Study 1 and 2, including PK tails, with ritonavir and tenofovir, fully passing Study 3 as well. PBPK model for lopinavir in Study 3 did not pass the validation due to an observable time-varying and delayed drug accumulation, which likely was due to ritonavir's CYP3A inhibitory effect building up during multiple dosing that triggered a mechanism-based drug-drug interaction (DDI). Subsequently, the final model enables us to account for this DDI scenario.


Subject(s)
Anti-HIV Agents , Drug Combinations , Lopinavir , Models, Biological , Nanoparticles , Ritonavir , Tenofovir , Ritonavir/pharmacokinetics , Ritonavir/administration & dosage , Lopinavir/pharmacokinetics , Lopinavir/administration & dosage , Tenofovir/pharmacokinetics , Tenofovir/administration & dosage , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Male , Drug Delivery Systems/methods , Humans
11.
Clin Pharmacokinet ; 63(4): 469-481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38393578

ABSTRACT

BACKGROUND: We investigated the effect of a 5-day low-dose ritonavir therapy, as it is used in the treatment of COVID-19 with nirmatrelvir/ritonavir, on the pharmacokinetics of three factor Xa inhibitors (FXaI). Concurrently, the time course of the activities of the cytochromes P450 (CYP) 3A4, 2C19, and 2D6 was assessed. METHODS: In an open-label, fixed sequence clinical trial, the effect and duration of a 5-day oral ritonavir (100 mg twice daily) treatment on the pharmacokinetics of three oral microdosed FXaI (rivaroxaban 25 µg, apixaban 25 µg, and edoxaban 50 µg) and microdosed probe drugs (midazolam 25 µg, yohimbine 50 µg, and omeprazole 100 µg) was evaluated in eight healthy volunteers. The plasma concentrations of all drugs were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods and pharmacokinetics were analysed using non-compartmental analyses. RESULTS: Ritonavir increased the exposure of apixaban, edoxaban, and rivaroxaban, but to a different extent the observed area under the plasma concentration-time curve (geometric mean ratio 1.29, 1.46, and 1.87, respectively). A strong CYP3A4 inhibition (geometric mean ratio > 10), a moderate CYP2C19 induction 2 days after ritonavir (0.64), and no alteration of CYP2D6 were observed. A CYP3A4 recovery half-life of 2.3 days was determined. CONCLUSION: This trial with three microdosed FXaI suggests that at most the rivaroxaban dose should be reduced during short-term ritonavir, and only in patients receiving high maintenance doses. Thorough time series analyses demonstrated differential effects on three different drug-metabolising enzymes over time with immediate profound inhibition of CYP3A4 and only slow recovery after discontinuation. CLINICAL TRIAL REGISTRATION: EudraCT number: 2021-006643-39.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP3A , Drug Interactions , Factor Xa Inhibitors , Healthy Volunteers , Pyridones , Ritonavir , Humans , Ritonavir/administration & dosage , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Male , Adult , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Pyridones/pharmacokinetics , Pyridones/administration & dosage , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19/genetics , Administration, Oral , Female , Rivaroxaban/pharmacokinetics , Rivaroxaban/administration & dosage , Young Adult , Pyridines/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacology , Pyrazoles/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Thiazoles/pharmacokinetics , Thiazoles/administration & dosage , Thiazoles/pharmacology , Midazolam/pharmacokinetics , Midazolam/administration & dosage , Omeprazole/pharmacokinetics , Omeprazole/administration & dosage , Omeprazole/pharmacology
12.
Eur J Pharm Sci ; 194: 106697, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38199444

ABSTRACT

The concomitant administration of ritonavir and oxycodone may significantly increase the plasma concentrations of oxycodone. This study was aimed to simulate DDI between ritonavir and oxycodone, a widely used opioid, and to formulate dosing protocols for oxycodone by using physiologically based pharmacokinetic (PBPK) modeling. We developed a ritonavir PBPK model incorporating induction and competitive and time-dependent inhibition of CYP3A4 and competitive inhibition of CYP2D6. The ritonavir model was evaluated with observed clinical pharmacokinetic data and validated for its CYP3A4 inhibition potency. We then used the model to simulate drug interactions between oxycodone and ritonavir under various dosing scenarios. The developed model captured the pharmacokinetic characteristics of ritonavir from clinical studies. The model also accurately predicts exposure changes of midazolam, triazolam, and oxycodone in the presence of ritonavir. According to model simulations, the steady-state maximum, minimum and average concentrations of oxycodone increased by up to 166% after co-administration with ritonavir, and the total exposure increased by approximately 120%. To achieve similar steady-state concentrations, halving the dose with an unchanged dosing interval or doubling the dosing interval with an unaltered single dose should be practical for oxycodone, whether formulated in uncoated or controlled-release tablets during long-term co-medication with ritonavir. The results revealed exposure-related risks of oxycodone-ritonavir interactions that have not been studied clinically and emphasized PBPK as a workable method to direct judicious dosage.


Subject(s)
Oxycodone , Ritonavir , Ritonavir/pharmacokinetics , Oxycodone/pharmacokinetics , Cytochrome P-450 CYP3A , Midazolam/pharmacokinetics , Drug Interactions , Models, Biological
13.
Pediatr Infect Dis J ; 43(4): 355-360, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38190642

ABSTRACT

BACKGROUND: Study of liquid lopinavir/ritonavir (LPV/r) in young infants has been limited by concerns for its safety in neonates. METHODS: International Maternal Pediatric Adolescent AIDS Clinical Trials Network P1106 was a phase IV, prospective, trial evaluating the safety and pharmacokinetics of antiretroviral medications administered according to local guidelines to South African preterm and term infants <3 months of age. Safety evaluation through 24-week follow-up included clinical, cardiac and laboratory assessments. Pharmacokinetic data from P1106 were combined with data from International Maternal Pediatric Adolescent AIDS Clinical Trials Network studies P1030 and P1083 in a population pharmacokinetics model used to simulate LPV exposures with a weight-band dosing regimen in infants through age 6 months. RESULTS: Safety and pharmacokinetics results were similar in 13/28 (46%) infants initiating LPV/r <42 weeks postmenstrual age (PMA) and in those starting ≥42 weeks PMA. LPV/r was started at a median (range) age of 47 (13-121) days. No grade 3 or higher adverse events were considered treatment related. Modeling and simulation predicted that for infants with gestational age ≥27 weeks who receive the weight-band dosing regimen, 82.6% will achieve LPV trough concentration above the target trough concentration of 1.0 µg/mL and 56.6% would exceed the observed adult lower limit of LPV exposure of 55.9 µg·h/mL through age 6 months. CONCLUSIONS: LPV/r oral solution was safely initiated in a relatively small sample size of infants ≥34 weeks PMA and >2 weeks of life. No serious drug-related safety signal was observed; however, adrenal function assessments were not performed. Weight-band dosing regimen in infants with gestational age ≥27 weeks is predicted to result in LPV exposures equivalent to those observed in other pediatric studies.


Subject(s)
HIV Protease Inhibitors , Lopinavir , Ritonavir , Humans , Infant , Infant, Newborn , Acquired Immunodeficiency Syndrome/drug therapy , HIV Protease Inhibitors/adverse effects , HIV Protease Inhibitors/pharmacokinetics , Lopinavir/adverse effects , Lopinavir/pharmacokinetics , Prospective Studies , Ritonavir/adverse effects , Ritonavir/pharmacokinetics , Administration, Oral
14.
Clin Pharmacol Ther ; 115(5): 1105-1113, 2024 May.
Article in English | MEDLINE | ID: mdl-38247190

ABSTRACT

Antiretroviral therapy for children living with HIV (CLHIV) under 3 years of age commonly includes lopinavir/ritonavir (LPV/r). However, the original liquid LPV/r formulation has taste and cold storage difficulties. To address these challenges, LPV/r oral pellets have been developed. These pellets can be mixed with milk or food for administration and do not require refrigeration. We developed the population pharmacokinetic (PK) model and assessed drug exposure of LPV/r oral pellets administered twice daily to CLHIV per World Health Organization (WHO) weight bands. The PK analysis included Kenyan and Ugandan children participating in the LIVING studies (NCT02346487) receiving LPV/r pellets (40/10 mg) and ABC/3TC (60/30 mg) dispersible tablets. Population PK models were developed for lopinavir (LPV) and ritonavir (RTV) to evaluate the impact of RTV on the oral clearance (CL/F) of LPV. The data obtained from the study were analyzed using nonlinear mixed-effects modeling approach. Data from 514 children, comprising a total of 2,998 plasma concentrations of LPV/r were included in the analysis. The LPV and RTV concentrations were accurately represented by a one-compartment model with first-order absorption (incorporating a lag-time) and elimination. Body weight influenced LPV and RTV PK parameters. The impact of RTV concentrations on the CL/F of LPV was characterized using a maximum effect model. Simulation-predicted target LPV exposures were achieved in children with this pellet formulation across the WHO weight bands. The LPV/r pellets dosed in accordance with WHO weight bands provide adequate LPV exposures in Kenyan and Ugandan children weighing 3.0 to 24.9 kg.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Protease Inhibitors , Humans , Child , Lopinavir/pharmacokinetics , Ritonavir/pharmacokinetics , Kenya , HIV Infections/drug therapy , Computer Simulation
15.
PLoS Med ; 20(11): e1004303, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37988391

ABSTRACT

BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.


Subject(s)
HIV Infections , Tuberculosis , Adult , Infant, Newborn , Child , Humans , Female , Infant , Child, Preschool , Adolescent , Male , Ritonavir/pharmacokinetics , Ritonavir/therapeutic use , Lopinavir/pharmacokinetics , Lopinavir/therapeutic use , Rifampin , Isoniazid/therapeutic use , Isoniazid/pharmacokinetics , Pyrazinamide/pharmacokinetics , Antitubercular Agents , Tuberculosis/drug therapy , Tuberculosis/epidemiology , HIV Infections/drug therapy , HIV
16.
Pediatr Infect Dis J ; 42(10): 899-904, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37506295

ABSTRACT

BACKGROUND: Lopinavir/ritonavir plasma concentrations are profoundly reduced when co-administered with rifampicin. Super-boosting of lopinavir/ritonavir is limited by nonavailability of single-entity ritonavir, while double-dosing of co-formulated lopinavir/ritonavir given twice-daily produces suboptimal lopinavir concentrations in young children. We evaluated whether increased daily dosing with modified 8-hourly lopinavir/ritonavir 4:1 would maintain therapeutic plasma concentrations of lopinavir in children living with HIV receiving rifampicin-based antituberculosis treatment. METHODS: Children with HIV/tuberculosis coinfection weighing 3.0 to 19.9 kg, on rifampicin-based antituberculosis treatment were commenced or switched to 8-hourly liquid lopinavir/ritonavir 4:1 with increased daily dosing using weight-band dosing approach. A standard twice-daily dosing of lopinavir/ritonavir was resumed 2 weeks after completing antituberculosis treatment. Plasma sampling was conducted during and 4 weeks after completing antituberculosis treatment. RESULTS: Of 20 children enrolled; 15, 1-7 years old, had pharmacokinetics sampling available for analysis. Lopinavir concentrations (median [range]) on 8-hourly lopinavir/ritonavir co-administered with rifampicin (n = 15; area under the curve 0-24 55.32 mg/h/L [0.30-398.7 mg/h/L]; C max 3.04 mg/L [0.03-18.6 mg/L]; C 8hr 0.90 mg/L [0.01-13.7 mg/L]) were lower than on standard dosing without rifampicin (n = 12; area under the curve 24 121.63 mg/h/L [2.56-487.3 mg/h/L]; C max 9.45 mg/L [0.39-26.4 mg/L]; C 12hr 3.03 mg/L [0.01-17.7 mg/L]). During and after rifampicin cotreatment, only 7 of 15 (44.7%) and 8 of 12 (66.7%) children, respectively, achieved targeted pre-dose lopinavir concentrations ≥1mg/L. CONCLUSIONS: Modified 8-hourly dosing of lopinavir/ritonavir failed to achieve adequate lopinavir concentrations with concurrent antituberculosis treatment. The subtherapeutic lopinavir exposures on standard dosing after antituberculosis treatment are of concern and requires further evaluation.


Subject(s)
Anti-HIV Agents , HIV Infections , Tuberculosis , Child , Humans , Child, Preschool , Infant , Rifampin/therapeutic use , Lopinavir/pharmacokinetics , Ritonavir/pharmacokinetics , Anti-HIV Agents/therapeutic use , Tuberculosis/complications , Tuberculosis/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , Drug Therapy, Combination , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacokinetics
17.
Pharm Res ; 40(8): 1927-1938, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37231296

ABSTRACT

PURPOSE: PAXLOVID™ is nirmatrelvir tablets co-packaged with ritonavir tablets. Ritonavir is used as a pharmacokinetics (PK) enhancer to reduce metabolism and increase exposure of nirmatrelvir. This is the first disclosure of Paxlovid physiologically-based pharmacokinetic (PBPK) model. METHODS: Nirmatrelvir PBPK model with first-order absorption kinetics was developed using in vitro, preclinical, and clinical data of nirmatrelvir in the presence and absence of ritonavir. Clearance and volume of distribution were derived from nirmatrelvir PK obtained using a spray-dried dispersion (SDD) formulation where it is considered to be dosed as an oral solution, and absorption is near complete. The fraction of nirmatrelvir metabolized by CYP3A was estimated based on in vitro and clinical ritonavir drug-drug interaction (DDI) data. First-order absorption parameters were established for both SDD and tablet formulation using clinical data. Nirmatrelvir PBPK model was verified with both single and multiple dose human PK data, as well as DDI studies. Simcyp® first-order ritonavir compound file was also verified with additional clinical data. RESULTS: The nirmatrelvir PBPK model described the observed PK profiles of nirmatrelvir well with predicted AUC and Cmax values within ± 20% of the observed. The ritonavir model performed well resulting in predicted values within twofold of observed. CONCLUSIONS: Paxlovid PBPK model developed in this study can be applied to predict PK changes in special populations, as well as model the effect of victim and perpetrator DDI. PBPK modeling continues to play a critical role in accelerating drug discovery and development of potential treatments for devastating diseases such as COVID-19. NCT05263895, NCT05129475, NCT05032950 and NCT05064800.


Subject(s)
COVID-19 , Ritonavir , Humans , Ritonavir/pharmacokinetics , Computer Simulation , Kinetics , Drug Interactions , Models, Biological
19.
Clin Pharmacol Drug Dev ; 12(6): 602-610, 2023 06.
Article in English | MEDLINE | ID: mdl-36789634

ABSTRACT

Lopinavir/ritonavir is an important protease inhibitor for treating HIV-1 infection in patients aged >2 years in combination with other antiretrovirals. The antiviral activity of lopinavir/ritonavir in vivo is mainly derived from lopinavir, while ritonavir improves the bioavailability of lopinavir. This study compared the bioequivalence and safety of 2 lopinavir/ritonavir (200/50 mg) formulations under fasted and fed conditions in healthy Chinese volunteers and compared the pharmacokinetic parameters of lopinavir and ritonavir. A randomized, open-label, single-dose, 4-period, crossover bioequivalence was conducted in 72 subjects under fasted and fed conditions. Lopinavir and ritonavir plasma concentrations were analyzed using validated liquid chromatography with tandem mass spectrometry. Noncompartmental analysis was used to evaluate pharmacokinetic parameters. The 90% confidence intervals of test/reference geometric mean ratio for lopinavir and ritonavir area under the plasma concentration-time curve and maximum drug concentration meets the bioequivalence criteria based on the average bioequivalence method. A high-fat meal delayed the time to the maximum concentration of lopinavir and ritonavir. Therefore, these formulations were bioequivalent in healthy Chinese volunteers under fasting and fed conditions. Moreover, adverse events were more frequent in the fed state, but all were mild.


Subject(s)
Lopinavir , Ritonavir , Humans , Antiviral Agents/pharmacokinetics , Area Under Curve , East Asian People , Lopinavir/pharmacokinetics , Ritonavir/pharmacokinetics , Tablets , Therapeutic Equivalency , Fasting
20.
Drug Metab Pers Ther ; 38(1): 87-105, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36205215

ABSTRACT

OBJECTIVES: Therapy failure caused by complex population-drug-drug (PDDI) interactions including CYP3A4 can be predicted using mechanistic physiologically-based pharmacokinetic (PBPK) modeling. A synergy between ritonavir-boosted lopinavir (LPVr), ivermectin, and chloroquine was suggested to improve COVID-19 treatment. This work aimed to study the PDDI of the two CYP3A4 substrates (ivermectin and chloroquine) with LPVr in mild-to-moderate COVID-19 adults, geriatrics, and pregnancy populations. METHODS: The PDDI of LPVr with ivermectin or chloroquine was investigated. Pearson's correlations between plasma, saliva, and lung interstitial fluid (ISF) levels were evaluated. Target site (lung epithelial lining fluid [ELF]) levels of ivermectin and chloroquine were estimated. RESULTS: Upon LPVr coadministration, while the chloroquine plasma levels were reduced by 30, 40, and 20%, the ivermectin plasma levels were increased by a minimum of 425, 234, and 453% in adults, geriatrics, and pregnancy populations, respectively. The established correlation equations can be useful in therapeutic drug monitoring (TDM) and dosing regimen optimization. CONCLUSIONS: Neither chloroquine nor ivermectin reached therapeutic ELF levels in the presence of LPVr despite reaching toxic ivermectin plasma levels. PBPK modeling, guided with TDM in saliva, can be advantageous to evaluate the probability of reaching therapeutic ELF levels in the presence of PDDI, especially in home-treated patients.


Subject(s)
COVID-19 , Ritonavir , Adult , Humans , Ritonavir/adverse effects , Ritonavir/pharmacokinetics , Lopinavir/adverse effects , Lopinavir/pharmacokinetics , Ivermectin , Chloroquine/adverse effects , COVID-19 Drug Treatment , Cytochrome P-450 CYP3A , Drug Interactions
SELECTION OF CITATIONS
SEARCH DETAIL