Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Plant Physiol Biochem ; 212: 108782, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850728

ABSTRACT

Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Protein Phosphatase 2C , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Dehydration/genetics , Drought Resistance , Nicotiana/genetics , Nicotiana/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Rosaceae/enzymology , Rosaceae/genetics , Stress, Physiological/genetics
2.
BMC Plant Biol ; 24(1): 596, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914948

ABSTRACT

BACKGROUND: Cliffs are recognized as one of the most challenging environments for plants, characterized by harsh conditions such as drought, infertile soil, and steep terrain. However, they surprisingly host ancient and diverse plant communities and play a crucial role in protecting biodiversity. The Taihang Mountains, which act as a natural boundary in eastern China, support a rich variety of plant species, including many unique to cliff habitats. However, it is little known how cliff plants adapt to harsh habitats and the demographic history in this region. RESULTS: To better understand the demographic history and adaptation of cliff plants in this area, we analyzed the chromosome-level genome of a representative cliff plant, T. rupestris var. ciliata, which has a genome size of 769.5 Mb, with a scaffold N50 of 104.92 Mb. The rapid expansion of transposable elements may have contributed to the increasing genome and its ability to adapt to unique and challenging cliff habitats. Comparative analysis of the genome evolution between Taihangia and non-cliff plants in Rosaceae revealed a significant expansion of gene families associated with oxidative phosphorylation, which is likely a response to the abiotic stresses faced by cliff plants. This expansion may explain the long-term adaptation of Taihangia to harsh cliff environments. The effective population size of the two varieties has continuously decreased due to climatic fluctuations during the Quaternary period. Furthermore, significant differences in gene expression between the two varieties may explain the varied leaf phenotypes and adaptations to harsh conditions in different natural distributions. CONCLUSION: Our study highlights the extraordinary adaptation of T. rupestris var. ciliata, shedding light on the evolution of cliff plants worldwide.


Subject(s)
Adaptation, Physiological , Chromosomes, Plant , Genome, Plant , China , Chromosomes, Plant/genetics , Adaptation, Physiological/genetics , Rosaceae/genetics , Rosaceae/physiology , Ecosystem , Evolution, Molecular
3.
Sci Data ; 11(1): 406, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649372

ABSTRACT

Cotoneaster glaucophyllus is a semi-evergreen plant that blossoms in late summer, producing dense, attractive, fragrant white flowers with significant ornamental and ecological value. Here, a chromosome-scale genome assembly was obtained by integrating PacBio and Illumina sequencing data with the aid of Hi-C technology. The genome assembly was 563.3 Mb in length, with contig N50 and scaffold N50 values of ~6 Mb and ~31 Mb, respectively. Most (95.59%) of the sequences were anchored onto 17 pseudochromosomes (538.4 Mb). We predicted 35,856 protein-coding genes, 1,401 miRNAs, 655 tRNAs, 425 rRNAs, and 795 snRNAs. The functions of 34,967 genes (97.52%) were predicted. The availability of this chromosome-level genome will provide valuable resources for molecular studies of this species, facilitating future research on speciation, functional genomics, and comparative genomics within the Rosaceae family.


Subject(s)
Chromosomes, Plant , Genome, Plant , Chromosomes, Plant/genetics , Molecular Sequence Annotation , Rosaceae/genetics
4.
Ann Bot ; 134(1): 163-178, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38549558

ABSTRACT

BACKGROUND AND AIMS: Rubus ser. Glandulosi provides a unique model of geographical parthenogenesis on a homoploid (2n = 4x) level. We aim to characterize evolutionary and phylogeographical patterns in this taxon and shed light on the geographical differentiation of apomicts and sexuals. Ultimately, we aim to evaluate the importance of phylogeography in the formation of geographical parthenogenesis. METHODS: Rubus ser. Glandulosi was sampled across its Eurasian range together with other co-occurring Rubus taxa (587 individuals in total). Double-digest restriction site-associated DNA sequencing (ddRADseq) and modelling of suitable climate were used for evolutionary inferences. KEY RESULTS: Six ancestral species were identified that contributed to the contemporary gene pool of R. ser. Glandulosi. Sexuals were introgressed from Rubus dolichocarpus and Rubus moschus in West Asia and from Rubus ulmifolius agg., Rubus canescens and Rubus incanescens in Europe, whereas apomicts were characterized by alleles of Rubus subsect. Rubus. Gene flow between sexuals and apomicts was also detected, as was occasional hybridization with other taxa. CONCLUSIONS: We hypothesize that sexuals survived the last glacial period in several large southern refugia, whereas apomicts were mostly restricted to southern France, whence they quickly recolonized Central and Western Europe. The secondary contact of sexuals and apomicts was probably the principal factor that established geographical parthenogenesis in R. ser. Glandulosi. Sexual populations are not impoverished in genetic diversity along their borderline with apomicts, and maladaptive population genetic processes probably did not shape the geographical patterns.


Subject(s)
Phylogeography , Rosaceae , Europe , Rosaceae/genetics , Rosaceae/physiology , Gene Flow , Biological Evolution , Apomixis/genetics , Asia , Parthenogenesis/genetics , Genetic Variation , Phylogeny
5.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474218

ABSTRACT

SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.


Subject(s)
Pyrus , Rosaceae , Rosaceae/genetics , Pyrus/genetics , Multigene Family , Phylogeny , Introns , Gene Expression Regulation, Plant , Plant Proteins/genetics , Genome, Plant , Evolution, Molecular
6.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429502

ABSTRACT

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Subject(s)
Malus , Pyrus , Rosaceae , Humans , Malus/genetics , Pyrus/genetics , Pyrus/metabolism , Plant Breeding , Rosaceae/genetics , Hybridization, Genetic
7.
PLoS One ; 19(2): e0297595, 2024.
Article in English | MEDLINE | ID: mdl-38330081

ABSTRACT

The Quince (Cydonia oblonga Mill.), typically known for its self-compatibility, surprisingly presents a degree of self-incompatibility. This research focused on exploring the diversity within the self-incompatibility gene locus (S) in various C. oblonga genotypes. Through meticulous DNA sequencing, the study sought to unearth potential novel S alleles. In the process of genotyping the S gene across multiple quince genotypes, not only were the previously documented S1 and S2 alleles identified, but this investigation also uncovered two previously unrecognized alleles, termed S4 and S5. These alleles, particularly S4, emerged as the most prevalent among the tested genotypes. To corroborate the findings derived from DNA sequencing, the study employed pollen tube growth germination assays. These assays elucidated a higher pollen germination rate in the Ardabil2 genotype in contrast to Behta. Additionally, the study involved assessing pollen tube growth in both Ardabil2 and Behta through cross-pollination techniques, meticulously tracking the development of pollen tubes at various stages. Remarkably, the outcomes demonstrated that the Behta genotype possesses self-incompatibility, whereas the Ardabil2 genotype showcases a notable degree of self-compatibility. This groundbreaking discovery of new S alleles in quince not only affirms the species' self-compatibility but also sheds light on the complexities of allelic diversity and its impact on self-incompatibility. Such insights are invaluable for enhancing the yield of quince orchards through strategic breeding programs.


Subject(s)
Rosaceae , Rosaceae/genetics , Alleles , Plant Breeding , Fruit , Pollen Tube/genetics
8.
Plant Physiol Biochem ; 207: 108342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219427

ABSTRACT

Respiratory burst oxidase homolog (Rboh) family genes play crucial functions in development and growth. However, comprehensive and systematic investigation of Rboh family members in Rosaceae and their specific functions during pear pollen development are still limited. In the study, 63 Rboh genes were identified from eight Rosaceae genomes (Malus domestica, Pyrus bretschneideri, Pyrus communis, Prunus persica, Rubus occidentalis, Fragaria vesca, Prunus mume and Prunus avium) and divided into seven main subfamilies (I-VII) according to phylogenetic and structural features. Different modes of gene duplication led to the expansion of Rboh family, with purifying selection playing a vital role in the evolution of Rboh genes. In addition, RNA sequencing and qRT-PCR results indicated that PbRbohH and PbRbohJ were specifically high-expressed in pear pollen. Subsequently, subcellular localization revealed that PbRbohH/J distributed at the plasma membrane. Furthermore, by pharmacological analysis and antisense oligodeoxynucleotide assay, PbRbohH/J were demonstrated to mediate the formation of reactive oxygen species (ROS) to manage pollen tube growth. In conclusion, our results provide useful insights into the functions, expression patterns, evolutionary history of the Rboh genes in pear and other Rosaceae species.


Subject(s)
Pyrus , Rosaceae , Pyrus/genetics , Pyrus/metabolism , Reactive Oxygen Species/metabolism , Pollen Tube/genetics , Phylogeny , Genome, Plant , Rosaceae/genetics
9.
Plant J ; 117(3): 856-872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983569

ABSTRACT

Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol transporters (SOTs) play a vital role in facilitating sorbitol allocation from source to sink organs and sugar accumulation in sink organs. While prior research has addressed gene duplications within the SOT gene family in Rosaceae, the precise origin and evolutionary dynamics of these duplications remain unclear, largely due to the complicated interplay of whole genome duplications and tandem duplications. Here, we investigated the synteny relationships among all identified Polyol/Monosaccharide Transporter (PLT) genes in 61 angiosperm genomes and SOT genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of PLTs and SOTs across diverse plant lineages. We found that Rosaceae SOTs, as PLT family members, originated from a pair of tandemly duplicated PLT genes within Class III-A. Furthermore, our investigation highlights the role of lineage-specific and synergistic duplications in Amygdaloideae in contributing to the expansion of SOTs in Rosaceae plants. Collectively, our findings provide insights into the genomic origins, duplication events, and subsequent divergence of SOT gene family members. Such insights lay a crucial foundation for comprehensive functional characterizations in future studies.


Subject(s)
Magnoliopsida , Rosaceae , Rosaceae/genetics , Phylogeny , Magnoliopsida/genetics , Genome, Plant/genetics , Sorbitol , Evolution, Molecular , Gene Duplication
10.
Mol Phylogenet Evol ; 190: 107956, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898296

ABSTRACT

Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.


Subject(s)
Genome, Mitochondrial , Genome, Plastid , Potentilla , Rosaceae , Phylogeny , Potentilla/genetics , Rosaceae/genetics , Plastids/genetics
11.
Int J Biol Macromol ; 256(Pt 2): 128498, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042315

ABSTRACT

Rab GTPase-activating proteins (RabGAPs), serving as crucial signaling switches, play essential roles in several physiological processes related to plant growth and development. However, despite their importance, information regarding the RabGAP gene family and their biological functions remains unknown in the Rosaceae. In this study, we identified a total of 127 RabGAP genes in seven Rosaceae species, which were divided into five subfamilies. Our findings indicate that whole genome duplication (WGD) events or dispersed duplication events largely contributed to the expansion of RabGAP family members within Rosaceae species. Through tissue-specific expression analyses, we revealed that the PbrRabGAP genes exhibited distinct expression patterns in different pear tissues. Furthermore, by examining the expression pattern during pollen development and employing an antisense oligonucleotide approach, we demonstrated that PbrRabGAP10, located in the cytoplasm, mediates the imbalance of cellulose distribution, thus regulating pollen tube elongation. In conclusion, the present study offers an overview of the RabGAP family in Rosaceae genomes and serves as the basis for further functional studies.


Subject(s)
Pyrus , Rosaceae , Cellulose , Evolution, Molecular , Genome, Plant/genetics , Genomics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen Tube/genetics , Pollen Tube/metabolism , Pyrus/genetics , Pyrus/metabolism , Rosaceae/genetics
12.
Comput Biol Chem ; 107: 107974, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944386

ABSTRACT

An epigenetic modification is DNA N4-methylcytosine (4mC) that affects several biological functions without altering the DNA nucleotides, including DNA conformation, cell development, replication, stability, and DNA structural changes. To prevent restriction enzyme from damaging self-DNA, 4mC performs a critical role in restriction-modification functions. Existing studies mainly focused on finding hand-crafted features to identify 4mC locations, but these methods are inefficient due to high time consuming and high costs. In our research work, we propose a 4mC-CGRU which is a deep learning-based computational model with a standard encoding method to identify the 4mC sites from DNA sequences that learned autonomous feature selection in the Rosaceae genome, particularly in Rosa chinensis (R. chinensis) and Fragaria vesca (F. vesca). The proposed model consists of a convolutional neural network (CNN) and a gated recurrent unit network (GRU)-based model for identifying 4mC sites from Fragaria vesca and Rosa chinensis in the genomes. The CNN model extracts useful features from the datasets and the GRU classifies the DNA sequences. Thus, our approach can automatically extract important features to detect relative sites from DNA sequence. The performance analysis shows that the proposed model consistently outperforms over the state-of-the-art works in detecting 4mC sites.


Subject(s)
Fragaria , Rosaceae , Rosaceae/genetics , Genome , DNA/chemistry , Epigenesis, Genetic , Neural Networks, Computer , Fragaria/genetics
13.
Genes (Basel) ; 14(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38002978

ABSTRACT

This study introduces a meticulously constructed genome assembly at the chromosome level for the Rosaceae family species Prinsepia uniflora, a traditional Chinese medicinal herb. The final assembly encompasses 1272.71 megabases (Mb) distributed across 16 pseudochromosomes, boasting contig and super-scaffold N50 values of 2.77 and 79.32 Mb, respectively. Annotated within this genome is a substantial 875.99 Mb of repetitive sequences, with transposable elements occupying 777.28 Mb, constituting 61.07% of the entire genome. Our predictive efforts identified 49,261 protein-coding genes within the repeat-masked assembly, with 45,256 (91.87%) having functional annotations, 5127 (10.41%) demonstrating tandem duplication, and 2373 (4.82%) classified as transcription factor genes. Additionally, our investigation unveiled 3080 non-coding RNAs spanning 0.51 Mb of the genome sequences. According to our evolutionary study, P. uniflora underwent recent whole-genome duplication following its separation from Prunus salicina. The presented reference-level genome assembly and annotation for P. uniflora will significantly facilitate the in-depth exploration of genomic information pertaining to this species, offering substantial utility in comparative genomics and evolutionary analyses involving Rosaceae species.


Subject(s)
Rosaceae , Rosaceae/genetics , Molecular Sequence Annotation , Phylogeny , Genomics , DNA Transposable Elements/genetics
14.
Sci Rep ; 13(1): 17748, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853204

ABSTRACT

Genus Filipendula (Rosoideae, Rosaceae) comprises about 15 species and mainly distributed in Northern Hemisphere. The phylogenetic relationships based on the nrITS marker are not consistent with the traditional taxonomic systems of the genus. Here, we first analysed the complete chloroplast (cp) genomes of seven Filipendula species (including two varieties of F. palmate). Our results indicated that the cp genomes of Filipendula species had few changes in size, ranging from 154,205 bp to 154,633 bp and the average of 36.63% GC content. A total of 126 annotated genes had the identical order and orientation, implying that the cp genome structure of Filipendula species was rather conserved. However, the cp genomes of Filipendula species exhibited structural differences, including gene loss, transposition and inversion when compared to those of other genera of Rosoideae. Moreover, SSRs with the different number were observed in the cp genome of each Filipendula species and sequence divergence mainly occurred in noncoding regions, in which four mutational hotspots were identified. In contrast, only two positive selection genes (matK and rps8) were found. Phylogenetic and molecular-dating analysis indicated that Filipendula species were divergent from other genera of Rosoideae at about 82.88 Ma. Additionally, Filipendula species from East Asia were split at about 9.64 Ma into two major clades. These results provide a basis for further studying the infrageneric classification of Filipendula.


Subject(s)
Filipendula , Genome, Chloroplast , Rosaceae , Phylogeny , Rosaceae/genetics , Chloroplasts/genetics
15.
BMC Plant Biol ; 23(1): 484, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817059

ABSTRACT

BACKGROUND: Light-harvesting chlorophyll a/b b evelopment of higher plants and in response to abiotic stress. Previous works has demonstrated that that Lhcb genes were involved in the phytochrome regulation and responded to the different light and temperature conditions in Poaceae (such as maize). However, the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species. RESULTS: In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca, 20 in Prunus armeniaca, 33 in Malus domestica 'Gala', 21 in Prunus persica, 33 in Rosa chinensis, 29 in Pyrus bretschneideri, 18 in Rubus occidentalis, 20 in Prunus mume, and 15 in Prunus salicina. Phylogenetic analysis revealed that the Lhcb gene family could be classified into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks in Ks values (0.1-0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis-acting elements in the 2000 bp promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demonstrated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature stress in Rosaceae species. CONCLUSIONS: These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight the critical role of Lhcb in pear's response to low temperatures. The results obtained provide valuable insights for further investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further fruit tree breeding and improvement to cope with the current climate changes.


Subject(s)
Malus , Pyrus , Rosaceae , Rosaceae/genetics , Rosaceae/metabolism , Fruit/genetics , Fruit/metabolism , Phylogeny , Chlorophyll A/metabolism , Genome, Plant/genetics , Plant Breeding , Malus/genetics , Malus/metabolism , Pyrus/genetics , Genomics , Evolution, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Mol Phylogenet Evol ; 189: 107914, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666378

ABSTRACT

Phylogenetic studies in the phylogenomics era have demonstrated that reticulate evolution greatly impedes the accuracy of phylogenetic inference, and consequently can obscure taxonomic treatments. However, the systematics community lacks a broadly applicable strategy for taxonomic delimitation in groups characterized by pervasive reticulate evolution. The red-fruit genus, Stranvaesia, provides an ideal model to examine the influence of reticulation on generic circumscription, particularly where hybridization and allopolyploidy dominate the evolutionary history. In this study, we conducted phylogenomic analyses integrating data from hundreds of single-copy nuclear (SCN) genes and plastomes, and interrogated nuclear paralogs to clarify the inter/intra-generic relationship of Stranvaesia and its allies in the framework of Maleae. Analyses of phylogenomic discord and phylogenetic networks showed that allopolyploidization and introgression promoted the origin and diversification of the Stranvaesia clade, a conclusion further bolstered by cytonuclear and gene tree discordance. With a well-inferred phylogenetic backbone, we propose an updated generic delimitation of Stranvaesia and introduce a new genus, Weniomeles. This new genus is distinguished by its purple-black fruits, thorns trunk and/or branches, and a distinctive fruit core anatomy characterized by multilocular separated by a layer of sclereids and a cluster of sclereids at the top of the locules. Through this study, we highlight a broadly-applicable workflow that underscores the significance of reticulate evolution analyses in shaping taxonomic revisions from phylogenomic data.


Subject(s)
Dreams , Rosaceae , Phylogeny , Rosaceae/genetics
17.
New Phytol ; 240(5): 2102-2120, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537712

ABSTRACT

Maleae is one of the most widespread tribes of Rosaceae and includes several important fruit crops and ornamental plants. We used nuclear genes from 62 transcriptomes/genomes, including 26 newly generated transcriptomes, to reconstruct a well-supported phylogeny and study the evolution of fruit and leaf morphology and the possible effect of whole genome duplication (WGD). Our phylogeny recovered 11 well-supported clades and supported the monophyly of most genera (except Malus, Sorbus, and Pourthiaea) with at least two sampled species. A WGD was located to the most recent common ancestor (MRCA) of Maleae and dated to c. 54 million years ago (Ma) near the Early Eocene Climatic Optimum, supporting Gillenieae (x = 9) being a parental lineage of Maleae (x = 17) and including duplicate regulatory genes related to the origin of the fleshy pome fruit. Whole genome duplication-derived paralogs that are retained in specific lineages but lost in others are predicted to function in development, metabolism, and other processes. An upshift of diversification and innovations of fruit and leaf morphologies occurred at the MRCA of the Malinae subtribe, coinciding with the Eocene-Oligocene transition (c. 34 Ma), following a lag from the time of the WGD event. Our results provide new insights into the Maleae phylogeny, its rapid diversification, and morphological and molecular evolution.


Subject(s)
Malus , Rosaceae , Malus/genetics , Rosaceae/genetics , Phylogeny , Genome , Evolution, Molecular , Gene Duplication
18.
Database (Oxford) ; 20232023 07 06.
Article in English | MEDLINE | ID: mdl-37410918

ABSTRACT

Pear (Pyrus ssp.) belongs to Rosaceae and is an important fruit tree widely cultivated around the world. Currently, challenges to cope with the burgeoning sets of multiomics data are rapidly increasing. Here, we constructed the Pear Multiomics Database (PearMODB) by integrating genome, transcriptome, epigenome and population variation data, and aimed to provide a portal for accessing and analyzing pear multiomics data. A variety of online tools were built including gene search, BLAST, JBrowse, expression heatmap, synteny analysis and primer design. The information of DNA methylation sites and single-nucleotide polymorphisms can be retrieved through the custom JBrowse, providing an opportunity to explore the genetic polymorphisms linked to phenotype variation. Moreover, different gene families involving transcription factors, transcription regulators and disease resistance (nucleotide-binding site leucine-rich repeat) were identified and compiled for quick search. In particular, biosynthetic gene clusters (BGCs) were identified in pear genomes, and specialized webpages were set up to show detailed information of BGCs, laying a foundation for studying metabolic diversity among different pear varieties. Overall, PearMODB provides an important platform for pear genomics, genetics and breeding studies. Database URL http://pearomics.njau.edu.cn.


Subject(s)
Pyrus , Rosaceae , Pyrus/genetics , Pyrus/metabolism , Multiomics , Plant Breeding , Rosaceae/genetics , Fruit , Genomics
19.
BMC Genomics ; 24(1): 337, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337162

ABSTRACT

BACKGROUND: Wall associated kinase (WAK) and WAK-like (WAKL) are typical pattern recognition receptors act as the first sentry of plant defense. But little of WAK/WAKL family is known in Rosaceae. RESULTS: In this study, 131 WAK/WAKL genes from apple, peach and strawberry were identified using a bioinformatics approach. Together with 68 RcWAK/RcWAKL in rose, we performed a comparative analysis of 199 WAK/WAKL in four Rosaceae crops. The phylogenetic analysis divided all the WAK/WAKL into five clades. Among them, the cis-elements of Clade II and Clade V promoters were enriched in jasmonic acid (JA) signaling and abiotic stress, respectively. And this can also be verified by the rose transcriptome responding to different hormone treatments. WAK/WAKL families have experienced a considerable proportion of purifying selection during evolution, but still 26 amino acid sites evolved under positive selection, which focused on extracellular conserved domains. WAK/WAKL genes presented collinearity relationship within and between crops, throughout four crops we mined four orthologous groups (OGs). The WAK/WAKL genes in OG1 and OG4 were speculated to involve in plant-Botrytis cinerea interaction, which were validated in rose via VIGS as well as strawberry by qRT-PCR. CONCLUSIONS: These results not only provide genetic resources and valuable information for the evolutionary relationship of WAK/WAKL gene family, but also offer a reference for future in-depth studies of Rosaceae WAK/WAKL genes.


Subject(s)
Fragaria , Rosa , Rosaceae , Rosaceae/genetics , Rosaceae/metabolism , Phylogeny , Botrytis/genetics , Fragaria/genetics , Fragaria/metabolism , Genomics , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Int J Biol Macromol ; 235: 123860, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36868336

ABSTRACT

The primary regulators of Rho GTPases are GTPase-activating protein (GAP), guanine nucleotide exchange factor (GEF), and GDP dissociation inhibitor (GDI), which function as signaling switches in several physiological processes involved in plant growth and development. This study compared how the Rho GTPase regulators functioned in seven Rosaceae species. Seven Rosaceae species, divided into three subgroups, had a total of 177 regulators of Rho GTPases. According to duplication analysis, the expansion of GEF, GAP, and GDI families was facilitated by whole genome duplication or a dispersed duplication event. The balance of cellulose deposition to control the growth of the pear pollen tube, as demonstrated by the expression profile and antisense oligonucleotide approach. Moreover, protein-protein interactions indicated that PbrGDI1 and PbrROP1 could directly interact, suggesting that PbrGDI1 regulated the growth of the pear pollen tube through PbrROP1 signaling downstream. These results lay the foundations for future functional characterization of the GAP, GEF, and GDI gene families in Pyrus bretschneideri.


Subject(s)
Pyrus , Rosaceae , Rosaceae/genetics , Pyrus/genetics , Pyrus/metabolism , rho GTP-Binding Proteins/genetics , Pollen Tube/genetics , Pollen Tube/metabolism , Cellulose/metabolism , Genome, Plant/genetics , Guanine Nucleotide Exchange Factors/genetics , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL