Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.425
Filter
1.
Subcell Biochem ; 104: 503-530, 2024.
Article in English | MEDLINE | ID: mdl-38963498

ABSTRACT

Invertases, or ß-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a ß-propeller catalytic domain, and a ß-sandwich domain with unknown function. Since then, many studies on related plant and fungal enzymes have revealed them as basically monomeric. By contrast, all yeast enzymes in this family that have been characterized so far have shown sophisticated oligomeric structures mediated by the non-catalytic domain, which is also involved in substrate binding, and how this assembly determines the particular specificity of each enzyme. In this chapter, we will review the available structures of yeast invertases to elucidate the mechanism regulating oligomer formation and compare them with other reported dimeric invertases in which the oligomeric assembly has no apparent functional implications. In addition, recent work on a new family of invertases with absolute specificity for the α-(1,2)-bond of sucrose found in cyanobacteria and plant invertases is highlighted.


Subject(s)
beta-Fructofuranosidase , beta-Fructofuranosidase/chemistry , beta-Fructofuranosidase/metabolism , beta-Fructofuranosidase/genetics , Substrate Specificity , Protein Multimerization , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Catalytic Domain , Models, Molecular
2.
Environ Microbiol Rep ; 16(4): e13278, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943264

ABSTRACT

Copper homeostasis is a fundamental process in organisms, characterised by unique pathways that have evolved to meet specific needs while preserving core resistance mechanisms. While these systems are well-documented in model bacteria, information on copper resistance in species adapted to cold environments is scarce. This study investigates the potential genes related to copper homeostasis in the genome of Bizionia argentinensis (JUB59-T), a psychrotolerant bacterium isolated from Antarctic seawater. We identified several genes encoding proteins analogous to those crucial for copper homeostasis, including three sequences of copper-transport P1B-type ATPases. One of these, referred to as BaCopA1, was chosen for cloning and expression in Saccharomyces cerevisiae. BaCopA1 was successfully integrated into yeast membranes and subsequently extracted with detergent. The purified BaCopA1 demonstrated the ability to catalyse ATP hydrolysis at low temperatures. Structural models of various BaCopA1 conformations were generated and compared with mesophilic and thermophilic homologous structures. The significant conservation of critical residues and structural similarity among these proteins suggest a shared reaction mechanism for copper transport. This study is the first to report a psychrotolerant P1B-ATPase that has been expressed and purified in a functional form.


Subject(s)
Cold Temperature , Copper , Copper/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Antarctic Regions , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Genome, Bacterial/genetics , Seawater/microbiology , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Copper-Transporting ATPases/chemistry , Sulfolobaceae/genetics , Sulfolobaceae/metabolism , Sulfolobaceae/enzymology
3.
J Phys Chem B ; 128(25): 5935-5949, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38864552

ABSTRACT

Lys-ligated cytochromes make up an emerging family of heme proteins. Density functional theory calculations on the amine/imidazole-ligated c-type ferric heme were employed to develop force-field parameters for molecular dynamics (MD) simulations of structural and dynamic features of these proteins. The new force-field parameters were applied to the alkaline form of yeast iso-1 cytochrome c to rationalize discrepancies resulting from distinct experimental conditions in prior structural studies and to provide insights into the mechanisms of the alkaline transition. Our simulations have revealed the dynamic nature of Ω-loop C in the Lys-ligated protein and its unfolding in the Lys-ligated conformer having this loop in the same position as in the native Met-ligated protein. The proximity of Tyr67 or Tyr74 to the Lys ligand of ferric heme iron suggests a possible mechanism of the backward alkaline transition where a proton donor Tyr assists in Lys dissociation. The developed force-field parameters will be useful in structural and dynamic characterization of other native or engineered Lys-ligated heme proteins.


Subject(s)
Cytochromes c , Lysine , Molecular Dynamics Simulation , Lysine/chemistry , Cytochromes c/chemistry , Cytochromes c/metabolism , Heme/chemistry , Density Functional Theory , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/chemistry , Ligands , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1882-1894, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914498

ABSTRACT

1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.


Subject(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolism , Escherichia coli/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Transaminases/metabolism , Transaminases/genetics , Protein Engineering , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Formate Dehydrogenases/metabolism , Formate Dehydrogenases/genetics , Candida/enzymology , Candida/metabolism , Cyclohexylamines/metabolism
5.
Mol Cell ; 84(12): 2223-2237.e4, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870937

ABSTRACT

In Saccharomyces cerevisiae (S. cerevisiae), Mre11-Rad50-Xrs2 (MRX)-Sae2 nuclease activity is required for the resection of DNA breaks with secondary structures or protein blocks, while in humans, the MRE11-RAD50-NBS1 (MRN) homolog with CtIP is needed to initiate DNA end resection of all breaks. Phosphorylated Sae2/CtIP stimulates the endonuclease activity of MRX/N. Structural insights into the activation of the Mre11 nuclease are available only for organisms lacking Sae2/CtIP, so little is known about how Sae2/CtIP activates the nuclease ensemble. Here, we uncover the mechanism of Mre11 activation by Sae2 using a combination of AlphaFold2 structural modeling of biochemical and genetic assays. We show that Sae2 stabilizes the Mre11 nuclease in a conformation poised to cleave substrate DNA. Several designs of compensatory mutations establish how Sae2 activates MRX in vitro and in vivo, supporting the structural model. Finally, our study uncovers how human CtIP, despite considerable sequence divergence, employs a similar mechanism to activate MRN.


Subject(s)
DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Endonucleases/metabolism , Endonucleases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/chemistry , Humans , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphorylation , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Breaks, Double-Stranded , Acid Anhydride Hydrolases/metabolism , Acid Anhydride Hydrolases/genetics , Mutation , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , DNA Repair , Enzyme Activation
6.
Yeast ; 41(7): 448-457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38874213

ABSTRACT

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.


Subject(s)
Cell Wall , Glucans , Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spores, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Glucans/metabolism , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Membrane Proteins
7.
Yeast ; 41(7): 458-472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38874348

ABSTRACT

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Subject(s)
Exoribonucleases , RNA Stability , RNA, Messenger , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Exoribonucleases/metabolism , Exoribonucleases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cytoplasm/metabolism , Protein Biosynthesis
8.
Biophys J ; 123(12): 1620-1634, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38720465

ABSTRACT

Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond-scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N and C termini of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point toward specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.


Subject(s)
DNA Topoisomerases, Type II , Molecular Dynamics Simulation , Allosteric Regulation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Protein Domains , Models, Molecular
9.
FEBS Lett ; 598(13): 1655-1666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750637

ABSTRACT

Cymoxanil (CYM) is a widely used synthetic acetamide fungicide, but its biochemical mode of action remains elusive. Since CYM inhibits cell growth, biomass production, and respiration in Saccharomyces cerevisiae, we used this model to characterize the effect of CYM on mitochondria. We found it inhibits oxygen consumption in both whole cells and isolated mitochondria, specifically inhibiting cytochrome c oxidase (CcO) activity during oxidative phosphorylation. Based on molecular docking, we propose that CYM blocks the interaction of cytochrome c with CcO, hampering electron transfer and inhibiting CcO catalytic activity. Although other targets cannot be excluded, our data offer valuable insights into the mode of action of CYM that will be instrumental in driving informed management of the use of this fungicide.


Subject(s)
Electron Transport Complex IV , Fungicides, Industrial , Mitochondria , Molecular Docking Simulation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/enzymology , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/antagonists & inhibitors , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects , Oxidative Phosphorylation/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors
10.
Int J Biol Macromol ; 269(Pt 2): 131991, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714283

ABSTRACT

Type IIA DNA topoisomerases are molecular nanomachines responsible for controlling topological states of DNA molecules. Here, we explore the dynamic landscape of yeast topoisomerase IIA during key stages of its catalytic cycle, focusing in particular on the events preceding the passage of the T-segment. To this end, we generated six configurations of fully catalytic yeast topo IIA, strategically inserted a T-segment into the N-gate in relevant configurations, and performed all-atom simulations. The essential motion of topo IIA protein dimer was characterized by rotational gyrating-like movement together with sliding motion within the DNA-gate. Both appear to be inherent properties of the enzyme and an inbuilt feature that allows passage of the T-segment through the cleaved G-segment. Coupled dynamics of the N-gate and DNA-gate residues may be particularly important for controlled and smooth passage of the T-segment and consequently the prevention of DNA double-strand breaks. QTK loop residue Lys367, which interacts with ATP and ADP molecules, is involved in regulating the size and stability of the N-gate. The unveiled features of the simulated configurations provide insights into the catalytic cycle of type IIA topoisomerases and elucidate the molecular choreography governing their ability to modulate the topological states of DNA topology.


Subject(s)
DNA Topoisomerases, Type II , Molecular Dynamics Simulation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/chemistry , DNA/chemistry , DNA/metabolism , Saccharomyces cerevisiae/enzymology , Protein Multimerization , Nucleic Acid Conformation
11.
Enzyme Microb Technol ; 178: 110455, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723387

ABSTRACT

Thymoquinone, extracted from the black seeds of Nigella sativa, is a natural substance with highly beneficial effects against various human diseases. In this study, we aimed to construct a Saccharomyces cerevisiae strain that, produce thymoquinone from thymol, a relatively inexpensive substrate. To achieve this, cytochrome P450 from Origanum vulgare was expressed in S. cerevisiae for the bioconversion of thymol to thymoquinone, with the co-expression of cytochrome P450 reductase (CPR) from Arabidopsis thaliana, ATR1. Additionally, flexible linkers were used to connect these two enzymes. Furthermore, modifications were performed to expand the endoplasmic reticulum (ER) space, leading to increased thymoquinone production. After integrating the genes into the chromosome and optimizing the media components, a significant improvement in the thymol-to-thymoquinone conversion rate and yield were achieved. This study represents a possibility of the production of thymoquinone, a bioactive ingredient of a plant, using an engineered microbial cell.


Subject(s)
Benzoquinones , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Benzoquinones/metabolism , Thymol/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
12.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672486

ABSTRACT

The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes. As judged from structural modeling, the orientation of these tandem cysteine motifs (TCMs) suggests a candidate Fe-S cluster ligand role. Hence, we generated, by site-directed DPH1 and DPH2 mutagenesis, Dph1•Dph2 variants with cysteines from each TCM replaced individually or in combination by serines. Assays diagnostic for diphthamide formation in vivo reveal that while single substitutions in the TCM of Dph2 cause mild defects, double mutations almost entirely inactivate the RS enzyme. Based on enhanced Dph1 and Dph2 subunit instability in response to cycloheximide chases, the variants with Cys substitutions in their cofactor motifs are particularly prone to protein degradation. In sum, we identify a fourth functionally cooperative Cys residue within the Fe-S motif of Dph2 and show that the Cys-based cofactor binding motifs in Dph1 and Dph2 are critical for the structural integrity of the dimeric RS enzyme in vivo.


Subject(s)
Amino Acid Motifs , Cysteine , Histidine/analogs & derivatives , Repressor Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cysteine/metabolism , Cysteine/genetics , Cysteine/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Protein Multimerization , Carbon-Sulfur Lyases/metabolism , Carbon-Sulfur Lyases/chemistry , Carbon-Sulfur Lyases/genetics , Mutagenesis, Site-Directed
13.
Chem Biol Interact ; 394: 110992, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579923

ABSTRACT

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.


Subject(s)
Alcohol Dehydrogenase , Catalytic Domain , Histidine , Saccharomyces cerevisiae , Acetaldehyde/metabolism , Acetaldehyde/chemistry , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/chemistry , Amino Acid Substitution , Diethyl Pyrocarbonate/chemistry , Diethyl Pyrocarbonate/pharmacology , Ethanol/metabolism , Histidine/metabolism , Histidine/chemistry , Hydrogen-Ion Concentration , Kinetics , NAD/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism , Zinc/chemistry
14.
Biotechnol Lett ; 46(4): 531-543, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38607604

ABSTRACT

Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.


Subject(s)
Cellulosomes , Ethanol , Fermentation , Lignin , Saccharomyces cerevisiae , Ethanol/metabolism , Lignin/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/enzymology , Cellulosomes/metabolism , Cellulosomes/genetics , Cellulose/metabolism , Laccase/metabolism , Laccase/genetics
15.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336292

ABSTRACT

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Subject(s)
Drug Therapy , RNA Polymerase III , RNA Polymerase II , RNA Polymerase I , Saccharomyces cerevisiae , Transcription Elongation, Genetic , Biocatalysis/drug effects , Kinetics , RNA Polymerase I/metabolism , RNA Polymerase II/metabolism , RNA Polymerase III/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Elongation, Genetic/drug effects
16.
FEBS J ; 291(9): 1992-2008, 2024 May.
Article in English | MEDLINE | ID: mdl-38362806

ABSTRACT

The nucleoside inosine is a main intermediate of purine nucleotide catabolism in Saccharomyces cerevisiae and is produced via the dephosphorylation of inosine monophosphate (IMP) by IMP-specific 5'-nucleotidase 1 (ISN1), which is present in many eukaryotic organisms. Upon transition of yeast from oxidative to fermentative growth, ISN1 is important for intermediate inosine accumulation as purine storage, but details of ISN1 regulation are unknown. We characterized structural and kinetic behavior of ISN1 from S. cerevisiae (ScISN1) and showed that tetrameric ScISN1 is negatively regulated by inosine and adenosine triphosphate (ATP). Regulation involves an inosine-binding allosteric site along with IMP-induced local and global conformational changes in the monomer and a tetrameric re-arrangement, respectively. A proposed interaction network propagates local conformational changes in the active site to the intersubunit interface, modulating the allosteric features of ScISN1. Via ATP and inosine, ScISN1 activity is likely fine-tuned to regulate IMP and inosine homeostasis. These regulatory and catalytic features of ScISN1 contrast with those of the structurally homologous ISN1 from Plasmodium falciparum, indicating that ISN1 enzymes may serve different biological purposes in different organisms.


Subject(s)
Adenosine Triphosphate , Allosteric Site , Inosine , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Inosine/metabolism , Kinetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Catalytic Domain , Allosteric Regulation , Crystallography, X-Ray , Inosine Monophosphate/metabolism , Models, Molecular , Protein Conformation , Protein Binding
17.
J Microbiol Biotechnol ; 34(4): 930-939, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38314447

ABSTRACT

Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-ß-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.


Subject(s)
Hericium , Laccase , Lignin , Saccharomyces cerevisiae , Laccase/metabolism , Laccase/genetics , Laccase/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Hericium/metabolism , Hericium/genetics , Hericium/enzymology , Hydrogen-Ion Concentration , Lignin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Amino Acid Sequence , Cloning, Molecular , Sodium Azide/pharmacology , Agaricales/enzymology , Agaricales/genetics , Glycosylation
18.
J Biol Chem ; 300(2): 105656, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224948

ABSTRACT

The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.


Subject(s)
Fatty Acid Desaturases , Sphingosine , Humans , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/metabolism , Fatty Acids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sphingosine/metabolism
19.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38214235

ABSTRACT

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Subject(s)
Pyrrolidinones , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Pyrrolidinones/pharmacology , RNA Polymerase II/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic , Zinc
20.
J Biol Chem ; 299(12): 105443, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37949221

ABSTRACT

The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.


Subject(s)
Nucleic Acid Conformation , Nucleotides , RNA, Transfer , Saccharomyces cerevisiae , tRNA Methyltransferases , Humans , Nucleotides/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...