Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113.852
1.
Sci Rep ; 14(1): 12869, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834614

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.


Biomass , Ethanol , Fermentation , Magnetic Fields , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Aerobiosis , Anaerobiosis , Ethanol/metabolism , Glucose/metabolism , Bioreactors/microbiology , Glycerol/metabolism , Oxygen/metabolism , Nitrogen/metabolism
2.
Cell Mol Biol Lett ; 29(1): 85, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834954

The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.


Autophagy , Phosphates , Saccharomyces cerevisiae Proteins , Phosphates/metabolism , Phosphates/deficiency , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Kinases
3.
World J Microbiol Biotechnol ; 40(7): 230, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829459

ß-Carotene is an attractive compound and that its biotechnological production can be achieved by using engineered Saccharomyces cerevisiae. In a previous study, we developed a technique for the efficient establishment of diverse mutants through the introduction of point and structural mutations into the yeast genome. In this study, we aimed to improve ß-carotene production by applying this mutagenesis technique to S. cerevisiae strain that had been genetically engineered for ß-carotene production. Point and structural mutations were introduced into ß-carotene-producing engineered yeast. The resulting mutants showed higher ß-carotene production capacity than the parental strain. The top-performing mutant, HP100_74, produced 37.6 mg/L of ß-carotene, a value 1.9 times higher than that of the parental strain (20.1 mg/L). Gene expression analysis confirmed an increased expression of multiple genes in the glycolysis, mevalonate, and ß-carotene synthesis pathways. In contrast, expression of ERG9, which functions in the ergosterol pathway competing with ß-carotene production, was decreased in the mutant strain. The introduction of point and structural mutations represents a simple yet effective method for achieving mutagenesis in yeasts. This technique is expected to be widely applied in the future to produce chemicals via metabolic engineering of S. cerevisiae.


Metabolic Engineering , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , beta Carotene , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , beta Carotene/biosynthesis , beta Carotene/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mutation , Gene Expression Regulation, Fungal , Carotenoids/metabolism , Mutagenesis , Point Mutation , Mevalonic Acid/metabolism , Biosynthetic Pathways/genetics , Farnesyl-Diphosphate Farnesyltransferase
4.
BMC Bioinformatics ; 25(1): 204, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824535

BACKGROUND: Protein solubility is a critically important physicochemical property closely related to protein expression. For example, it is one of the main factors to be considered in the design and production of antibody drugs and a prerequisite for realizing various protein functions. Although several solubility prediction models have emerged in recent years, many of these models are limited to capturing information embedded in one-dimensional amino acid sequences, resulting in unsatisfactory predictive performance. RESULTS: In this study, we introduce a novel Graph Attention network-based protein Solubility model, GATSol, which represents the 3D structure of proteins as a protein graph. In addition to the node features of amino acids extracted by the state-of-the-art protein large language model, GATSol utilizes amino acid distance maps generated using the latest AlphaFold technology. Rigorous testing on independent eSOL and the Saccharomyces cerevisiae test datasets has shown that GATSol outperforms most recently introduced models, especially with respect to the coefficient of determination R2, which reaches 0.517 and 0.424, respectively. It outperforms the current state-of-the-art GraphSol by 18.4% on the S. cerevisiae_test set. CONCLUSIONS: GATSol captures 3D dimensional features of proteins by building protein graphs, which significantly improves the accuracy of protein solubility prediction. Recent advances in protein structure modeling allow our method to incorporate spatial structure features extracted from predicted structures into the model by relying only on the input of protein sequences, which simplifies the entire graph neural network prediction process, making it more user-friendly and efficient. As a result, GATSol may help prioritize highly soluble proteins, ultimately reducing the cost and effort of experimental work. The source code and data of the GATSol model are freely available at https://github.com/binbinbinv/GATSol .


Proteins , Solubility , Proteins/chemistry , Proteins/metabolism , Protein Conformation , Databases, Protein , Computational Biology/methods , Software , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Algorithms , Models, Molecular , Amino Acid Sequence
5.
World J Microbiol Biotechnol ; 40(7): 227, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822932

In yeast metabolic engineering, there is a need for technologies that simultaneously suppress and regulate the expression of multiple genes and improve the production of target chemicals. In this study, we aimed to develop a novel technology that simultaneously suppresses the expression of multiple genes by combining RNA interference with global metabolic engineering strategy. Furthermore, using ß-carotene as the target chemical, we attempted to improve its production by using the technology. First, we developed a technology to suppress the expression of the target genes with various strengths using RNA interference. Using this technology, total carotenoid production was successfully improved by suppressing the expression of a single gene out of 10 candidate genes. Then, using this technology, RNA interference strain targeting 10 candidate genes for simultaneous suppression was constructed. The total carotenoid production of the constructed RNA interference strain was 1.7 times compared with the parental strain. In the constructed strain, the expression of eight out of the 10 candidate genes was suppressed. We developed a novel technology that can simultaneously suppress the expression of multiple genes at various intensities and succeeded in improving carotenoid production in yeast. Because this technology can suppress the expression of any gene, even essential genes, using only gene sequence information, it is considered a useful technology that can suppress the formation of by-products during the production of various target chemicals by yeast.


Carotenoids , Gene Expression Regulation, Fungal , Metabolic Engineering , Saccharomyces cerevisiae , beta Carotene , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , RNA Interference
6.
Proc Natl Acad Sci U S A ; 121(24): e2321991121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838012

The endoplasmic reticulum (ER) undergoes degradation by selective macroautophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins within its lumen. In yeast, actin assembly at sites of contact between the cortical ER (cER) and endocytic pits acts to displace elements of the ER from their association with the plasma membrane (PM) so they can interact with the autophagosome assembly machinery near the vacuole. A collection of proteins tether the cER to the PM. Of these, Scs2/22 and Ist2 are required for cER-phagy, most likely through their roles in lipid transport, while deletion of the tricalbins, TCB1/2/3, bypasses those requirements. An artificial ER-PM tether blocks cER-phagy in both the wild type (WT) and a strain lacking endogenous tethers, supporting the importance of cER displacement from the PM. Scs2 and Ist2 can be cross-linked to the selective cER-phagy receptor, Atg40. The COPII cargo adaptor subunit, Lst1, associates with Atg40 and is required for cER-phagy. This requirement is also bypassed by deletion of the ER-PM tethers, suggesting a role for Lst1 prior to the displacement of the cER from the PM during cER-phagy. Although pexophagy and mitophagy also require actin assembly, deletion of ER-PM tethers does not bypass those requirements. We propose that within the context of rapamycin-induced cER-phagy, Scs2/22, Ist2, and Lst1 promote the local displacement of an element of the cER from the cortex, while Tcb1/2/3 act in opposition, anchoring the cER to the plasma membrane.


Autophagy , Cell Membrane , Endoplasmic Reticulum , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Endoplasmic Reticulum/metabolism , Autophagy/physiology , Cell Membrane/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics
7.
Food Microbiol ; 122: 104545, 2024 Sep.
Article En | MEDLINE | ID: mdl-38839231

Despite their acidic pH, carbonated beverages can be contaminated by spoilage microorganisms. Thermal treatments, before and/or after carbonation, are usually applied to prevent the growth of these microorganisms. However, the impact of CO2 on the heat resistance of spoilage microorganisms has never been studied. A better understanding of the combined impact of CO2 and pH on the heat resistance of spoilage microorganisms commonly found in carbonated beverages might allow to optimize thermal treatment. Five microorganisms were selected for this study: Alicyclobacillus acidoterrestris (spores), Aspergillus niger (spores), Byssochlamys fulva (spores), Saccharomyces cerevisiae (vegetative cells), and Zygosaccharomyces parabailii (vegetative cells). A method was developed to assess the impact of heat treatments in carbonated media on microbial resistance. The heat resistances of the five studied species are coherent with the literature, when data were available. However, neither the dissolved CO2 concentration (from 0 to 7 g/L), nor the pH (from 2.8 to 4.1) have an impact on the heat resistance of the selected microorganisms, except for As. niger, for which the presence of dissolved CO2 reduced the heat resistance. This study improved our knowledge about the heat resistance of some spoilage microorganisms in presence of CO2.


Aspergillus niger , Hot Temperature , Aspergillus niger/growth & development , Hydrogen-Ion Concentration , Carbon Dioxide/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/physiology , Alicyclobacillus/growth & development , Alicyclobacillus/physiology , Carbonated Beverages/microbiology , Byssochlamys/growth & development , Food Microbiology , Zygosaccharomyces/growth & development , Zygosaccharomyces/physiology , Food Contamination/analysis , Food Contamination/prevention & control , Culture Media/chemistry , Culture Media/metabolism
9.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Article En | MEDLINE | ID: mdl-38842635

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


DNA Breaks, Double-Stranded , DNA End-Joining Repair , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Humans , Methylation , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Homologous Recombination , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Repair , Chromatin/metabolism , Chromatin/genetics
10.
Arch Microbiol ; 206(7): 290, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847903

Clotrimazole is a type of antifungal medication developed from azole compounds. It exhibits several biological actions linked to oxidative stress. This study focuses on the oxidative effects of clotrimazole on the eukaryotic model yeast, Saccharomyces cerevisiae. Our results showed that although initial nitric oxide levels were above control in clotrimazole exposed cells, they showed decreasing tendencies from the beginning of incubation and dropped below control at 125 µM from the 60th min. The highest superoxide anion and hydrogen peroxide levels were 1.95- and 2.85-folds of controls at 125 µM after 15 and 60 min, respectively. Hydroxyl radical levels slightly increased throughout the incubation period in all concentrations and reached 1.3-fold of control, similarly at 110 and 125 µM in the 90th min. The highest level of reactive oxygen species was observed at 110 µM, 2.31-fold of control. Although NADH/NADPH oxidase activities showed similar tendencies for all conditions, the highest activities were found as 3.07- and 2.27-folds of control at 125 and 110 µM in the 15th and 30th min, respectively. The highest superoxide dismutase and catalase activities were 1.59- and 1.21-folds of controls at 110 µM clotrimazole in 30 and 90 min, respectively. While the drug generally induced glutathione-related enzyme activities, the ratios of glutathione to oxidized glutathione were above the control only at low concentrations of the drug. The levels of lipid peroxidation in all treated cells were significantly higher than the controls. The findings crucially demonstrate that this medicine can generate serious oxidative stress in organisms.


Antifungal Agents , Catalase , Clotrimazole , Oxidative Stress , Saccharomyces cerevisiae , Superoxide Dismutase , Clotrimazole/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Antifungal Agents/pharmacology , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Nitric Oxide/metabolism , Humans , Superoxides/metabolism , Oxidation-Reduction
11.
BMC Microbiol ; 24(1): 158, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720268

BACKGROUND: The production of succinic acid (SA) from biomass has attracted worldwide interest. Saccharomyces cerevisiae is preferred for SA production due to its strong tolerance to low pH conditions, ease of genetic manipulation, and extensive application in industrial processes. However, when compared with bacterial producers, the SA titers and productivities achieved by engineered S. cerevisiae strains were relatively low. To develop efficient SA-producing strains, it's necessary to clearly understand how S. cerevisiae cells respond to SA. RESULTS: In this study, we cultivated five S. cerevisiae strains with different genetic backgrounds under different concentrations of SA. Among them, KF7 and NBRC1958 demonstrated high tolerance to SA, whereas NBRC2018 displayed the least tolerance. Therefore, these three strains were chosen to study how S. cerevisiae responds to SA. Under a concentration of 20 g/L SA, only a few differentially expressed genes were observed in three strains. At the higher concentration of 60 g/L SA, the response mechanisms of the three strains diverged notably. For KF7, genes involved in the glyoxylate cycle were significantly downregulated, whereas genes involved in gluconeogenesis, the pentose phosphate pathway, protein folding, and meiosis were significantly upregulated. For NBRC1958, genes related to the biosynthesis of vitamin B6, thiamin, and purine were significantly downregulated, whereas genes related to protein folding, toxin efflux, and cell wall remodeling were significantly upregulated. For NBRC2018, there was a significant upregulation of genes connected to the pentose phosphate pathway, gluconeogenesis, fatty acid utilization, and protein folding, except for the small heat shock protein gene HSP26. Overexpression of HSP26 and HSP42 notably enhanced the cell growth of NBRC1958 both in the presence and absence of SA. CONCLUSIONS: The inherent activities of small heat shock proteins, the levels of acetyl-CoA and the strains' potential capacity to consume SA all seem to affect the responses and tolerances of S. cerevisiae strains to SA. These factors should be taken into consideration when choosing host strains for SA production. This study provides a theoretical basis and identifies potential host strains for the development of robust and efficient SA-producing strains.


Gene Expression Regulation, Fungal , Saccharomyces cerevisiae , Succinic Acid , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Fermentation
12.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724968

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Calcium , Ethanol , Fermentation , Molasses , Potassium , Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharum/metabolism , Calcium/metabolism , Potassium/metabolism
13.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725068

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
14.
Biol Res ; 57(1): 22, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704609

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Chromatin Assembly and Disassembly , DNA-Binding Proteins , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin Assembly and Disassembly/physiology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histones/metabolism
15.
Sci Rep ; 14(1): 10124, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698114

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Copper , Fermentation , Hydrogen Sulfide , Metallothionein , Odorants , Saccharomyces cerevisiae , Vitis , Wine , Wine/analysis , Copper/metabolism , Vitis/microbiology , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Odorants/analysis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfites/pharmacology , Pest Control/methods
16.
Microb Cell Fact ; 23(1): 129, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711040

BACKGROUND: Sesterterpenoids are rare species among the terpenoids family. Ophiobolins are sesterterpenes with a 5-8-5 tricyclic skeleton. The oxidized ophiobolins exhibit significant cytotoxic activity and potential medicinal value. There is an urgent need for large amounts of ophiobolins supplication for drug development. The synthetic biology approach has been successfully employed in lots of terpene compound production and inspired us to develop a cell factory for ophiobolin biosynthesis. RESULTS: We developed a systematic metabolic engineering strategy to construct an ophiobolin biosynthesis chassis based on Saccharomyces cerevisiae. The whole-cell biotransformation methods were further combined with metabolic engineering to enhance the expression of key ophiobolin biosynthetic genes and improve the supply of precursors and cofactors. A high yield of 5.1 g/L of ophiobolin F was reached using ethanol and fatty acids as substrates. To accumulate oxidized ophiobolins, we optimized the sources and expression conditions for P450-CPR and alleviated the toxicity of bioactive compounds to cells through PDR engineering. We unexpectedly obtained a novel ophiobolin intermediate with potent cytotoxicity, 5-hydroxy-21-formyl-ophiobolin F, and the known bioactive compound ophiobolin U. Finally, we achieved the ophiobolin U titer of 128.9 mg/L. CONCLUSIONS: We established efficient cell factories based on S. cerevisiae, enabling de novo biosynthesis of the ophiobolin skeleton ophiobolin F and oxidized ophiobolins derivatives. This work has filled the gap in the heterologous biosynthesis of sesterterpenoids in S. cerevisiae and provided valuable solutions for new drug development based on sesterterpenoids.


Metabolic Engineering , Saccharomyces cerevisiae , Sesterterpenes , Sesterterpenes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
17.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Article En | MEDLINE | ID: mdl-38711329

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Endosomal Sorting Complexes Required for Transport , Exosomes , Extracellular Vesicles , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Thermotolerance , Saccharomyces cerevisiae/metabolism , Extracellular Vesicles/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Proteomics/methods
18.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38713543

The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is commonly used for organic waste recycling and animal feed production. However, the often inadequate nutrients in organic waste necessitate nutritional enhancement of black soldier fly larvae, e.g., by fungal supplementation of its diet. We investigated the amino acid composition of two fungi, Candida tropicalis (Castell.) Berkhout (Saccharomycetales: Saccharomycetaceae) and Pichia kudriavzevii Boidin, Pignal & Besson (Saccharomycetales: Pichiaceae), from the black soldier fly gut, and commercial baker's yeast, Saccharomyces cerevisiae Meyen ex E.C. Hansen (Saccharomycetales: Saccharomycetaceae), and their effects on larval growth and hemolymph metabolites in fifth-instar black soldier fly larvae. Liquid chromatography-mass spectrometry was used to study the effect of fungal metabolites on black soldier fly larval metabolism. Amino acid analysis revealed significant variation among the fungi. Fungal supplementation led to increased larval body mass and differential metabolite accumulation. The three fungal species caused distinct metabolic changes, with each over-accumulating and down-accumulating various metabolites. We identified significant alteration of histidine metabolism, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism in BSF larvae treated with C. tropicalis. Treatment with P. kudriavzevii affected histidine metabolism and citrate cycle metabolites, while both P. kudriavzevii and S. cerevisiae treatments impacted tyrosine metabolism. Treatment with S. cerevisiae resulted in down-accumulation of metabolites related to glycine, serine, and threonine metabolism. This study suggests that adding fungi to the larval diet significantly affects black soldier fly larval metabolomics. Further research is needed to understand how individual amino acids and their metabolites contributed by fungi affect black soldier fly larval physiology, growth, and development, to elucidate the interaction between fungal nutrients and black soldier fly physiology.


Diptera , Hemolymph , Larva , Animals , Larva/growth & development , Larva/metabolism , Diptera/metabolism , Diptera/growth & development , Hemolymph/metabolism , Pichia/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Diet , Saccharomycetales/metabolism , Animal Feed/analysis , Candida/metabolism , Candida/growth & development
19.
Dis Model Mech ; 17(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38818856

Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.


Protein Prenylation , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Amino Acid Sequence , Dimethylallyltranstransferase/metabolism , Viral Proteins/metabolism , Alkyl and Aryl Transferases/metabolism
20.
Front Immunol ; 15: 1373656, 2024.
Article En | MEDLINE | ID: mdl-38742108

African swine fever virus (ASFV) is one of the most complex viruses. ASFV is a serious threat to the global swine industry because no commercial vaccines against this virus are currently available except in Vietnam. Moreover, ASFV is highly stable in the environment and can survive in water, feed, and aerosols for a long time. ASFV is transmitted through the digestive and respiratory tract. Mucosal immunity is the first line of defense against ASFV. Saccharomyces cerevisiae (SC), which has been certified by the U.S. Food and Drug Administration and has a generally recognized as safe status in the food industry, was used for oral immunization in this study. ASFV antigens were effectively expressed in recombinant SC strains with high DNA copy numbers and stable growth though surface display technology and chromosome engineering (δ-integration). The recombinant SC strains containing eight ASFV antigens-KP177R, E183L, E199L, CP204L, E248R, EP402R, B602L, and B646L- induced strong humoral and mucosal immune responses in mice. There was no antigenic competition, and these antigens induced Th1 and Th2 cellular immune responses. Therefore, the oral immunization strategy using recombinant SC strains containing multiple ASFV antigens demonstrate potential for future testing in swine, including challenge studies to evaluate its efficacy as a vaccine against ASFV.


African Swine Fever Virus , African Swine Fever , Antigens, Viral , Immunization , Saccharomyces cerevisiae , Viral Vaccines , Animals , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Saccharomyces cerevisiae/immunology , Saccharomyces cerevisiae/genetics , Administration, Oral , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antigens, Viral/immunology , African Swine Fever/immunology , African Swine Fever/prevention & control , Swine , Immunity, Mucosal , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice, Inbred BALB C , Female , Immunity, Humoral
...