Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38999097

ABSTRACT

This study delves into the chemical and genetic determinants of petal color and fragrance in Rosa canina L., a wild rose species prized for its pharmacological and cosmetic uses. Comparative analysis of white and dark pink R. canina flowers revealed that the former harbors significantly higher levels of total phenolics (TPC) and flavonoids (TFC), while the latter is distinguished by elevated total anthocyanins (TAC). Essential oils in the petals were predominantly composed of aliphatic hydrocarbons, with phenolic content chiefly constituted by flavonols and anthocyanins. Notably, gene expression analysis showed an upregulation in most genes associated with petal color and scent biosynthesis in white buds compared to dark pink open flowers. However, anthocyanin synthase (ANS) and its regulatory gene RhMYB1 exhibited comparable expression levels across both flower hues. LC-MS profiling identified Rutin, kaempferol, quercetin, and their derivatives as key flavonoid constituents, alongside cyanidin and delphinidin as the primary anthocyanin compounds. The findings suggest a potential feedback inhibition of anthocyanin biosynthesis in white flowers. These insights pave the way for the targeted enhancement of R. canina floral traits through metabolic and genetic engineering strategies.


Subject(s)
Anthocyanins , Flavonoids , Flowers , Gene Expression Regulation, Plant , Phytochemicals , Rosa , Rosa/chemistry , Rosa/genetics , Rosa/metabolism , Flowers/chemistry , Flowers/metabolism , Flowers/genetics , Phytochemicals/chemistry , Flavonoids/analysis , Flavonoids/metabolism , Flavonoids/chemistry , Oils, Volatile/chemistry , Oils, Volatile/metabolism , Pigmentation , Plant Proteins/genetics , Plant Proteins/metabolism , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Odorants/analysis
2.
Sci Rep ; 14(1): 13917, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886497

ABSTRACT

Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Rosa , Starch Phosphorylase , Stress, Physiological , Stress, Physiological/genetics , Rosa/genetics , Rosa/enzymology , Rosa/metabolism , Starch Phosphorylase/genetics , Starch Phosphorylase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Droughts , Genome, Plant , Salinity
3.
Sci Rep ; 14(1): 14520, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914640

ABSTRACT

Rose flowers (Rosa hybrida L.) are highly perishable and have a limited vase life. This study evaluated the effects of preharvest foliar applications of γ-aminobutyric acid (GABA) and calcium chloride (CaCl2), individually and combined, on antioxidant responses and vase life of cut Jumilia rose flowers. Treatments included foliar sprays of GABA at 0, 20, 40, and 60 mM and CaCl2 at 0, 0.75%, and 1.5%, applied in a factorial design within a completely randomized setup before harvest. Results showed GABA and CaCl2 interaction (especially, 60 mM GABA and 1.5% CaCl2) significantly increased enzymatic antioxidants including superoxide dismutase, catalase, and peroxidase, as well as non-enzymatic antioxidants such as flavonoids, carotenoids, phenolics, and antioxidant activity in petals compared to control. SOD activity in roses, treated with CaCl2 (1.5%) and GABA (60 mM), peaked at 7.86 units. mg-1 protein min-1, showing a nearly 2.93-fold increase over the control (2.68 units. mg-1 protein min-1). A parallel trend was observed for CAT activity. These treatments also reduced petal malondialdehyde content and polyphenol oxidase activity. Protein content and vase life duration increased in all treatments. Plants treated with a combination of GABA (20 mM) and CaCl2 (0.75%), GABA (60 mM) and CaCl2 (1.5%), or GABA (40 mM) individually exhibited the longest vase life duration. The co-application of GABA and CaCl2 improved the antioxidant activity and postharvest quality of cut roses by reducing PPO activity and MDA contents, increasing protein content and prolonging vase life. This treatment is a potential postharvest strategy to improve antioxidant capacity and delay senescence in cut roses.


Subject(s)
Antioxidants , Calcium Chloride , Flowers , Rosa , gamma-Aminobutyric Acid , Flowers/drug effects , Calcium Chloride/pharmacology , Antioxidants/metabolism , gamma-Aminobutyric Acid/metabolism , Rosa/metabolism , Rosa/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Malondialdehyde/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects
4.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791554

ABSTRACT

Rose roxburghii, a horticulturally significant species within the Rosa genus of the Rosaceae family, is renowned for its abundance of secondary metabolites and ascorbate, earning it the title 'king of vitamin C'. Despite this recognition, the mechanisms underlying the biosynthesis and regulation of triterpenoid compounds in R. roxburghii remain largely unresolved. In this study, we conducted high-performance liquid chromatography profiling across various organs of R. roxburghii, including fruit, root, stem, and leaves, revealing distinct distributions of triterpenoid compounds among different plant parts. Notably, the fruit exhibited the highest total triterpenoid content, followed by root and stem, with leaf containing the lowest levels, with leaf containing the lowest levels. Transcriptomic analysis unveiled preferential expression of members from the cytochrome P450 (CYP) and glycosyltransferase (UGT) families, likely contributing to the higher accumulation of both ascorbate and triterpenoid compounds in the fruits of R. roxburghii compared to other tissues of R. roxburghii. Transcriptomic analysis unveiled a potential gene network implicated in the biosynthesis of both ascorbate and triterpenoid compounds in R. roxburghii. These findings not only deepen our understanding of the metabolic pathways in this species but also have implications for the design of functional foods enriched with ascorbate and triterpenoids in R. roxburghii.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Rosa , Triterpenes , Triterpenes/metabolism , Gene Expression Profiling/methods , Rosa/genetics , Rosa/metabolism , Transcriptome , Ascorbic Acid/metabolism , Fruit/metabolism , Fruit/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics
5.
BMC Plant Biol ; 24(1): 410, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760710

ABSTRACT

Rosa roxburghii Tratt, a valuable plant in China with long history, is famous for its fruit. It possesses various secondary metabolites, such as L-ascorbic acid (vitamin C), alkaloids and poly saccharides, which make it a high nutritional and medicinal value. Here we characterized the chromosome-level genome sequence of R. roxburghii, comprising seven pseudo-chromosomes with a total size of 531 Mb and a heterozygosity of 0.25%. We also annotated 45,226 coding gene loci after masking repeat elements. Orthologs for 90.1% of the Complete Single-Copy BUSCOs were found in the R. roxburghii annotation. By aligning with protein sequences from public platform, we annotated 85.89% genes from R. roxburghii. Comparative genomic analysis revealed that R. roxburghii diverged from Rosa chinensis approximately 5.58 to 13.17 million years ago, and no whole-genome duplication event occurred after the divergence from eudicots. To fully utilize this genomic resource, we constructed a genomic database RroFGD with various analysis tools. Otherwise, 69 enzyme genes involved in L-ascorbate biosynthesis were identified and a key enzyme in the biosynthesis of vitamin C, GDH (L-Gal-1-dehydrogenase), is used as an example to introduce the functions of the database. This genome and database will facilitate the future investigations into gene function and molecular breeding in R. roxburghii.


Subject(s)
Chromosomes, Plant , Genome, Plant , Rosa , Rosa/genetics , Rosa/metabolism , Chromosomes, Plant/genetics , Databases, Genetic , Secondary Metabolism/genetics , Ascorbic Acid/metabolism , Ascorbic Acid/biosynthesis
6.
Food Chem ; 452: 139584, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735110

ABSTRACT

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Subject(s)
Fruit , Metabolomics , Rosa , Taste , Rosa/chemistry , Rosa/metabolism , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Tandem Mass Spectrometry , Flavonoids/analysis , Flavonoids/metabolism , Humans , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism
7.
Food Chem ; 450: 139388, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640529

ABSTRACT

Rosa rugosa is extensively cultivated in China for its remarkable fragrance and flavor, however, the metabolic changes in roses during growth and drying remain unclear. Our results revealed significant variations in phenol and flavonoid contents and antioxidant capacity in roses (Rosa rugosa f. plena (Regel) Byhouwer) under different conditions. Phenol contents were positively correlated with antioxidant capacity, with phytochemicals being most prominent in unfolded petals. The highest antioxidant capacity and phenol and flavonoid contents were observed in April. Considering their greater consumption value, whole flowers were more suitable than petals alone. Furthermore, considerable sensory and nutritional differences were observed in dried roses. Different drying methods increased their total phenol content of roses by 4.2-5.4 times and the antioxidant capacity by 2.9 times. Metabolomics revealed the altered contents of flavonoids, anthocyanins, lipids, amino acids, and saccharides. This study provides baseline data for the potential of roses as a natural source of antioxidants in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Flavonoids , Flowers , Rosa , Rosa/chemistry , Rosa/growth & development , Rosa/metabolism , Flowers/growth & development , Flowers/chemistry , Flowers/metabolism , Antioxidants/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Flavonoids/metabolism , Flavonoids/analysis , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Desiccation , Plant Extracts/metabolism , Plant Extracts/chemistry , China , Humans
9.
Plant J ; 118(5): 1486-1499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38457289

ABSTRACT

The petals of rose (Rosa sp.) flowers determine the ornamental and industrial worth of this species. The number of petals in roses was previously shown to be subject to fluctuations in ambient temperature. However, the mechanisms by which rose detects and responds to temperature changes are not entirely understood. In this study, we identified short interstitial telomere motifs (telo boxes) in the second intron of AGAMOUS (RcAG) from China rose (Rosa chinensis) that play an essential role in precise temperature perception. The second intron of RcAG harbors two telo boxes that recruit telomere repeat binding factors (RcTRBs), which interact with CURLY LEAF (RcCLF) to compose a repressor complex. We show that this complex suppresses RcAG expression when plants are subjected to low temperatures via depositing H3K27me3 marks (trimethylation of lysine 27 on histone H3) over the RcAG gene body. This regulatory mechanism explains the low-temperature-dependent decrease in RcAG transcript levels, leading to the production of more petals under these conditions. Our results underscore an interesting intron-mediated regulatory mechanism governing RcAG expression, enabling rose plants to perceive temperature cues and establish petal numbers.


Subject(s)
Flowers , Histones , Introns , Plant Proteins , Rosa , Rosa/genetics , Rosa/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Histones/metabolism , Histones/genetics , Introns/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Cold Temperature , Methylation , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Lysine/metabolism
10.
J Exp Bot ; 75(10): 2965-2981, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38452221

ABSTRACT

Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Plant Proteins , Rosa , Transcription Factors , Rosa/genetics , Rosa/metabolism , Rosa/growth & development , Rosa/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/growth & development , Flowers/genetics , Flowers/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cold-Shock Response/genetics , Cold Temperature
11.
Mol Nutr Food Res ; 68(5): e2300539, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332573

ABSTRACT

SCOPE: The rosehip (Rosa canina) is a perennial shrub with a reddish pseudofruit that has demonstrated antidiabetic, antiatherosclerotic, and antiobesogenic effects in rodent models but there is low information about the molecular mechanisms underlying these effects on the onset and progression of diet-induced obesity. METHODS AND RESULTS: Four-week-old C57BL/6J male mice are subjected to a high-fat diet (HFD)-supplemented or not with R. canina flesh for 18 weeks. The results indicated that the R. canina flesh exerts a preventive effect on HFD-induced obesity with a significant reduction in body-weight gain and an improvement of hyperglycemia and insulin resistance caused by a HFD. At the tissue level, subcutaneous white adipose tissue exhibits a higher number of smaller adipocytes, with decreased lipogenesis. On its side, the liver shows a significant decrease in lipid droplet content and in the expression of genes related to lipogenesis, fatty acid oxidation, and glucose metabolism. Finally, the data suggest that most of these effects agree with the presence of a putative Perosxisome proliferator-activated receptor gamma (PPARγ) antagonist in the R. canina flesh. CONCLUSIONS: R. canina flesh dietary supplementation slows down the steatotic effect of a HFD at least in part through the regulation of the transcriptional activity of PPARγ.


Subject(s)
Anti-Obesity Agents , Rosa , Animals , Mice , Diet, High-Fat/adverse effects , PPAR gamma/metabolism , Rosa/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Mice, Inbred C57BL , Obesity/etiology , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/metabolism , Liver/metabolism
12.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38315889

ABSTRACT

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Subject(s)
Ethylenes , F-Box Proteins , Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Rosa , Ethylenes/metabolism , Ethylenes/pharmacology , Gibberellins/metabolism , Gibberellins/pharmacology , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Rosa/genetics , Rosa/drug effects , Rosa/metabolism , Flowers/genetics , Flowers/drug effects , Flowers/growth & development , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Senescence/genetics , Proteasome Endopeptidase Complex/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics
13.
Plant J ; 117(4): 1264-1280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37964640

ABSTRACT

Rosa roxburghii and Rosa sterilis, two species belonging to the Rosaceae family, are widespread in the southwest of China. These species have gained recognition for their remarkable abundance of ascorbate in their fresh fruits, making them an ideal vitamin C resource. In this study, we generated two high-quality chromosome-scale genome assemblies for R. roxburghii and R. sterilis, with genome sizes of 504 and 981.2 Mb, respectively. Notably, we present a haplotype-resolved, chromosome-scale assembly for diploid R. sterilis. Our results indicated that R. sterilis originated from the hybridization of R. roxburghii and R. longicuspis. Genome analysis revealed the absence of recent whole-genome duplications in both species and identified a series of duplicated genes that possibly contributing to the accumulation of flavonoids. We identified two genes in the ascorbate synthesis pathway, GGP and GalLDH, that show signs of positive selection, along with high expression levels of GDP-d-mannose 3', 5'-epimerase (GME) and GDP-l-galactose phosphorylase (GGP) during fruit development. Furthermore, through co-expression network analysis, we identified key hub genes (MYB5 and bZIP) that likely regulate genes in the ascorbate synthesis pathway, promoting ascorbate biosynthesis. Additionally, we observed the expansion of terpene synthase genes in these two species and tissue expression patterns, suggesting their involvement in terpenoid biosynthesis. Our research provides valuable insights into genome evolution and the molecular basis of the high concentration of ascorbate in these two Rosa species.


Subject(s)
Rosa , Rosa/genetics , Rosa/metabolism , Ascorbic Acid/metabolism , Genes, Plant , Chromosomes , Evolution, Molecular
14.
BMC Plant Biol ; 23(1): 560, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957557

ABSTRACT

BACKGROUND: Rosa damascena is extensively cultivated in various regions of Iran due to its aesthetic attributes, medicinal qualities, and essential oil production. This study investigated the efficacy of Ascophyllum nodosum extract (AnE) at concentrations of 0, 2, and 3 g L- 1 and Nano-silicon (nSiO2) at concentrations of 0, 50, and 100 mg L- 1 in ameliorating the impact of salinity on two genotypes of Damask rose ('Chaharfasl' and 'Kashan') under in vitro culture conditions. Additionally, various physio-chemical characteristics of R. damascena explants were assessed. RESULTS: The findings revealed that exposure to 100 mM NaCl resulted in a substantial reduction in the Relative Water Content (RWC), Membrane Stability Index (MSI), leaf pigments (Chlorophyll b, Chlorophyll a, total Chlorophyll, and carotenoids), chlorophyll fluorescence parameters, and protein content in both genotypes when compared to control conditions. Salinity induced a significant increase in the parameter F0 and a decrease in the parameter Fv/Fm compared to the control conditions in both genotypes. Nonetheless, the genotype Kashan treated with 3 g L- 1 AnE + 100 mg L- 1 nSiO2 exhibited the maximum Fm value under control conditions, with a significant difference compared to other treatments. Furthermore, salinity caused a considerable reduction in Fm in both 'Kashan' and 'Chaharfasl' by 22% and 17%, respectively, when compared to the control condition. 'Kashan' displayed the maximum Fv/Fm compared to the other genotype. The maximum levels of Malondialdehyde (MAD) and hydrogen peroxide (H2O2) were also observed in explants affected by salinity. The combination of 3 g L- 1 AnE + 100 mg L- 1 nSiO2, followed by 2 g L- 1 AnE + 100 mg L- 1 nSiO2, exhibited substantial positive effects. Salinity also led to an increase in proline content and the activity of peroxidase (POD), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) in both genotypes. The activity of these enzymes was further enhanced when AnE was applied at concentrations of 2 and 3 g L- 1 in combination with 100 mg L- 1 nSiO2. CONCLUSIONS: The 'Kashan' genotype displayed greater tolerance to salinity by enhancing water balance, maintaining membrane integrity, and augmenting the activity of antioxidant enzymes compared to 'Chaharfasl'. The utilization of nSiO2 and AnE biostimulants demonstrated potential benefits for R. damascena, both under salinity and control conditions. These findings hold substantial importance for researchers, policymakers, and farmers, offering valuable insights into the development of salinity-tolerant crop varieties.


Subject(s)
Ascophyllum , Rosa , Rosa/metabolism , Salinity , Chlorophyll A , Silicones , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Chlorophyll/metabolism , Water
15.
Molecules ; 28(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37959727

ABSTRACT

Acetaminophen (APAP)-induced liver injury is a common hepatic disease resulting from drug abuse. Few targeted treatments are available clinically nowadays. The flower bud of Rosa rugosa has a wide range of biological activities. However, it is unclear whether it alleviates liver injury caused by APAP. Here, we prepared an ethanol extract of Rosa rugosa (ERS) and analyzed its chemical profile. Furthermore, we revealed that ERS significantly ameliorated APAP-induced apoptosis and ferroptosis in AML-12 hepatocytes and dampened APAP-mediated cytotoxicity. In AML-12 cells, ERS elevated Sirt1 expression, boosted the LKB1/AMPK/Nrf2 axis, and thereby crippled APAP-induced intracellular oxidative stress. Both EX527 and NAM, which are chemically unrelated inhibitors of Sirt1, blocked ERS-induced activation of LKB1/AMPK/Nrf2 signaling. The protection of ERS against APAP-triggered toxicity in AML-12 cells was subsequently abolished. As expression of LKB1 was knocked down, ERS still upregulated Sirt1 but failed to activate AMPK/Nrf2 cascade or suppress cytotoxicity provoked by APAP. Results of in vivo experiments showed that ERS attenuated APAP-caused hepatocyte apoptosis and ferroptosis and improved liver injury and inflammation. Consistently, ERS boosted Sirt1 expression, increased phosphorylations of LKB1 and AMPK, and promoted Nrf2 nuclear translocation in the livers of APAP-intoxicated mice. Hepatic transcriptions of HO-1 and GCLC, which are downstream antioxidant genes of Nrf2, were also significantly increased in response to ERS. Our results collectively indicated that ERS effectively attenuates APAP-induced liver injury by activating LKB1/AMPK/Nrf2 cascade. Upregulated expression of Sirt1 plays a crucial role in ERS-mediated activation of LKB1.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Leukemia, Myeloid, Acute , Rosa , Animals , Mice , Acetaminophen/metabolism , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Rosa/metabolism , Signal Transduction , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Sirtuin 1/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Liver , Hepatocytes , Oxidative Stress , Leukemia, Myeloid, Acute/metabolism
16.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003495

ABSTRACT

The basic/helix-loop-helix (bHLH) family is a major family of transcription factors in plants. Although it has been reported that bHLH plays a defensive role against pathogen infection in plants, there is no comprehensive study on the bHLH-related defence response in rose (Rosa sp.). In this study, a genome-wide analysis of bHLH family genes (RcbHLHs) in rose was carried out, including their phylogenetic relationships, gene structure, chromosome localization and collinearity analysis. Via phylogenetic analysis, a total of 121 RcbHLH genes in the rose genome were divided into 21 sub-groups. These RcbHLHs are unevenly distributed in all 7 chromosomes of rose. The occurrence of gene duplication events indicates that whole-genome duplication and segmental duplication may play a key role in gene duplication. Ratios of non-synonymous to synonymous mutation frequency (Ka/Ks) analysis showed that the replicated RcbHLH genes mainly underwent purification selection, and their functional differentiation was limited. Gene expression analysis showed that 46 RcbHLHs were differentially expressed in rose petals upon B. cinerea infection. It is speculated that these RcbHLHs are candidate genes that regulate the response of rose plants to B. cinerea infection. Virus-induced gene silencing (VIGS) confirmed that RcbHLH112 in rose is a susceptibility factor for infection with B. cinerea. This study provides useful information for further study of the functions of the rose bHLH gene family.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Rosa , Basic Helix-Loop-Helix Transcription Factors/metabolism , Rosa/genetics , Rosa/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Duplication , Gene Expression Regulation, Plant
17.
Sci Rep ; 13(1): 17795, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853072

ABSTRACT

Rosa damascena is one of the most important medicinal and ornamental plants in Iran which is tolerant of salinity to some extent. However, the selection of genotypes that are more tolerant to salinity will influence on Damask cultivation in salt stress-affected regions. For this purpose, a factorial experiment in a completely randomized design with three replicates was performed under in vitro conditions on four Damask rose genotypes (Atashi, Bi-Khar, Chahar-Fasl and Kashan) at 5 concentrations of NaCl (0, 25, 50, 75, and 100 mM), and the physico-chemical traits were measured 14 and 28 days after treatment.The results showed that Atashi genotype with high levels of Chl a, Chl b, total Chl content, carotenoids, relative leaf water content, proline, total soluble protein, TPC, TFC, TAA, and the highest increase in the activity of antioxidant enzymes such as GPX, APX, CAT, SOD, and POD as well as the lowest amount of hydrogen peroxide showed a better protection mechanism against oxidative damage than the other three genotypes (Bi-Khar, Chahar-Fasl and Kashan) in the 14th and 28th days by maintaining the constructive and induced activities of antioxidant enzymes, it was shown that Bi-Khar genotype had moderate tolerance and Kashan and Chahar-Fasl genotypes had low tolerance to salinity stress. In vitro selection methods can be used effectively for salt tolerant screening of Damask rose genotypes, although the same experiment should be conducted in open filed cultures to verify the in vitro experimental results.


Subject(s)
Antioxidants , Rosa , Antioxidants/metabolism , Reactive Oxygen Species , Rosa/genetics , Rosa/metabolism , Genotype , Salt Stress/genetics , Salinity , Stress, Physiological/genetics
18.
J Diabetes Res ; 2023: 9164883, 2023.
Article in English | MEDLINE | ID: mdl-37840577

ABSTRACT

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ferroptosis , Rosa , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Signal Transduction , Apoptosis
19.
Life Sci ; 333: 122143, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37797686

ABSTRACT

INTRODUCTION: The flavonoid-rich fraction of Rosa damascena (FRFRD) contains antioxidant and active compounds. Therefore, this study aimed to investigate the role of FRFRD, rich in quercetin and kaempferol, in liver fibrosis induced by CCl4. MATERIALS AND METHODS: The FRFRD fraction was separated and standardized by High-Performance Liquid Chromatography (HPLC) based on the levels of quercetin and kaempferol. Liver fibrosis was induced over CCl4 over 12 weeks in 30 male Wistar rats, and three concentrations of FRFRD were administered to them during the last four weeks. Subsequently, after evaluation of liver serum markers and fibrotic parameters, the relative expression of transforming growth factor-beta-1 (TGF-ß1), platelet-derived growth factor (PDGF), and lysyl oxidase homolog 2 (Loxl2) genes were assessed, along with the measurement of lysyl oxidase activity and oxidative markers. RESULTS: Fibrotic markers demonstrated progressive recovery of liver damage in the treated group compared to the non-treatment group (p < 0.01). These results were accompanied by a significant decrease in the expression of TGF-ß1, PDGF, and Loxl2 genes, as well as, a reduction in lysyl oxidase activity (p < 0.001). The antioxidant effects of the treatment were observed through a significant decrease in malondialdehyde (MDA) levels and an increase in catalase enzyme (CAT) and glutathione peroxidase (GPx) activity in the treatment group compared to the fibrotic group (p < 0.01). CONCLUSION: The flavonoid-rich fraction of Rosa damascena ameliorates liver damage by affecting collagen cross-linking and lowering oxidative and inflammatory levels.


Subject(s)
Antioxidants , Rosa , Male , Rats , Animals , Antioxidants/metabolism , Cytokines/metabolism , Rosa/metabolism , Kaempferols/pharmacology , Quercetin/pharmacology , Quercetin/metabolism , Oxidants/metabolism , Protein-Lysine 6-Oxidase/metabolism , Rats, Wistar , Liver Cirrhosis/metabolism , Liver/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism , Flavonols/pharmacology , Platelet-Derived Growth Factor/metabolism , Flavonoids/metabolism , Collagen/metabolism , Models, Animal , Carbon Tetrachloride/pharmacology
20.
Micron ; 174: 103524, 2023 11.
Article in English | MEDLINE | ID: mdl-37657168

ABSTRACT

Three abiotic stresses, copper application (CS), mechanical rubbing (MS) and water deprivation (WS) applied on miniature rose bushes specifically activate the expression of the CuZn-Superoxide dismutase (SOD). The Cu/Zn-SOD protein immunodetected in the 4th internode was shown engaged in lignification in phloem, cambium and xylem cells. The SOD occurrence was detailed in the vessel associated cells (VACs), using immunogold labeling observed in transmission electron microscopy. The enzyme was detected in mitochondria, plastids, Golgi vesicles, endoplasmic reticulum and plasma membrane. In addition, in pit-fields without plasmodesmata linking vessel associated cells to vessels, the abiotic stresses increased the transfer apparatus volume. The content in unmethylatedpectins increased in wall ingrowths after CS and MS, but not in WS. In addition to the different localization, the SOD was differentially overexpressed according to the applied stress: an isoform detected at 17 kDa under CuSO4 application, two isoforms respectively detected at 20 and 17 kDa under MS and detected at 17 and 15 kDa under WS. Notably, the only 17 kDa isoform was detected in plasma membrane vesicles from plants submitted to the three stresses. Thus, by increasing the transfer apparatus development, the key role of VACs was emphasized in establishing an adaptative response to abiotic stresses, in miniature rose bushes. Additionally, it has been observed that the differential SOD localization under such stresses sustained the regulatory function of VACs in the transitory sink function of xylem.


Subject(s)
Copper , Mitochondria , Stress, Physiological , Cell Membrane , Microscopy, Electron, Transmission , Superoxide Dismutase-1 , Rosa/genetics , Rosa/metabolism , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL