Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.556
1.
J Orthop Trauma ; 38(7): e245-e251, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38837212

OBJECTIVES: To determine the accuracy of the intermalleolar method, an intraoperative fluoroscopic method for assessing tibial rotation in patients undergoing intramedullary nail fixation for tibial shaft fractures, by comparing it with the gold standard computed tomography (CT). DESIGN: Prospective cohort study. SETTING: Academic Level 1 trauma center. PATIENT SELECTION CRITERIA: Consecutive patients, aged 18 years and older, with unilateral tibial shaft fractures who underwent intramedullary fixation from September 2021 to January 2023. OUTCOME MEASURES AND COMPARISONS: Intraoperatively, tibial rotation measurements were obtained using the intermalleolar method on both the uninjured and injured limbs. Postoperatively, patients underwent bilateral low-dose lower extremity rotational CT scans. CT measurements were made by 4 blinded observers. Mean absolute rotational differences and standard errors were calculated to compare the injured and uninjured limbs. Subgroup analysis was performed assessing accuracy relating to injured versus uninjured limbs, body mass index, OTA/AO fracture pattern, tibial and fibular fracture location, and distal articular fracture extension requiring fixation. RESULTS: Of the 20 tibia fractures, the mean patient age was 43.4 years. The intermalleolar method had a mean absolute rotational difference of 5.1 degrees (standard error 0.6, range 0-13.7) compared with CT. Sixty percent (24/40) of the measurements were within 5 degrees, 90% (36/40) of the measurements were within 10 degrees, and 100% (40/40) were within 15 degrees of the CT. No patients were revised for malrotation postoperatively. CONCLUSIONS: The intermalleolar method is accurate and consistently provides intraoperative tibial rotation measurements within 10 degrees of the mean CT measurement for adult patients undergoing intramedullary nail fixation for unilateral tibial shaft fractures. This method may be employed in the operating room to accurately quantify tibial rotation and assist with intraoperative rotational corrections. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Fracture Fixation, Intramedullary , Tibial Fractures , Tomography, X-Ray Computed , Humans , Tibial Fractures/surgery , Tibial Fractures/diagnostic imaging , Fracture Fixation, Intramedullary/methods , Prospective Studies , Adult , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Fluoroscopy , Rotation , Aged , Tibia/surgery , Tibia/diagnostic imaging , Intraoperative Care/methods
2.
Sci Rep ; 14(1): 12961, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839823

A variation of the longitudinal relaxation time T 1 in brain regions that differ in their main fiber direction has been occasionally reported, however, with inconsistent results. Goal of the present study was to clarify such inconsistencies, and the origin of potential T 1 orientation dependence, by applying direct sample rotation and comparing the results from different approaches to measure T 1 . A section of fixed porcine spinal cord white matter was investigated at 3 T with variation of the fiber-to-field angle θ FB . The experiments included one-dimensional inversion-recovery, MP2RAGE, and variable flip-angle T 1 measurements at 22 °C and 36 °C as well as magnetization-transfer (MT) and diffusion-weighted acquisitions. Depending on the technique, different degrees of T 1 anisotropy (between 2 and 10%) were observed as well as different dependencies on θ FB (monotonic variation or T 1 maximum at 30-40°). More pronounced anisotropy was obtained with techniques that are more sensitive to MT effects. Furthermore, strong correlations of θ FB -dependent MT saturation and T 1 were found. A comprehensive analysis based on the binary spin-bath model for MT revealed an interplay of several orientation-dependent parameters, including the transverse relaxation times of the macromolecular and the water pool as well as the longitudinal relaxation time of the macromolecular pool.


Spinal Cord , Water , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Swine , Anisotropy , Spinal Cord/physiology , Protons , Rotation
3.
J Refract Surg ; 40(6): e381-e391, 2024 May.
Article En | MEDLINE | ID: mdl-38848059

PURPOSE: To investigate the long-term visual quality and rotational stability after the implantation of Implantable Collamer Lens (ICL) and toric ICL (TICL) (STAAR Surgical) in patients with myopia older than 40 years. METHODS: This study included 82 eyes of 41 patients older than 40 years with myopia who underwent ICL/TICL V4c implantation. The refraction sphere, refraction cylinder, spherical equivalent (SE), uncorrected and corrected distance visual acuity, and anterior segmental parameters were measured preoperatively and at the 1-month, 3-month, and last follow-up visits at 33 to 58 months postoperatively (mean follow-up: 42.56 ± 7.17 months). Wavefront aberrations and TICL rotation were measured using OPD-Scan III (Nidek Co Ltd) at the last follow-up visit. RESULTS: At the last follow-up visit, the overall safety and efficacy index were 1.22 ± 0.26 and 0.88 ± 0.34, respectively, without significant differences between the ICL and TICL groups. Postoperative refraction cylinder was -0.95 ± 0.64 and -0.71 ± 0.54 diopters in the ICL and TICL groups, respectively. The average vault was 467.44 ± 231.98 µm. The average TICL rotation was 5.45 ± 6.61 degrees, positively correlated with the preoperative anterior chamber volume (R2 = 0.1118, P = .026) and clockwise TICL alignment degree (R2 = 0.3110, P = .007) and negatively correlated with the 1-month vault (R2 = 0.1218, P = .008). There were no significant differences in the total, corneal, or internal aberrations and modulation transfer function AreaRatio between the ICL and TICL groups. CONCLUSIONS: Both ICL and TICL presented satisfactory long-term safety, efficacy, and visual quality in patients older than 40 years. Postoperative TICL spontaneous rotation was within the manageable range in the long term. [J Refract Surg. 2024;40(6):e381-e391.].


Lens Implantation, Intraocular , Myopia, Degenerative , Phakic Intraocular Lenses , Refraction, Ocular , Visual Acuity , Humans , Visual Acuity/physiology , Refraction, Ocular/physiology , Male , Female , Middle Aged , Adult , Follow-Up Studies , Myopia, Degenerative/physiopathology , Myopia, Degenerative/surgery , Retrospective Studies , Corneal Wavefront Aberration/physiopathology , Rotation
4.
Sci Rep ; 14(1): 10322, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710745

Blade cut-out is a common complication when using proximal femoral nail anti-rotation (PFNA) for the treatment of intertrochanteric fractures. Although cement augmentation has been introduced to overcome the cut-out effect, the micromechanics of this approach remain to be clarified. While previous studies have developed finite element (FE) models based on lab-prepared or cadaveric samples to study the cement-trabeculae interface, their demanding nature and inherent disadvantages limit their application. The aim of this study was to develop a novel 'one-step forming' method for creating a cement-trabeculae interface FE model to investigate its micromechanics in relation to PFNA with cement augmentation. A human femoral head was scanned using micro-computed tomography, and four volume of interest (VOI) trabeculae were segmented. The VOI trabeculae were enclosed within a box to represent the encapsulated region of bone cement using ANSYS software. Tetrahedral meshing was performed with Hypermesh software based on Boolean operation. Finally, four cement-trabeculae interface FE models comprising four interdigitated depths and five FE models comprising different volume fraction were established after element removal. The effects of friction contact, frictionless contact, and bond contact properties between the bone and cement were identified. The maximum micromotion and stress in the interdigitated and loading bones were quantified and compared between the pre- and post-augmentation situations. The differences in micromotion and stress with the three contact methods were minimal. Micromotion and stress decreased as the interdigitation depth increased. Stress in the proximal interdigitated bone showed a correlation with the bone volume fraction (R2 = 0.70); both micromotion (R2 = 0.61) and stress (R2 = 0.93) at the most proximal loading region exhibited a similar correlation tendency. When comparing the post- and pre-augmentation situations, micromotion reduction in the interdigitated bone was more effective than stress reduction, particularly near the cement border. The cementation resulted in a significant reduction in micromotion within the loading bone, while the decrease in stress was minimal. Noticeable gradients of displacement and stress reduction can be observed in models with lower bone volume fraction (BV/TV). In summary, cement augmentation is more effective at reducing micromotion rather than stress. Furthermore, the reinforcing impact of bone cement is particularly prominent in cases with a low BV/TV. The utilization of bone cement may contribute to the stabilization of trabecular bone and PFNA primarily by constraining micromotion and partially shielding stress.


Bone Cements , Bone Nails , Finite Element Analysis , Hip Fractures , Humans , Hip Fractures/surgery , X-Ray Microtomography , Biomechanical Phenomena , Femur Head , Rotation
5.
J Orthop Surg Res ; 19(1): 282, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711065

BACKGROUND: The aim of this study was to compare the effects of four different immobilization methods [single sugar tong splint (SSTS), double sugar tong splint (DSTS), short arm cast (SAC), and long arm cast (LAC)] commonly used for restricting forearm rotation in the upper extremity. METHODS: Forty healthy volunteers were included in the study. Dominant extremities were used for measurements. Basal pronation and supination of the forearm were measured with a custom-made goniometer, and the total rotation arc was calculated without any immobilization. Next, the measurements were repeated with the SAC, LAC, SSTS and DSTS. Each measurement was compared to the baseline value, and the percentage of rotation restriction was calculated. RESULTS: The most superior restriction rates were observed for the LAC (p = 0.00). No statistically significant difference was detected between the SSTS and DSTS in terms of the restriction of supination, pronation or the rotation arc (p values, 1.00, 0.18, and 0.50, respectively). Statistically significant differences were not detected between the SAC and the SSTS in any of the three parameters (p values, 0.25; 1.00; 1.00, respectively). When the SAC and DSTS were compared, while there was no significant difference between the two methods in pronation (p = 0.50), a statistically significant difference was detected in supination (p = 0.01) and in the total rotation arc (p = 0.03). CONCLUSION: The LAC provides superior results in restricting forearm rotation. The SAC and SSTS had similar effects on forearm rotation. The DSTS, which contains, in addition to the SSTS, a sugar tong portion above the elbow, does not provide additional rotational stability.


Forearm , Immobilization , Splints , Humans , Male , Female , Adult , Rotation , Forearm/physiology , Young Adult , Immobilization/methods , Supination/physiology , Pronation/physiology , Casts, Surgical , Healthy Volunteers , Range of Motion, Articular/physiology
6.
Multisens Res ; 37(2): 163-184, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38714313

The current investigation examined whether visual motion without continuous visual displacement could effectively induce self-motion perception (vection). Four-stroke apparent motions (4SAM) were employed in the experiments as visual inducers. The 4SAM pattern contained luminance-defined motion energy equivalent to the real motion pattern, and the participants perceived unidirectional motion according to the motion energy but without displacements (the visual elements flickered on the spot). The experiments revealed that the 4SAM stimulus could effectively induce vection in the horizontal, expanding, or rotational directions, although its strength was significantly weaker than that induced by the real-motion stimulus. This result suggests that visual displacement is not essential, and the luminance-defined motion energy and/or the resulting perceived motion of the visual inducer would be sufficient for inducing visual self-motion perception. Conversely, when the 4SAM and real-motion patterns were presented simultaneously, self-motion perception was mainly determined in accordance with real motion, suggesting that the real-motion stimulus is a predominant determinant of vection. These research outcomes may be worthy of considering the perceptual and neurological mechanisms underlying self-motion perception.


Motion Perception , Photic Stimulation , Humans , Motion Perception/physiology , Male , Female , Adult , Young Adult , Rotation , Visual Perception/physiology
7.
PeerJ ; 12: e17411, 2024.
Article En | MEDLINE | ID: mdl-38803584

Background: This study aims to examine the relationship between functional movements and golf performance using the Golf Specific Functional Movement Screen (GSFMS). Methods: This cross-sectional study included a total of 56 collegiate golfers (aged 20.89 ± 0.99 years, height of 174.55 ± 7.76 cm, and weight 68.48 ± 9.30 kg) who met the criteria, and were recruited from Hainan Normal University in June 2022. The participants' golf motor skills (1-yard putt, 10-yard putt, 25-yard chip, 130/100-yard set shot, driver, and 9-hole stroke play) were tested and the GSFMS (e.g., pelvic tilt, pelvic rotation, and torso rotation) was used. Results: There were significant weak or moderate correlations between the variables. Furthermore, a multiple linear regression analysis found that pelvic rotation and lower-body rotation abilities can significantly predict golf skill levels, which collectively explain 31.2% of the variance in golf skill levels among collegiate golfers (Adjusted R2 = 0.312, F = 2.663, p < 0.05). Standardised ß values indicate that pelvic rotation (ß = 0.398) has a more substantial impact on golf skill levels than lower-body rotation (ß = 0.315). Conclusions: This study found the weak to moderate correlations between the GSFMS and golf performance, and pelvic rotation and lower-body rotation abilities, thus predicting golf skills. Our findings provide novel insights into the relationship between functional abilities and comprehensive skill performance within the context of the Gray Cook's Movement Pyramid model, and provide theoretical support and practical reference for collegiate golf motor-skill learning and sports injury prevention.


Athletic Performance , Golf , Motor Skills , Movement , Humans , Golf/physiology , Cross-Sectional Studies , Athletic Performance/physiology , Male , Young Adult , Motor Skills/physiology , Movement/physiology , Universities , Female , Rotation
8.
Article En | MEDLINE | ID: mdl-38758684

BACKGROUND: The present study aimed to analyze and compare the efficacy of the anterolateral and posterolateral approaches for surgical treatment of supination-external rotation type IV ankle fractures. METHODS: This retrospective study enrolled 60 patients (60 feet) with supination-external rotation type IV ankle fractures, including 30 patients (30 feet) treated by means of the anterolateral approach and 30 patients (30 feet) treated by means of the posterolateral approach. Postoperative clinical efficacy was compared between the groups based on operation time, intraoperative blood loss, postoperative complications, fracture healing time, visual analog scale scores, Short Form-36 Health Survey scores, and American Orthopedic Foot and Ankle Society scores. Comparisons between the two groups were performed using independent-samples t tests and analyses of variance. Intragroup differences were compared using paired t tests, and the χ2 test was used to compare categorical variables. RESULTS: All 60 included patients completed follow-up ranging from 12 to 18 months (mean duration, 14.8 ± 3.5 months). Although baseline characteristics were similar in the two groups, there were significant differences in operation time (86.73 ± 17.44 min versus 111.23 ± 10.05 min; P < .001) and intraoperative blood loss (112.60 ± 25.05 mL versus 149.47 ± 44.30 mL; P < .001). Although fracture healing time (10.90 ± 0.66 weeks versus 11.27 ± 0.94 weeks; P = .087) was shorter in the anterolateral group than in the posterolateral group, the difference was not significant. Postoperative complications occurred in one and three patients in the anterolateral and posterolateral approach groups, respectively. Visual analog scale scores were significantly lower in the anterolateral group than in the posterolateral group (1.43 ± 0.50 versus 1.83 ± 0.75; P = .019), although there was no significant difference in Short Form-36 Health Survey scores between the groups (73.63 ± 4.07 versus 72.70 ± 4.04; P = .377). However, American Orthopedic Foot and Ankle Society scores were higher in the anterolateral group than in the posterolateral group (80.43 ± 4.32 versus 75.43 ± 11.32; P = .030). CONCLUSIONS: Both the anterolateral and posterolateral approaches can achieve good results in the treatment of supination-external rotation type IV ankle fractures. Compared with the posterolateral approach, the anterolateral approach is advantageous for the treatment of supination-external rotation type IV ankle fractures given its safety and ability to reduce trauma, clear field of view revealed, and allow for exploration and repair of the inferior tibiofibular anterior syndesmosis within the same incision.


Ankle Fractures , Fracture Fixation, Internal , Supination , Humans , Male , Female , Retrospective Studies , Fracture Fixation, Internal/methods , Ankle Fractures/surgery , Middle Aged , Adult , Open Fracture Reduction/methods , Treatment Outcome , Fracture Healing/physiology , Operative Time , Range of Motion, Articular , Rotation
9.
J Bodyw Mov Ther ; 38: 47-53, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763595

INTRODUCTION: Low back pain (LBP) is an economic and physically disabling burden on individuals and society. With 70% of cases classed as non-specific, there is a need for further research into the causes and consequences associated. The involvement of postural balance in musculoskeletal conditions is gaining increasing interest in research and health practice. However, there is a lack of literature surrounding LBP and posture in distal segments of the body. OBJECTIVE: The current study investigated scapula positioning in those with non-specific LBP. METHODS: Scapula angle of rotation, scapula protraction, and scapula elevation were assessed in nine participants with chronic non-specific LBP and compared with that of nine asymptomatic controls (aged 18-60 years). The degree of pelvic tilt was assessed across both groups as a secondary outcome measure. RESULTS: No difference was identified between the two sample groups for scapula angle of rotation (p = 0.707), protraction (p = 0.755), or elevation (p = 0.691). Anterior pelvic tilt was greater in those with LBP (p = 0.046), supporting previous literature. CONCLUSION: The findings for the scapula position are novel, given that research in this field is limited. It is concluded that there is no change in scapula positioning in those with non-specific LBP, but there is an increased anterior pelvic tilt.


Low Back Pain , Scapula , Humans , Low Back Pain/physiopathology , Scapula/physiopathology , Scapula/physiology , Adult , Male , Female , Middle Aged , Young Adult , Adolescent , Posture/physiology , Rotation , Postural Balance/physiology , Biomechanical Phenomena
10.
J Bodyw Mov Ther ; 38: 520-524, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763602

BACKGROUND: Asymmetries and poor Y balance test (YBT) performance are associated with an increased risk of injuries in athletes. The aim of this study was to investigate the association between YBT performance with biomechanical variables in runners. METHODS: The runners underwent the YBT, followed by the assessment of center of pressure, plank position, muscle strength (MS) of hip flexors, extensors, abductors, and external rotators, knee extensors, ankle dorsiflexion range of motion (ROM), Q angle, forefoot alignment, and passive hip internal rotation. Associations between variables were examined using multiple linear regression models with the Bayesian Information Criterion. RESULTS: 122 cases were analyzed. The R2 values were 0.38; 0.05; 0.06; and 0.15 for the anterior, posteromedial, posterolateral and composite directions models, respectively. The anterior reach in the YBT was associated with ankle dorsiflexion ROM [Sß 95%IC: 0.43 (0.32-0.55)], passive hip internal rotation [Sß 95%IC: 0.35 (0.24-0.47)], MS of the hip extensors [Sß 95%IC: 0.19 (0.07-0.31)] and forefoot alignment [Sß 95%IC: 0.14 (-0.25-0.02)]. The posteromedial and posterolateral reach were associated with MS of the hip flexors [Sß 95%IC: 0.23 (0.09-0.37) and 0.24 (0.11-0.38)], respectively. The composite score was associated with MS of the hip flexors [Sß 95%IC: 0.31 (0.18-0.45)], ankle dorsiflexion ROM [Sß 95%IC: 0.24 (0.10-0.37)] and Q angle [Sß 95%IC: 0.18 (0.04-0.31)]. CONCLUSION: YBT performance in different directions demonstrated specific associations with key biomechanical factors.


Muscle Strength , Postural Balance , Range of Motion, Articular , Running , Humans , Biomechanical Phenomena/physiology , Running/physiology , Male , Range of Motion, Articular/physiology , Adult , Female , Postural Balance/physiology , Muscle Strength/physiology , Ankle Joint/physiology , Young Adult , Hip Joint/physiology , Muscle, Skeletal/physiology , Cross-Sectional Studies , Middle Aged , Rotation
11.
Dental Press J Orthod ; 29(2): e2423237, 2024.
Article En | MEDLINE | ID: mdl-38775600

OBJECTIVE: This retrospective study aimed to assess the predictability of Invisalign® aligners regarding rotational, mesio-distal and buccal-lingual tip movements. METHODS: Two materials were included in the analysis - EX30, used until 2013; and SmartTrack, in current use. The study comprised 56 adult patients treated with Invisalign Comprehensive. Data sample were assessed on three sets of digital models; model 1 - initial, model 2 - predicted, and model 3 - achieved. Sixty reference points were marked in each dental arch, and two reference planes assisted the superimposition. The degree of rotation, mesio-distal and buccal-lingual tip was obtained via trigonometric calculations, through a previously published validated method. The accuracy of outcomes was compared according to the types of tooth movement and teeth groups,and the influence of predetermined variables on movement accuracy was also investigated. RESULTS: Rotation and mesio-distal tip did not present any significant difference when comparing EX30 and SmartTrack groups. Only buccal-lingual tip presented a significant difference, incisor and canine groups treated with EX30 aligners presented an increase in accuracy (p= 0.007 and p = 0.007, respectively). For each additional degree planned for rotation movements, there was an increase of 0.35° in the discrepancy, and an increase of 0.40° and 0.41° for mesio-distal and buccal-lingual tip, respectively. EX30 and SmartTrack discrepancies were compared by multilevel linear regression. CONCLUSION: EX30 aligners reached higher accuracy for buccal-lingual tip in anterior teeth. However, for rotation and mesio-distal tip, SmartTrack and EX30 are similarly accurate. The total amount of planned movement has a significant impact on accuracy rates, with a decrease in accuracy for every additional degree.


Tooth Movement Techniques , Humans , Tooth Movement Techniques/instrumentation , Retrospective Studies , Adult , Rotation , Female , Male , Orthodontic Appliance Design , Incisor , Models, Dental , Orthodontic Appliances, Removable , Dental Arch
12.
Int J Med Robot ; 20(3): e2640, 2024 Jun.
Article En | MEDLINE | ID: mdl-38794828

BACKGROUND: Accurately estimating the 6D pose of snake-like wrist-type surgical instruments is challenging due to their complex kinematics and flexible design. METHODS: We propose ERegPose, a comprehensive strategy for precise 6D pose estimation. The strategy consists of two components: ERegPoseNet, an original deep neural network model designed for explicit regression of the instrument's 6D pose, and an annotated in-house dataset of simulated surgical operations. To capture rotational features, we employ an Single Shot multibox Detector (SSD)-like detector to generate bounding boxes of the instrument tip. RESULTS: ERegPoseNet achieves an error of 1.056 mm in 3D translation, 0.073 rad in 3D rotation, and an average distance (ADD) metric of 3.974 mm, indicating an overall spatial transformation error. The necessity of the SSD-like detector and L1 loss is validated through experiments. CONCLUSIONS: ERegPose outperforms existing approaches, providing accurate 6D pose estimation for snake-like wrist-type surgical instruments. Its practical applications in various surgical tasks hold great promise.


Neural Networks, Computer , Surgical Instruments , Wrist , Humans , Wrist/surgery , Equipment Design , Biomechanical Phenomena , Algorithms , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Imaging, Three-Dimensional/methods , Rotation , Reproducibility of Results , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Regression Analysis
13.
Exp Brain Res ; 242(6): 1469-1479, 2024 Jun.
Article En | MEDLINE | ID: mdl-38695940

Ocular torsion and vertical divergence reflect the brain's sensorimotor integration of motion through the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) to roll rotations. Torsion and vergence however express different response patterns depending on several motion variables, but research on their temporal dynamics remains limited. This study investigated the onset times of ocular torsion (OT) and vertical vergence (VV) during visual, vestibular, and visuovestibular motion, as well as their relative decay rates following prolonged optokinetic stimulations. Temporal characteristics were retrieved from three separate investigations where the level of visual clutter and acceleration were controlled. Video eye-tracking was used to retrieve the eye-movement parameters from a total of 41 healthy participants across all trials. Ocular torsion consistently initiated earlier than vertical vergence, particularly evident under intensified visual information density, and higher clutter levels were associated with more balanced decay rates. Additionally, stimulation modality and accelerations affected the onsets of both eye movements, with visuovestibular motion triggering earlier responses compared to vestibular motion, and increased accelerations leading to earlier onsets for both movements. The present study showed that joint visuovestibular responses produced more rapid onsets, indicating a synergetic sensorimotor process. It also showed that visual content acted as a fusional force during the decay period, and imposed greater influence over the torsional onset compared to vergence. Acceleration, by contrast, did not affect the temporal relationship between the two eye movements. Altogether, these findings provide insights into the sensorimotor integration of the vestibulo-ocular and optokinetic reflex arcs.


Reflex, Vestibulo-Ocular , Humans , Adult , Male , Female , Reflex, Vestibulo-Ocular/physiology , Young Adult , Rotation , Eye Movements/physiology , Vestibule, Labyrinth/physiology , Motion Perception/physiology , Convergence, Ocular/physiology
14.
Sci Rep ; 14(1): 12329, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811593

Mental rotation is the ability to rotate mental representations of objects in space. Shepard and Metzler's shape-matching tasks, frequently used to test mental rotation, involve presenting pictorial representations of 3D objects. This stimulus material has raised questions regarding the ecological validity of the test for mental rotation with actual visual 3D objects. To systematically investigate differences in mental rotation with pictorial and visual stimuli, we compared data of N = 54 university students from a virtual reality experiment. Comparing both conditions within subjects, we found higher accuracy and faster reaction times for 3D visual figures. We expected eye tracking to reveal differences in participants' stimulus processing and mental rotation strategies induced by the visual differences. We statistically compared fixations (locations), saccades (directions), pupil changes, and head movements. Supplementary Shapley values of a Gradient Boosting Decision Tree algorithm were analyzed, which correctly classified the two conditions using eye and head movements. The results indicated that with visual 3D figures, the encoding of spatial information was less demanding, and participants may have used egocentric transformations and perspective changes. Moreover, participants showed eye movements associated with more holistic processing for visual 3D figures and more piecemeal processing for pictorial 2D figures.


Eye Movements , Humans , Female , Male , Eye Movements/physiology , Young Adult , Adult , Rotation , Reaction Time/physiology , Photic Stimulation/methods , Space Perception/physiology , Virtual Reality , Visual Perception/physiology , Head Movements/physiology , Saccades/physiology
15.
J Orthop Surg Res ; 19(1): 293, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735944

OBJECTIVE: To investigate the effects of bracing on apical vertebral derotation and explore the factors that influence in-brace derotation effects in adolescent idiopathic scoliosis (AIS) patients. For patients with AIS, vertebral rotation causes cosmetic appearance abnormalities and acts as an indicator for curve progression. However, there have been few studies investigating the precise derotation effects of bracing for apical vertebra. The application of EOS imaging system enables quantitative evaluation of vertebral rotation in the axial plane in a standing position. METHODS: There were 82 eligible patients enrolled in current study, who underwent EOS imaging evaluation before and immediately after bracing. The clinical demographic data (age, gender, Risser sign and menstrual status) were recorded. The correlation analyses between derotation effects and key parameters (age, pre-brace Cobb angle, thoracic kyphosis, lumbar lordosis, vertebral rotation, pelvis axial rotation and apical vertebral level) were performed. The in-brace derotation effects stratified by gender, Risser sign, apical vertebral level, menarche status, coronal balance and sagittal balance were also analyzed. RESULTS: The rotation of apical vertebra was decreased from 8.8 ± 6.0 degrees before bracing to 3.8 ± 3.3 degrees immediately after bracing (p < 0.001), and the derotation rate was 49.2 ± 38.3%. The derotation degrees in brace was significantly correlated with major curve Cobb angle (r = 0.240, p = 0.030), minor curve Cobb angle (r = 0.256, p = 0.020) and total curve Cobb angle (r = 0.266, p = 0.016). Both the pre-brace apical vertebral rotation and apical vertebral level were significantly correlated with derotation effects in brace (p < 0.001). Patients with thoracic major curve showed worse derotation effects than those with lumbar major curve (p < 0.001). In addition, patients with coronal balance showed better in-brace derotation effects than those with coronal decompensation (p = 0.005). CONCLUSIONS: A satisfactory apical vertebral derotation rate (approximately 50%) could be obtained immediately after bracing in AIS patients. Pre-brace Cobb angle of curve, pre-brace apical vertebral rotation, apical vertebral level and coronal balance exhibited close associations with in-brace derotation effects of apical vertebra.


Braces , Scoliosis , Humans , Scoliosis/diagnostic imaging , Scoliosis/therapy , Female , Adolescent , Male , Child , Rotation , Thoracic Vertebrae/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731902

Investigation of chiroptical polymers in the solution phase is paramount for designing supramolecular architectures for photonic or biomedical devices. This work is devoted to the case study of poly(propylene oxide) (PPO) optical activity in several solvents: benzonitrile, carbon disulfide, chloroform, ethyl acetate, and p-dioxane. To attain information on the interactions in these systems, rheological testing was undertaken, showing distinct variations of the rheological parameters as a function of the solvent type. These aspects are also reflected in the refractive index dispersive behavior, from which linear and non-linear optical properties are extracted. To determine the circular birefringence and specific rotation of the PPO solutions, the alternative method of the channeled spectra was employed. The spectral data were correlated with the molecular modeling of the PPO structural unit in the selected solvents. Density functional theory (DFT) computational data indicated that the torsional potential energy-related to the O1-C2-C3-O4 dihedral angle from the polymer repeating unit-was hindered in solvation environments characterized by high polarity and the ability to interact via hydrogen bonding. This was in agreement with the optical characterization of the samples, which indicated a lower circular birefringence and specific rotation for the solutions of PPO in ethyl acetate and p-dioxane. Also, the shape of optical rotatory dispersion curves was slightly modified for PPO in these solvents compared with the other ones.


Solvents , Solvents/chemistry , Propylene Glycols/chemistry , Polypropylenes/chemistry , Polymers/chemistry , Models, Molecular , Rotation , Hydrogen Bonding , Rheology
17.
Sensors (Basel) ; 24(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38733018

Traditionally, angle measurements have been performed using a goniometer, but the complex motion of shoulder movement has made these measurements intricate. The angle of rotation of the shoulder is particularly difficult to measure from an upright position because of the complicated base and moving axes. In this study, we attempted to estimate the shoulder joint internal/external rotation angle using the combination of pose estimation artificial intelligence (AI) and a machine learning model. Videos of the right shoulder of 10 healthy volunteers (10 males, mean age 37.7 years, mean height 168.3 cm, mean weight 72.7 kg, mean BMI 25.6) were recorded and processed into 10,608 images. Parameters were created using the coordinates measured from the posture estimation AI, and these were used to train the machine learning model. The measured values from the smartphone's angle device were used as the true values to create a machine learning model. When measuring the parameters at each angle, we compared the performance of the machine learning model using both linear regression and Light GBM. When the pose estimation AI was trained using linear regression, a correlation coefficient of 0.971 was achieved, with a mean absolute error (MAE) of 5.778. When trained with Light GBM, the correlation coefficient was 0.999 and the MAE was 0.945. This method enables the estimation of internal and external rotation angles from a direct-facing position. This approach is considered to be valuable for analyzing motor movements during sports and rehabilitation.


Artificial Intelligence , Machine Learning , Range of Motion, Articular , Shoulder Joint , Humans , Male , Adult , Shoulder Joint/physiology , Range of Motion, Articular/physiology , Female , Rotation , Posture/physiology , Computers, Handheld
18.
Am J Sports Med ; 52(7): 1676-1684, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767156

BACKGROUND: Improper sequencing order of maximal joint and segment velocities has been identified as an important predictor for both throwing arm kinetics and ball velocity. PURPOSE: To investigate the intrapitcher variation of maximal segment velocities and the relationship to throwing arm kinetics and ball velocity in high school (HS) and professional (PRO) pitchers. STUDY DESIGN: Descriptive laboratory study. METHODS: HS (n = 59) and PRO (n = 338) pitchers, instructed to throw 8 to 12 fastball pitches, were evaluated with 3-dimensional motion capture (480 Hz). Maximal joint and segment velocities were calculated for each pitch, and the standard deviation of the maxima was calculated per pitcher. These standard deviations were used to classify pitchers as "low variance" or "high variance" for each segmental velocity subgroup, "overall low variance" or "overall high variance" based on cumulative segment velocity variation, or "population," with any pitcher eligible to be included in multiple subcategories. Maximal velocities and throwing arm kinetics were compared among the various subgroups. RESULTS: The HS low-variance shoulder internal rotation velocity subgroup (4949 ± 642 deg/s) had significantly lower maximal shoulder internal rotation velocity compared with HS population (5774 ± 1057 deg/s) (P < .001); similar findings were observed for PROs (5269 ± 835 vs 5824 ± 1076 deg/s; P < .001), as well as lower shoulder superior force compared with the PRO population (14.8% ± 8.8% vs 17.8% ± 8.8% body weight; P = .001). The PRO low-variance lead knee extension velocity subgroup had significantly lower maximal lead knee extension velocity (216 ± 135 vs 258 ± 125 deg/s; P = .001) and shoulder distractive force (111.5% ± 14.4% vs 115.6% ± 15.9% body weight; P = .003) compared with the PRO population. The PRO overall low-variance subgroup had significantly lower shoulder distractive force (111.8% ± 14.1% vs 119.6% ± 15.5% body weight; P = .008) and elbow anterior force (40.6% ± 5.0% vs 43.6% ± 6.2% body weight; P = .008) compared with the PRO overall high-variance subgroup. CONCLUSION: HS and PRO pitchers with low variance for joint and segment velocities achieved significantly lower maximal velocities in the subgroup of interest, while preserving ball velocity. PRO pitchers with overall low variance among multiple maximal joint and segment velocities demonstrated decreased shoulder distractive and elbow anterior force. CLINICAL RELEVANCE: PRO pitchers with low intrapitch variation in maximal joint and segment velocities may be viewed as kinetically conservative throwers. These pitchers with similarly maintained mechanics between pitches may have an increasingly regimented form that preserves kinetic forces about the throwing arm. The opposite may be true for PRO pitchers with increased variability in segmental velocities during their pitching motion, as they showed increased throwing arm kinetics including shoulder distractive and elbow anterior force compared with the overall low-variance group, theoretically increasing their risk of injury.


Baseball , Shoulder Joint , Humans , Baseball/physiology , Biomechanical Phenomena , Adolescent , Male , Shoulder Joint/physiology , Arm/physiology , Rotation , Young Adult , Athletic Performance/physiology , Range of Motion, Articular/physiology
19.
Sci Rep ; 14(1): 11922, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789542

Stress concentration on the Anterior Cruciate Ligament Reconstruction (ACLr) for femoral drillings is crucial to understanding failures. Therefore, we described the graft stress for transtibial (TT), the anteromedial portal (AM), and hybrid transtibial (HTT) techniques during the anterior tibial translation and medial knee rotation in a finite element model. A healthy participant with a non-medical record of Anterior Cruciate Ligament rupture with regular sports practice underwent finite element analysis. We modeled TT, HTT, AM drillings, and the ACLr as hyperelastic isotropic material. The maximum Von Mises principal stresses and distributions were obtained from anterior tibial translation and medial rotation. During the anterior tibia translation, the HTT, TT, and AM drilling were 31.5 MPa, 34.6 Mpa, and 35.0 MPa, respectively. During the medial knee rotation, the AM, TT, and HTT drilling were 17.3 MPa, 20.3 Mpa, and 21.6 MPa, respectively. The stress was concentrated at the lateral aspect of ACLr,near the femoral tunnel for all techniques independent of the knee movement. Meanwhile, the AM tunnel concentrates the stress at the medial aspect of the ACLr body under medial rotation. The HTT better constrains the anterior tibia translation than AM and TT drillings, while AM does for medial knee rotation.


Anterior Cruciate Ligament Reconstruction , Femur , Finite Element Analysis , Stress, Mechanical , Tibia , Humans , Anterior Cruciate Ligament Reconstruction/methods , Femur/surgery , Tibia/surgery , Rotation , Male , Biomechanical Phenomena , Adult , Knee Joint/surgery , Knee Joint/physiopathology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Anterior Cruciate Ligament/surgery
20.
Article En | MEDLINE | ID: mdl-38758613

Motor unit (MU) discharge information obtained via electromyogram (EMG) decomposition can be used to decode dexterous multi-finger movement intention for neural-machine interfaces (NMI). However, the variation of the motor unit action potential (MUAP) shape resulted from forearm rotation leads to the decreased performance of EMG decomposition, especially under the real-time condition and then the degradation of motion decoding accuracy. The object of this study was to develop a method to realize the accurate extraction of MU discharge information across forearm pronated/supinated positions in the real-time condition for dexterous multi-finger force prediction. The FastICA-based EMG decomposition technique was used and the proposed method obtained multiple separation vectors for each MU at different forearm positions in the initialization phase. Under the real-time condition, the MU discharge information was extracted adaptively using the separation vector extracted at the nearest forearm position. As comparison, the previous method that utilized a single constant separation vector to extract MU discharges across forearm positions and the conventional method that utilized the EMG amplitude information were also performed. The results showed that the proposed method obtained a significantly better performance compared with the other two methods, manifested in a larger coefficient of determination ( [Formula: see text] and a smaller root mean squared error (RMSE) between the predicted and recorded force. Our results demonstrated the feasibility and the effectiveness of the proposed method to extract MU discharge information during forearm rotation for dexterous force prediction under the real-time conditions. Further development of the proposed method could potentially promote the application of the EMG decomposition technique for continuous dexterous motion decoding in a realistic NMI application scenario.


Algorithms , Electromyography , Fingers , Forearm , Motor Neurons , Humans , Forearm/physiology , Electromyography/methods , Fingers/physiology , Male , Motor Neurons/physiology , Rotation , Young Adult , Adult , Female , Muscle, Skeletal/physiology , Action Potentials/physiology , Brain-Computer Interfaces , Reproducibility of Results , Muscle Contraction/physiology , Movement/physiology
...