Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Sci Rep ; 14(1): 14653, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918529

ABSTRACT

Sugarcane smut is the most damaging disease that is present almost across the globe, causing mild to severe yield losses depending upon the cultivar types, pathogen races and climatic conditions. Cultivation of smut-resistant cultivars is the most feasible and economical option to mitigate its damages. Previous investigations revealed that there is a scarcity of information on early detection and effective strategies to suppress etiological agents of smut disease due to the characteristics overlapping within species complexes. In this study, 104 sugarcane cultivars were screened by artificial inoculation with homogenate of all possible pathogen races of Sporisorium scitamineum during two consecutive growing seasons. The logistic smut growth pattern and the disease intrinsic rate were recorded by disease growth curve. Variable levels of disease incidence i.e., ranging from 0 to 54.10% were observed among these sugarcane cultivars. Besides, pathogen DNA in plant shoots of all the cultivars was successfully amplified by PCR method using smut-specific primers except 26 cultivars which showed an immune reaction in the field trial. Furthermore, the plant germination and tillering of susceptible sugarcane cultivars were greatly influenced by pathogen inoculation. In susceptible cultivars, S. scitamineum caused a significant reduction in setts germination, coupled with profuse tillering, resulting in fewer millable canes. Correlation analysis demonstrated that there was a positive relationship between reduction in setts germination and increase in the number of tillers. The present study would be helpful for the evaluation of smut resistance in a wide range of sugarcane germplasm, especially from the aspects of setts germination and tillers formation, and it also screened out several excellent germplasm for potential application in sugarcane breeding.


Subject(s)
Germination , Plant Diseases , Saccharum , Saccharum/microbiology , Saccharum/growth & development , Saccharum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/prevention & control , Disease Resistance/genetics , Ustilaginales/pathogenicity , Ustilaginales/physiology , Ustilaginales/genetics
2.
J Environ Manage ; 363: 121418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852408

ABSTRACT

Salinization is a leading threat to soil degradation and sustainable crop production. The application of organic amendments could improve crop growth in saline soil. Thus, we assessed the impact of sugarcane bagasse (SB) and its biochar (SBB) on soil enzymatic activity and growth response of maize crop at three various percentages (0.5%, 1%, and 2% of soil) under three salinity levels (1.66, 4, and 8 dS m-1). Each treatment was replicated three times in a completely randomized block design with factorial settings. The results showed that SB and SBB can restore the impact of salinization, but the SBB at the 2% addition rate revealed promising results compared to SB. The 2% SBB significantly enhanced shoot length (23.4%, 26.1%, and 41.8%), root length (16.8%, 20.8%, and 39.0%), grain yield (17.6%, 25.1%, and 392.2%), relative water contents (11.2%, 13.1%, and 19.2%), protein (17.2%, 19.6%, and 34.9%), and carotenoid (16.3, 30.3, and 49.9%) under different salinity levels (1.66, 4, and 8 dS m-1, respectively). The 2% SBB substantially drop the Na+ in maize root (28.3%, 29.9%, and 22.4%) and shoot (36.1%, 37.2%, and 38.5%) at 1.66, 4, and 8 dS m-1. Moreover, 2% SBB is the best treatment to boost the urease by 110.1%, 71.7%, and 91.2%, alkaline phosphatase by 28.8%, 38.8%, and 57.6%, and acid phosphatase by 48.4%, 80.1%, and 68.2% than control treatment under 1.66, 4 and 8 dS m-1, respectively. Pearson analysis showed that all the growth and yield parameters were positively associated with the soil enzymatic activities and negatively correlated with electrolyte leakage and sodium. The structural equational model (SEM) showed that the different application percentage of amendments significantly influences the growth and physiological parameters at all salinity levels. SEM explained the 81%, 92%, and 95% changes in maize yield under 1.66, 4, and 8 dS m-1, respectively. So, it is concluded that the 2% SBB could be an efficient approach to enhance the maize yield by ameliorating the noxious effect of degraded saline soil.


Subject(s)
Charcoal , Saccharum , Soil , Zea mays , Zea mays/growth & development , Soil/chemistry , Saccharum/growth & development , Charcoal/chemistry , Cellulose , Salinity
3.
Arch Microbiol ; 206(7): 313, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900186

ABSTRACT

Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was µmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.


Subject(s)
Biodegradation, Environmental , Phenol , Phylogeny , RNA, Ribosomal, 16S , Rhodococcus , Soil Microbiology , Soil Pollutants , Rhodococcus/metabolism , Rhodococcus/genetics , Rhodococcus/classification , Rhodococcus/growth & development , Rhodococcus/isolation & purification , Soil Pollutants/metabolism , Phenol/metabolism , RNA, Ribosomal, 16S/genetics , Saccharum/metabolism , Saccharum/microbiology , Saccharum/growth & development , Soil/chemistry , Genome, Bacterial
4.
PLoS One ; 19(6): e0302135, 2024.
Article in English | MEDLINE | ID: mdl-38861530

ABSTRACT

Soilless agriculture is acknowledged worldwide because it uses organic leftovers as a means of supporting intensive and efficient plant production. However, the quality of potting media deteriorates because of lower nutrient content and excessive shrinkage of most organic materials. A current study was undertaken to identify the optimal blend of locally available organic materials with desirable qualities for use as potting media. Therefore, different ingredients, viz., Pinus roxburghii needles, sugarcane bagasse, and farmyard manure were used alone or in combination as potting media to test their suitability by growing spinach as a test crop. Results showed that an increase in Pinus roxburghii needles and sugarcane bagasse decreased medium pH and electrical conductivity. Higher pH and electrical conductivity were recorded for the treatments having a higher farmyard manure ratio (≥50%) in combination. Except for pine needles 100%, pH and electrical conductivity were in the recommended range. The growth attributes include, leaves plant-1, shoot length, fresh- and dry shoot weight along with plant macronutrients (nitrogen, phosphorous, and potassium) and micronutrients (iron, copper, manganese, and zinc) content were higher in treatment pine needles 50%+farmyard manure 50% followed by pine needles 25%+farmyard manure 50%+sugarcane bagasse 25%. Moreover, the particular treatment of pine needles 50%+farmyard manure 50% exhibited the highest concentrations of macro- (nitrogen, phosphorus, and potassium) as well as micronutrients (iron, copper, manganese, and zinc) in the potting media following the harvest. This study highlights the potential of utilizing agro-industrial litter/waste as a soilless growing medium for spinach production under greenhouse conditions. When employed in appropriate proportions, this approach not only addresses disposal concerns but also proves effective for sustainable cultivation. Further research is needed to investigate the use of these wastes as potting media by mixing various particle-size ingredients.


Subject(s)
Manure , Pinus , Saccharum , Manure/analysis , Saccharum/growth & development , Saccharum/chemistry , Pinus/growth & development , Cellulose , Vegetables/growth & development , Vegetables/chemistry , Spinacia oleracea/growth & development , Spinacia oleracea/metabolism , Hydrogen-Ion Concentration , Electric Conductivity , Agriculture/methods , Plant Leaves/growth & development , Plant Leaves/chemistry , Soil/chemistry , Nitrogen/analysis
5.
Mol Biol Rep ; 51(1): 747, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874798

ABSTRACT

Sugarcane (Saccharum officinarum) is an important crop, native to tropical and subtropical regions and it is a major source of sugar and Bioenergy in the world. Abiotic stress is defined as environmental conditions that reduce growth and yield below the optimum level. To tolerate these abiotic stresses, plants initiate several molecular, cellular, and physiological changes. These responses to abiotic stresses are dynamic and complex; they may be reversible or irreversible. Waterlogging is an abiotic stress phenomenon that drastically reduces the growth and survival of sugarcane, which leads to a 15-45% reduction in cane's yield. The extent of damage due to waterlogging depends on genotypes, environmental conditions, stage of development and duration of stress. An improved understanding of the physiological, biochemical, and molecular responses of sugarcane to waterlogging stress could help to develop new breeding strategies to sustain high yields against this situation. The present review offers a summary of recent findings on the adaptation of sugarcane to waterlogging stress in terms of growth and development, yield and quality, as well as biochemical and adaptive-molecular processes that may contribute to flooding tolerance.


Subject(s)
Adaptation, Physiological , Saccharum , Stress, Physiological , Saccharum/genetics , Saccharum/growth & development , Saccharum/physiology , Water/metabolism , Floods , Gene Expression Regulation, Plant
6.
An Acad Bras Cienc ; 96(3): e20230502, 2024.
Article in English | MEDLINE | ID: mdl-38922268

ABSTRACT

Over two decades, the area with sugarcane has more than doubled, from 4.8 million hectares in 2000 to 10 million in 2018, in Brazil. São Paulo State is mostly responsible for the sugarcane production in the country, accounting for 51% of the national production. In 2008, a study was conducted analysing the relationship between sugarcane cultivation and the aquatic macroinvertebrate community, showing the impacts of sugarcane on the macroinvertebrate aquatic fauna. The present study aims to gather actual information on the aquatic macroinvertebrate community in the same streams studied in 2008, to make a historical comparison with studies previously carried out. Eight streams were selected; four located in areas of sugarcane cultivation and four located in preserved areas. Three samples were carried out between 2018 and 2020. The aquatic macroinvertebrates were collected using a D-frame aquatic net (250 µm) including riffle and pools areas and identified using specific identification keys. The results of the historical assessment showed better ecological conditions of the streams in 2008 when compared to 2018 in areas of sugarcane cultivation, suggesting that the environmental impact was maintained and increased after ten years.


Subject(s)
Invertebrates , Saccharum , Saccharum/growth & development , Brazil , Animals , Invertebrates/classification , Invertebrates/growth & development , Agriculture/methods , Rivers , Aquatic Organisms/growth & development , Aquatic Organisms/classification , Environmental Monitoring/methods , Biodiversity
7.
Plant Physiol Biochem ; 210: 108629, 2024 May.
Article in English | MEDLINE | ID: mdl-38626657

ABSTRACT

The timing of floral transition is essential for reproductive success in flowering plants. In sugarcane, flowering time affects the production of sugar and biomass. Although the function of the crucial floral pathway integrators, FLOWERING LOCUS T (FT), in sugarcane, has been uncovered, the proteins responsible for FT export and the underlying mechanism remain unexplored. In this study, we identified a member of the multiple C2 domain and transmembrane region proteins (MCTPs) family in sugarcane, FT-interacting protein 1 (ScFTIP1), which was localized to the endoplasmic reticulum. Ectopic expression of ScFTIP1 in the Arabidopsis mutant ftip1-1 rescued the late-flowering phenotype. ScFTIP1 interacted with AtFT in vitro and in vivo assays. Additionally, ScFTIP1 interacted with ScFT1 and the floral inducer ScFT3. Furthermore, we found that the NAC member, ScNAC23, could directly bind to the ScFTIP1 promoter and negatively regulate its transcription. Overall, our findings revealed the function of ScFTIP1 and proposed a potential mechanism underlying flowering regulation in sugarcane.


Subject(s)
Arabidopsis , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Saccharum , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Saccharum/genetics , Saccharum/metabolism , Saccharum/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified
8.
BMC Genom Data ; 25(1): 38, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689211

ABSTRACT

BACKGROUND: Saccharum spontaneum L. is a closely related species of sugarcane and has become an important genetic component of modern sugarcane cultivars. Stem development is one of the important factors for affecting the yield, while the molecular mechanism of stem development remains poorly understanding in S. spontaneum. Phenylalanine ammonia-lyase (PAL) is a vital component of both primary and secondary metabolism, contributing significantly to plant growth, development and stress defense. However, the current knowledge about PAL genes in S. spontaneum is still limited. Thus, identification and characterization of the PAL genes by transcriptome analysis will provide a theoretical basis for further investigation of the function of PAL gene in sugarcane. RESULTS: In this study, 42 of PAL genes were identified, including 26 SsPAL genes from S. spontaneum, 8 ShPAL genes from sugarcane cultivar R570, and 8 SbPAL genes from sorghum. Phylogenetic analysis showed that SsPAL genes were divided into three groups, potentially influenced by long-term natural selection. Notably, 20 SsPAL genes were existed on chromosomes 4 and 5, indicating that they are highly conserved in S. spontaneum. This conservation is likely a result of the prevalence of whole-genome replications within this gene family. The upstream sequence of PAL genes were found to contain conserved cis-acting elements such as G-box and SP1, GT1-motif and CAT-box, which collectively regulate the growth and development of S. spontaneum. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed that SsPAL genes of stem had a significantly upregulated than that of leaves, suggesting that they may promote the stem growth and development, particularly in the + 6 stem (The sixth cane stalk from the top to down) during the growth stage. CONCLUSIONS: The results of this study revealed the molecular characteristics of SsPAL genes and indicated that they may play a vital role in stem growth and development of S. spontaneum. Altogether, our findings will promote the understanding of the molecular mechanism of S. spontaneum stem development, and also contribute to the sugarcane genetic improving.


Subject(s)
Gene Expression Regulation, Plant , Phenylalanine Ammonia-Lyase , Phylogeny , Plant Stems , Saccharum , Saccharum/genetics , Saccharum/growth & development , Plant Stems/genetics , Plant Stems/growth & development , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genes, Plant
9.
Physiol Plant ; 176(3): e14313, 2024.
Article in English | MEDLINE | ID: mdl-38666351

ABSTRACT

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Subject(s)
Plant Diseases , Plant Growth Regulators , Reactive Oxygen Species , Saccharum , Silicon , Saccharum/drug effects , Saccharum/metabolism , Saccharum/microbiology , Saccharum/genetics , Saccharum/growth & development , Silicon/pharmacology , Silicon/metabolism , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Plant Growth Regulators/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/microbiology , Plant Leaves/genetics , Ascomycota/physiology , Ascomycota/drug effects , Signal Transduction/drug effects , Photosynthesis/drug effects , Free Radical Scavengers/metabolism
10.
J Sci Food Agric ; 104(9): 5305-5314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38380983

ABSTRACT

BACKGROUND: An attempt has been made to explore the nutritional profile of pink oyster mushrooms that have been grown in various agricultural residues, including sugarcane bagasse, rice straw, coconut coir and sawdust, along with other nutrient supplements such as defatted mustard and chickpea powder, for appropriate growth and fruiting body formation in a short span of time. The spawn production was experimented with five different grain varieties. The study became interesting when the observations differed slightly from the traditional practices, with the addition of defatted mustard supplements resulting in a positive correlation with respect to reducing the fruiting time, as well as improving yield and the nutritional profile of Pleurotus djamor. RESULTS: An elevated yield of 651.93 g kg-1 was recorded in the medium where the RS and DM were used in the ratio of 1:0.01 (rice straw +1% w/w defatted mustard) bag, whereas, in terms of protein content, a maximum yield of 32.57 ± 0.79 mg g-1 was observed when SB:DM was in the same ratio (sugarcane bagasse +1% w/w defatted mustard) bag. CONCLUSION: To confer the best outcomes from the screened substrates, a series of experiments were performed by varying the concentration of RS and SB, with 1% w/w DM. It is worth noting that the highest protein content of 32.76 ± 0.38 mg g-1 was obtained along with the total yield of 702.56 ± 2.9 g kg-1 of mushroom when the ratio of RS:SB was 0.7:0.3. © 2024 Society of Chemical Industry.


Subject(s)
Nutritive Value , Pleurotus , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Oryza/chemistry , Oryza/metabolism , Oryza/growth & development , Saccharum/chemistry , Saccharum/metabolism , Saccharum/growth & development , Mustard Plant/chemistry , Mustard Plant/growth & development , Mustard Plant/metabolism , Cicer/chemistry , Cicer/growth & development , Cicer/metabolism , Cellulose
11.
BMC Plant Biol ; 22(1): 74, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35183114

ABSTRACT

BACKGROUND: Ratooning in sugarcane is a crucial strategy for ensuring the long-term sustainability of the sugarcane industry. Knowledge gap relating to the interaction between rhizosphere microbiome and ratooning crop, particularly the impact of different sugarcane cultivars on the rhizosphere microbiome in consecutive ratooning, requires additional research. The response of two different sugarcane cultivars, viz ZZ-1 and ZZ-13, were evaluated in consecutive ratooning towards the rhizosphere microbial community and cane morphological characters. RESULTS: Significant changes in the rhizosphere microbiome were observed in the second ratooning over the years. Several important genera were observed in high abundance during the second ratooning, including Burkholderia, Sphingomonas, Bradyzhizobium, and Acidothermus. Cultivar ZZ-13 caused more alterations in the rhizosphere microbiome than ZZ-1, resulting in a more favorable rhizosphere environment for sugarcane growth. The genotypes also varied in terms of nutrients and enzyme activity over the years. There were significant differences between the genotypes and year for number of stalks and yield was significant for genotypes, years and genotype × year. CONCLUSION: This finding will help to understand thorough interactions between rhizosphere microorganisms and ratoon sugarcane and lay the foundation for promoting and maximizing yield as far as possible. In the future, this work can serve as guidance in sugarcane husbandry, mainly in Guangxi, China.


Subject(s)
Bacteria/genetics , Rhizosphere , Saccharum/growth & development , Soil Microbiology , Biodiversity , China , Crops, Agricultural/growth & development , Crops, Agricultural/microbiology , Enzymes/metabolism , Plant Proteins/metabolism , Saccharum/metabolism , Saccharum/microbiology , Seasons
12.
Gene ; 822: 146331, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35183686

ABSTRACT

Silicon, one of the most prevalent elements in the soil, is beneficial for plant growth and defense against different stresses. The silicon transporter gene (Lsi) plays an important role in the uptake and transport of silicon in higher plants. In this study, a total of 32 Lsi genes, including 20 SsLsi in sugarcane wild species Saccharum spontaneum, 5 ShLsi in Saccharum hybrid cultivar R570 and 7 SbLsi in sugarcane related species Sorghum bicolor, were identified and classified into three groups. Bioinformatics analysis showed that instability, hydrophobicity, localization of cell membranes and vacuoles were the main features of the Lsi proteins. Whole genome and segmental duplication contributed to the main expansion of Lsi gene family. Collinearity analysis of the Lsi genes showed that S. spontanum and R570 had a collinear relationship with monocotyledonous plants S. bicolor and Oryza sativa, but not with dicotyledonous plants Arabidopsis thaliana and Vitis vinifera. The replicated Lsi genes were mainly subjected to strong selection pressure for purification. The diverse cis-regulatory elements in the promoter of SsLsi, ShLsi and SbLsi genes suggested that they were widely involved in the response of plants to various stresses and the regulation of the growth and development. Transcriptome data and real time quantitative PCR analysis showed that the Lsi genes exhibited different expression profiles in sugarcane tissues and under Sporisorium scitamineum, drought and cold stresses. In addition, the cDNA and genomic DNA sequences of ShLsi6 that was homologous to SsLsi1b gene was cloned from Saccharum hybrid cultivar ROC22. Transient expression analysis showed that, compared with the control, Nicotiana benthamiana leaves which overexpressed the ShLsi6 gene showed a high sensitivity after inoculation with tobacco pathogens Ralstonia solanacearum and Fusarium solani var. coeruleum. This study provides important information for further functional analysis of Lsi genes and resistant breeding in sugarcane.


Subject(s)
Carrier Proteins/genetics , Cloning, Molecular/methods , Computational Biology/methods , Saccharum/growth & development , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharum/classification , Saccharum/genetics , Saccharum/metabolism , Sequence Analysis, DNA , Silicon/metabolism , Stress, Physiological , Tissue Distribution
13.
Biosci. j. (Online) ; 38: e38042, Jan.-Dec. 2022. tab, graf
Article in English | LILACS | ID: biblio-1395979

ABSTRACT

Irrigation and soil fertilization management are essential agricultural practices that improve the growth and development of sugarcane plants and, consequently, increase their production capacity, which is important for sugar and alcohol productions. In this context, the objective of this work was to evaluate the effect of water depths and nitrogen rates on the growth and dry biomass accumulation of sugarcane plants. The treatments consisted in four water depths (1,498; 1,614; 1,739; and 1,854 mm), five nitrogen rates (0; 20; 40; 80; and 120 kg ha-1) and five evaluation times. The experiment was conducted in a randomized block design with a split-split-plot arrangement and four replications, including the factors water depths, nitrogen rates, and days after planting. The dry biomasses of the plant pointer, leaves and culms, culm diameter, plant height, and number of plants were analyzed. The application of nitrogen increased the sugarcane biomass, mainly the pointer (with leaves) and dry culm biomass, and the number of plants. The highest dry culm biomass accumulation and dry leaf biomass were found at the end of the crop cycle for the treatment with the application of nitrogen rates of 80 and 120 kg ha-1. The increases in water depths applied increased the number of plants per linear meter, but the culm and dry leaf biomass did not happen.


Subject(s)
Saccharum/growth & development , Fertilizers , Agricultural Irrigation , Nitrogen
14.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943959

ABSTRACT

To reduce the potentially irreversible environmental impacts caused by fossil fuels, the use of renewable energy sources must be increased on a global scale. One promising source of biomass and bioenergy is sugarcane. The study of this crop's development in different planting seasons can aid in successfully cultivating it in global climate change scenarios. The sugarcane variety SP80-3280 was field grown under two planting seasons with different climatic conditions. A systems biology approach was taken to study the changes on physiological, morphological, agrotechnological, transcriptomics, and metabolomics levels in the leaf +1, and immature, intermediate and mature internodes. Most of the variation found within the transcriptomics and metabolomics profiles is attributed to the differences among the distinct tissues. However, the integration of both transcriptomics and metabolomics data highlighted three main metabolic categories as the principal sources of variation across tissues: amino acid metabolism, biosynthesis of secondary metabolites, and xenobiotics biodegradation and metabolism. Differences in ripening and metabolite levels mainly in leaves and mature internodes may reflect the impact of contrasting environmental conditions on sugarcane development. In general, the same metabolites are found in mature internodes from both "one-year" and "one-and-a-half-year sugarcane", however, some metabolites (i.e., phenylpropanoids with economic value) and natural antisense transcript expression are only detected in the leaves of "one-year" sugarcane.


Subject(s)
Plant Development/genetics , RNA, Antisense/genetics , Saccharum/genetics , Transcription, Genetic , Transcriptome/genetics , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Saccharum/growth & development , Saccharum/metabolism , Secondary Metabolism/genetics
15.
PLoS One ; 16(12): e0236852, 2021.
Article in English | MEDLINE | ID: mdl-34910729

ABSTRACT

Sugarcane is one of the main alternative sources of biomass for the biofuel sector, and its large-scale production has considerable environmental impact. Organomineral fertilizers formulated with potential environmental contaminants, such as filter cake and sewage sludge, positively influence plant growth and development. The objective of the present study was to evaluate the chemical and physical characteristics of sugarcane fertilized with pelletized organomineral fertilizers based on filter cake or sewage sludge. Eight field treatments were applied, based on three organomineral fertilizer compositions (50%, 100%, and 150%) associated with two organic matter (OM) sources (filter cake or sewage sludge), in addition to a control with 100% mineral fertilizer application, and a no-fertilization control (0%). Sugarcane attributes were evaluated during two consecutive harvests. The weights of stalks per hectare (ton ha-1), sugarcane productivity (ton ha-1), quantity of sugar per hectare (TSH, ton ha-1), and physicochemical properties of sugarcane juice (pol [%], Brix [%], purity [%], and fiber [%]) were evaluated. There were no significant differences in the attributes between OM sources or organomineral fertilization treatments and the exclusive mineral fertilization. The organomineral fertilizer application rate recommended for maximum quantitative and qualitative sugarcane in the first sugarcane harvest was between 2 and 9% above the regular recommendation for mineral fertilizer, regardless of the OM source. In the second harvest, the sewage sludge source increased total sugar and sugarcane per hectare by 4.68 and 4.19%, respectively, compared to the sugarcane filter cake source. Sewage sludge and sugarcane filter cake are viable alternatives for organomineral composition and could improve economic returns and minimize negative environmental impacts in sugarcane cultivation systems.


Subject(s)
Biomass , Fertilizers , Saccharum , Sewage , Soil/chemistry , Saccharum/chemistry , Saccharum/growth & development
16.
Mol Biol Rep ; 48(12): 7921-7932, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655406

ABSTRACT

BACKGROUND: Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia. Compatible haploid sporidia representing opposite mating types (MAT-1 and MAT-2) of the fungus fuse to form infective dikaryotic mycelia in the host tissues, leading to the development of a characteristic whip shaped sorus. In this study, the transition of distinct stages of in vitro life cycle and in planta developmental stages of S. scitamineum are presented by generating stable GFP transformants of S. scitamineum. METHODS AND RESULTS: Haploid sporidia were isolated from the teliospores of Ss97009, and the opposite mating types (MAT-1 and MAT-2) were identified by random mating assay and mating type-specific PCR. Both haploid sporidia were individually transformed with pNIIST plasmid, harboring an enhanced green fluorescent protein (eGFP) gene and hygromycin gene by a modified protoplast-based PEG-mediated transformation method. Thereafter, the distinct in vitro developmental stages including fusion of haploid sporidia and formation of dikaryotic mycelia expressing GFP were demonstrated. To visualize in planta colonization, transformed haploids (MAT-1gfp and MAT-2gfp) were fused and inoculated onto the smut susceptible sugarcane cultivar, Co 97009 and examined microscopically at different stages of colonization. GFP fluorescence-based analysis presented an extensive fungal colonization of the bud surface as well as inter- and intracellular colonization of the transformed S. scitamineum in sugarcane tissues during initial stages of disease development. Noticeably, the GFP-tagged S. scitamineum led to the emergence of smut whips, which established their pathogenicity, and demonstrated initial colonization, active sporogenesis and teliospore maturation stages. CONCLUSION: Overall, for the first time, an efficient protoplast-based transformation method was employed to depict clear-cut developmental stages in vitro and in planta using GFP-tagged strains for better understanding of S. scitamineum life cycle development.


Subject(s)
Basidiomycota/growth & development , Saccharum/growth & development , Saccharum/genetics , Basidiomycota/metabolism , Basidiomycota/pathogenicity , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Plant Diseases/microbiology , Protoplasts , Saccharum/microbiology , Transcriptome/genetics
17.
Sci Rep ; 11(1): 15730, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344928

ABSTRACT

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Subject(s)
Disease Resistance/genetics , Genome, Plant , Genome-Wide Association Study , Luteoviridae/physiology , Plant Diseases/genetics , Plant Proteins/genetics , Saccharum/genetics , Chromosomes, Plant/genetics , Disease Resistance/immunology , Gene Expression Regulation, Plant , Genotype , Phylogeny , Plant Breeding , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/virology , Plant Proteins/metabolism , Quantitative Trait Loci , Saccharum/growth & development , Saccharum/virology
18.
PLoS One ; 16(7): e0253970, 2021.
Article in English | MEDLINE | ID: mdl-34280207

ABSTRACT

Despite progress in understanding diazotrophic distribution in surface soils, few studies have investigated the distribution of diazotrophic bacteria in deeper soil layers. Here, we leveraged high-throughput sequencing (HTS) of nifH genes obtained to assess the influence of biochar amended soil (BC) and control (CK), and soil depths (0-20, 20-40 and 40-60 cm) on diazotrophic abundance and community structures, soil enzyme activities and physio-chemical properties. Multivariate ANOVA analysis revealed that soil depth had profound impact on majority of the soil parameters measured than fertilization. Although soil physio-chemical properties, enzymes activities, diazotrophic genera and enriched operational taxonomic units (OTUs) were significantly influenced across the entire soil profiles, we also observed that BC amended soil significantly increased cane stalk height and weight, nitrate (NO3-), ammonium (NH4+), organic matter (OM), total carbon (TC) and available potassium (AK), and enhanced diazotrophic genera in soil depth 0-20 cm compared to CK treatment. Soil TC, total nitrogen (TN), OM and NH4+ were the major impact factors shifting diazotrophic community structures in soil depth 0-20 cm. Overall, these results were more pronounced in 0-20 cm soil depth in BC than CK treatment.


Subject(s)
Carbon/metabolism , Nitrogen Fixation/genetics , Saccharum/metabolism , Soil Microbiology , Ammonium Compounds/metabolism , Bacteria/genetics , Bacteria/metabolism , Charcoal/chemistry , High-Throughput Nucleotide Sequencing , Nitrates/chemistry , Nitrates/metabolism , Nitrogen/metabolism , Potassium/metabolism , Saccharum/genetics , Saccharum/growth & development , Saccharum/microbiology
19.
Plant J ; 107(2): 343-359, 2021 07.
Article in English | MEDLINE | ID: mdl-34087011

ABSTRACT

The most productive C4 food and biofuel crops, such as Saccharum officinarum (sugarcane), Sorghum bicolor (sorghum) and Zea mays (maize), all use NADP-ME-type C4 photosynthesis. Despite high productivities, these crops fall well short of the theoretical maximum solar conversion efficiency of 6%. Understanding the basis of these inefficiencies is key for bioengineering and breeding strategies to increase the sustainable productivity of these major C4 crops. Photosynthesis is studied predominantly at steady state in saturating light. In field stands of these crops light is continually changing, and often with rapid fluctuations. Although light may change in a second, the adjustment of photosynthesis may take many minutes, leading to inefficiencies. We measured the rates of CO2 uptake and stomatal conductance of maize, sorghum and sugarcane under fluctuating light regimes. The gas exchange results were combined with a new dynamic photosynthesis model to infer the limiting factors under non-steady-state conditions. The dynamic photosynthesis model was developed from an existing C4 metabolic model for maize and extended to include: (i) post-translational regulation of key photosynthetic enzymes and their temperature responses; (ii) dynamic stomatal conductance; and (iii) leaf energy balance. Testing the model outputs against measured rates of leaf CO2 uptake and stomatal conductance in the three C4 crops indicated that Rubisco activase, the pyruvate phosphate dikinase regulatory protein and stomatal conductance are the major limitations to the efficiency of NADP-ME-type C4 photosynthesis during dark-to-high light transitions. We propose that the level of influence of these limiting factors make them targets for bioengineering the improved photosynthetic efficiency of these key crops.


Subject(s)
Crop Production/methods , Models, Biological , Photosynthesis , Saccharum/growth & development , Sorghum/growth & development , Zea mays/growth & development , Carbon Dioxide/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Light , Saccharum/metabolism , Sorghum/metabolism , Zea mays/metabolism
20.
Ecotoxicol Environ Saf ; 220: 112380, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34058676

ABSTRACT

Silicon (Si) is considered to be a plant growth and development regulator element as well as provide the regulatory response against various biotic stressors. However, the potential mechanism of Si enhancement to regulate plant disease resistance remains to be studied. Therefore, the current study evaluated the effects of Si application on the performance of sugarcane against Xanthomonas albilineans (Xa) infection. Si was applied exogenously (0, 3.85 and 7.70 g Si/kg soil) and the results show that plant height, stem circumference and leaf width of siliconized sugarcane have been improved, which effectively reduced the disease index (0.17-0.21) and incidence (58.2%-69.1%) after Xa infection. Lowest values of MDA (348.5 nmol g-1 FW) and H2O2 (3539.4 mmol/L) were observed in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (MDA: 392.6 nmol g-1 FW and H2O2: 3134.6 mmol/L) than that of the control. Whereas, PAL enzyme activity (50.8 mmol/L), JA (230.2 mmol/L) and SA (2.7 ug mL-1) contents were significantly higher in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (PAL: 46.3 mmol/L, JA: 182.7 mmol/L and SA: 2.4 ug mL-1) as compared to control. The lower MDA, H2O2 level and higher enzymatic activities were associated with the highest expression levels of their metabolic pathway associated genes i.e., ShMAPK1, ShLOX, ShPAL, ShAOS, ShAOC, ShC4H, ShCAT, Sh4CL and ShNPR1 (22.08, 15.56, 10.42, 3.35, 2.54, 2.14, 1.82, 1.67 and 1.22 folds, respectively) in 7.70 g Si/kg soil as compared to other experimental units and control. Overall, the results of current study indicates that siliconized sugarcane more actively regulates disease resistance through modulation of growth and MDA, H2O2, SA and JA associated metabolic pathways.


Subject(s)
Disease Resistance , Plant Diseases/microbiology , Saccharum/drug effects , Silicon/pharmacology , Xanthomonas , Disease Resistance/genetics , Genes, Plant , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Metabolic Networks and Pathways/genetics , Oxidative Stress , Plant Diseases/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves , Plant Stems , Saccharum/growth & development , Saccharum/metabolism , Saccharum/microbiology , Silicon/metabolism , Soil/chemistry , Stress, Physiological , Xanthomonas/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...