Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.401
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 685-690, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-38955699

ABSTRACT

Objective: To investigate the clinicopathological and genetic characteristics of neuromuscular choristoma-associated desmoid type fibromatosis (NMC-DF). Methods: The clinical morphological and immunohistochemical features of 7 NMC-DF cases diagnosed from January 2013 to January 2023 in Beijing Jishuitan Hospital were retrospectively analyzed. A series of neuromuscular choristoma and neuromuscular choristoma-associated desmoid type fibromatosis were evaluated for CTNNB1 mutations, and hotspot mutations for CTNNB1 were tested in 4 NMC-DF cases using Sanger sequencing. Results: The tumors were collected from 3 females and 4 males, aged 1 to 22 years (mean 7.1 years), involving the sciatic nerve (n=4), brachial plexus (n=2) or multiple nerves (n=1). The course of the disease spanned from 3 months to 10 years. Two cases were recurrent tumors. All the 7 NMC cases showed endoneurial intercalation of mature skeletal muscle fibers among the peripheral nerve fascicles, and the histologic features of the NMC-DF were strikingly similar to the conventional desmoid-type fibromatosis. By immunohistochemistry, all NMC and NMC-DF cases showed aberrant nuclear staining of ß-catenin (7/7), the muscle cells in NMC were intensely immunoreactive for desmin, and the admixed nerve fibers were highlighted by NF and S-100 (7/7). Four NMC and NMC-DF had CTNNB1 mutations, 3 c.121A>G (p.T41A) and 1 c.134C>T (p.S45F). Follow-up of the 7 cases, ranging from 22 to 78 months, showed tumor recurrence in 2 patients at 3 and 8 months respectively after the first surgical resection, of which 1 patient underwent above-knee amputation. No recurrence occurred in other cases with tumor excision and neurological reconstruction surgery. There was no metastasis occurred in the 7 cases. Conclusions: NMC is a rare congenital lesion with differentiated mature skeletal muscle tissue found in peripheral nerve fascicles, and approximately 80% of patients with NMC develop a soft tissue fibromatosis. CTNNB1 mutation in the Wnt signaling pathway may be involved in the pathogenesis of NMC and NMC-DF, and S45F mutations seems to have a higher risk of disease progression.


Subject(s)
Choristoma , Fibromatosis, Aggressive , Mutation , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Fibromatosis, Aggressive/genetics , Fibromatosis, Aggressive/pathology , Fibromatosis, Aggressive/metabolism , Fibromatosis, Aggressive/surgery , Male , Female , Child , Retrospective Studies , Infant , Adolescent , Child, Preschool , Choristoma/pathology , Choristoma/genetics , Young Adult , Brachial Plexus/pathology , Brachial Plexus/surgery , Sciatic Nerve/pathology
2.
Sci Rep ; 14(1): 15196, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956215

ABSTRACT

Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Tissue Scaffolds , Animals , Sciatic Nerve/physiology , Rats , Tissue Scaffolds/chemistry , Gold/chemistry , Rats, Sprague-Dawley , Silk/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Electric Stimulation/methods , Fibroins/chemistry , Metal Nanoparticles/chemistry , Male , Recovery of Function , Guided Tissue Regeneration/methods , Hydrogels/chemistry
3.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912580

ABSTRACT

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Subject(s)
Down-Regulation , Ganglia, Spinal , Neuralgia , Sensory Receptor Cells , Animals , Neuralgia/metabolism , Neuralgia/genetics , Ganglia, Spinal/metabolism , Mice , Sensory Receptor Cells/metabolism , Male , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/genetics , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Disease Models, Animal , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Action Potentials
4.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912769

ABSTRACT

Traumatic spinal cord injury (SCI) induces permanent sensorimotor deficit below the site of injury. It affects approximately a quarter million people in the US, and it represents an immeasurable public health concern. Research has been conducted to provide effective therapy; however, SCI is still considered incurable due to the complex nature of the injury site. A variety of strategies, including drug delivery, cell transplantation, and injectable biomaterials, are investigated, but one strategy alone limits their efficacy for regeneration. As such, combinatorial therapies have recently gained attention that can target multifaceted features of the injury. It has been shown that extracellular matrices (ECM) may increase the efficacy of cell transplantation for SCI. To this end, 3D hydrogels consisting of decellularized spinal cords (dSCs) and sciatic nerves (dSNs) were developed at different ratios and characterized. Histological analysis of dSCs and dSNs confirmed the removal of cellular and nuclear components, and native tissue architectures were retained after decellularization. Afterward, composite hydrogels were created at different volumetric ratios and subjected to analyses of turbidity gelation kinetics, mechanical properties, and embedded human adipose-derived stem cell (hASC) viability. No significant differences in mechanical properties were found among the different ratios of hydrogels and decellularized spinal cord matrices. Human ASCs embedded in the gels remained viable throughout the 14-day culture. This study provides a means of generating tissue-engineered combinatorial hydrogels that present nerve-specific ECM and pro-regenerative mesenchymal stem cells. This platform can provide new insights into neuro-regenerative strategies after SCI with future investigations.


Subject(s)
Hydrogels , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Hydrogels/chemistry , Humans , Animals , Stem Cell Transplantation/methods , Sciatic Nerve/injuries , Spinal Cord , Mesenchymal Stem Cells/cytology
5.
J Orthop Surg Res ; 19(1): 329, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825706

ABSTRACT

BACKGROUND: Fibrosis is a significant pathological feature of chronic skeletal muscle injury, profoundly affecting muscle regeneration. Fibro-adipogenic progenitors (FAPs) have the ability to differentiate into myofibroblasts, acting as a primary source of extracellular matrix (ECM). the process by which FAPs differentiate into myofibroblasts during chronic skeletal muscle injury remains inadequately explored. METHOD: mouse model with sciatic nerve denervated was constructed and miRNA expression profiles between the mouse model and uninjured mouse were analyzed. qRT/PCR and immunofluorescence elucidated the effect of miR-27b-3p on fibrosis in vivo and in vitro. Dual-luciferase reporter identified the target gene of miR-27b-3p, and finally knocked down or overexpressed the target gene and phosphorylation inhibition of Smad verified the influence of downstream molecules on the abundance of miR-27b-3p and fibrogenic differentiation of FAPs. RESULT: FAPs derived from a mouse model with sciatic nerves denervated exhibited a progressively worsening fibrotic phenotype over time. Introducing agomiR-27b-3p effectively suppressed fibrosis both in vitro and in vivo. MiR-27b-3p targeted Transforming Growth Factor Beta Receptor 1 (TGF-ßR1) and the abundance of miR-27b-3p was negatively regulated by TGF-ßR1/Smad. CONCLUSION: miR-27b-3p targeting the TGF-ßR1/Smad pathway is a novel mechanism for regulating fibrogenic differentiation of FAPs. Increasing abundance of miR-27b-3p, suppressing expression of TGF-ßR1 and inhibiting phosphorylation of smad3 presented potential strategies for treating fibrosis in chronic skeletal muscle injury.


Subject(s)
Fibrosis , MicroRNAs , Muscle, Skeletal , Signal Transduction , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Chronic Disease , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Mice, Inbred C57BL , Smad Proteins/metabolism , Smad Proteins/genetics , Male , Disease Models, Animal , Cell Differentiation , Sciatic Nerve/injuries
6.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830884

ABSTRACT

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Rabbits , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Sciatic Nerve/physiology , Facial Nerve/physiology , Peripheral Nerves/physiology , Male , Rats , Silicon/chemistry , Rats, Sprague-Dawley , Electric Stimulation
7.
J Control Release ; 371: 324-337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823584

ABSTRACT

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Subject(s)
Capsaicin , Nerve Block , Prodrugs , Rats, Sprague-Dawley , Sciatic Nerve , Prodrugs/administration & dosage , Animals , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Male , Sciatic Nerve/drug effects , Nerve Block/methods , Rats , Analgesics/administration & dosage , Analgesics/pharmacology
8.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928119

ABSTRACT

The use of acellular nerve allografts (ANAs) to reconstruct long nerve gaps (>3 cm) is associated with limited axon regeneration. To understand why ANA length might limit regeneration, we focused on identifying differences in the regenerative and vascular microenvironment that develop within ANAs based on their length. A rat sciatic nerve gap model was repaired with either short (2 cm) or long (4 cm) ANAs, and histomorphometry was used to measure myelinated axon regeneration and blood vessel morphology at various timepoints (2-, 4- and 8-weeks). Both groups demonstrated robust axonal regeneration within the proximal graft region, which continued across the mid-distal graft of short ANAs as time progressed. By 8 weeks, long ANAs had limited regeneration across the ANA and into the distal nerve (98 vs. 7583 axons in short ANAs). Interestingly, blood vessels within the mid-distal graft of long ANAs underwent morphological changes characteristic of an inflammatory pathology by 8 weeks post surgery. Gene expression analysis revealed an increased expression of pro-inflammatory cytokines within the mid-distal graft region of long vs. short ANAs, which coincided with pathological changes in blood vessels. Our data show evidence of limited axonal regeneration and the development of a pro-inflammatory environment within long ANAs.


Subject(s)
Allografts , Nerve Regeneration , Sciatic Nerve , Animals , Rats , Axons/metabolism , Male , Blood Vessels , Inflammation/pathology , Inflammation/metabolism , Cellular Microenvironment , Transplantation, Homologous , Cytokines/metabolism , Rats, Sprague-Dawley
9.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886712

ABSTRACT

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Subject(s)
Cellulose , Disulfides , Molybdenum , Nerve Regeneration , Schwann Cells , Tissue Scaffolds , Nerve Regeneration/drug effects , Animals , Rats , Tissue Scaffolds/chemistry , Disulfides/chemistry , Disulfides/pharmacology , Schwann Cells/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Cell Proliferation/drug effects , Tissue Engineering/methods , Male , Peripheral Nerve Injuries , Stereoisomerism
10.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865809

ABSTRACT

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Subject(s)
Flavones , Hyperalgesia , Neuralgia , Rats, Sprague-Dawley , Animals , Rats , Neuralgia/drug therapy , Neuralgia/etiology , Flavones/pharmacology , Flavones/therapeutic use , Hyperalgesia/drug therapy , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Gabapentin/pharmacology , Gabapentin/therapeutic use , Nociception/drug effects , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Female , gamma-Aminobutyric Acid/metabolism , Amines/pharmacology , Amines/therapeutic use , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Vulvodynia/drug therapy , Constriction , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use
11.
PLoS One ; 19(6): e0301040, 2024.
Article in English | MEDLINE | ID: mdl-38900740

ABSTRACT

Neurofibromatosis Type I (NF1) is a rare genetic disorder. NF1 patients frequently develop a benign tumor in peripheral nerve plexuses called plexiform neurofibroma. In the past two decades, tissue-specific Nf1 knockout mouse models were developed using commercially available tissue-specific Cre recombinase and the Nf1 flox mice to mimic neurofibroma development. However, these models develop para-spinal neurofibroma, recapitulating a rare type of neurofibroma found in NF1 patients. The NPcis mouse model developed a malignant version of neurofibroma called malignant peripheral nerve sheath tumor (MPNST) within 3 to 6 months but intriguingly without apparent benign precursor lesion. Here, we revisited the NPcis model and discovered that about 20% display clinical signs similar to Nf1 tissue-specific knockout mice models. However, a systematic histological analysis could not explain the clinical signs we observed although we noticed lesions reminiscent of a neurofibroma in a peripheral nerve, a cutaneous neurofibroma, and para-spinal neurofibroma on rare occasions in NPcis mice. We also observed that 10% of the mice developed a malignant peripheral nerve sheath tumor (MPNST) spontaneously, coinciding with their earring tag identification. Strikingly, half of the sciatic nerves from NPcis mice developed plexiform neurofibroma within 1-6 months when intentionally injured. Thus, we provided a procedure to turn the widely used NPcis sarcoma model into a model recapitulating plexiform neurofibroma.


Subject(s)
Disease Models, Animal , Neurofibroma, Plexiform , Animals , Neurofibroma, Plexiform/pathology , Mice , Sciatic Nerve/pathology , Mice, Knockout , Neurofibromatosis 1/pathology , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics
12.
Muscle Nerve ; 70(2): 265-272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877775

ABSTRACT

INTRODUCTION/AIMS: The development of high-resolution ultrasound (HRUS) has enabled the depiction of peripheral nerve microanatomy in vivo. This study compared HRUS fascicle differentiation to the structural depiction in histological cross-sections (HCS). METHODS: A human cadaveric sciatic nerve was marked with 10 surgical sutures, and HRUS image acquisition was performed with a 22-MHz probe. The nerve was excised and cut into five segments for HCS preparation. Selected HCS were cross-referenced to HRUS, with sutures to improve orientation. Sciatic nerve and fascicle contouring were performed to assess nerve and fascicular cross-sectional area (CSA), fascicle count, and interfascicular distances. Three groups were defined based on HRUS fascicle differentiation in comparison to HCS, namely single fascicle (SF), fascicular cluster (FC), and no depiction (ND) group. RESULTS: On cross-referenced HRUS to HCS images, 58% of fascicles were differentiated. On HRUS, significantly larger fascicle CSA and smaller fascicle count were observed compared with HCS. Group analysis showed that 41% of fascicles were defined as SF, 47% as FC, and 12% as ND. The mean fascicle CSA in the ND group was 0.05 mm2. Compared with the SF, the FC had significantly larger fascicle CSA (1.2 ± 0.7 vs. 0.6 ± 0.4 mm2; p < .001) and shorter interfascicular distances (0.1 ± 0.04 vs. 0.5 ± 0.3 µm; p < .001). DISCUSSION: While HRUS can depict fascicular anatomy, only half of the fascicles visualized on HRUS directly correspond to single fascicles observed on HCS. The amount of interfascicular epineurium appears to influence the ability of HRUS to differentiate individual fascicles.


Subject(s)
Sciatic Nerve , Ultrasonography , Humans , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/anatomy & histology , Ultrasonography/methods , Cadaver , Male
13.
Stem Cell Res Ther ; 15(1): 158, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824568

ABSTRACT

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.


Subject(s)
Adipose Tissue , Chitosan , Mesenchymal Stem Cells , Microspheres , Nerve Regeneration , Rats, Sprague-Dawley , Chitosan/chemistry , Nerve Regeneration/physiology , Animals , Rats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Sciatic Nerve/physiology , Porosity , Tissue Scaffolds/chemistry , Male , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Cells, Cultured
14.
J Mater Chem B ; 12(23): 5594-5599, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38818741

ABSTRACT

Flexible fiber electrodes offer new opportunities for bioelectronics and are reliable in vivo applications, high flexibility, high electrical conductivity, and satisfactory biocompatibility are typically required. Herein, we present an all-metal flexible and biocompatible fiber electrode based on a metal nanowire hybrid strategy, i.e., silver nanowires were assembled on a freestanding framework, and further to render them inert, they were plated with a gold nanoshell. Our fiber electrodes exhibited a low modulus of ∼75 MPa and electrical conductivity up to ∼4.8 × 106 S m-1. They can resist chemical erosion with negligible leakage of biotoxic silver ions in the physiological environment, thus ensuring satisfactory biocompatibility. Finally, we demonstrated the hybrid fiber as a neural electrode that stimulated the sciatic nerve of a mouse, proving its potential for applications in bioelectronics.


Subject(s)
Electrodes , Gold , Nanowires , Silver , Silver/chemistry , Nanowires/chemistry , Gold/chemistry , Animals , Mice , Electric Conductivity , Biocompatible Materials/chemistry , Sciatic Nerve , Particle Size
15.
Acta Biomater ; 182: 28-41, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38761961

ABSTRACT

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Subject(s)
Delayed-Action Preparations , Nerve Regeneration , Nitric Oxide , Animals , Nitric Oxide/metabolism , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Nerve Regeneration/drug effects , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Rats , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Nanoparticles/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Male , Hydrogels/chemistry , Sciatic Nerve/drug effects
16.
Eur J Pharm Sci ; 198: 106797, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735401

ABSTRACT

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4­chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4­chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.


Subject(s)
Hyperalgesia , Molecular Docking Simulation , Neuralgia , Sciatic Nerve , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Male , Hyperalgesia/drug therapy , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Rats , Rats, Wistar , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Computer Simulation , Constriction , Imines/chemistry , Imines/pharmacology
17.
Elife ; 122024 May 14.
Article in English | MEDLINE | ID: mdl-38742628

ABSTRACT

Peripheral neurons are heterogeneous and functionally diverse, but all share the capability to switch to a pro-regenerative state after nerve injury. Despite the assumption that the injury response is similar among neuronal subtypes, functional recovery may differ. Understanding the distinct intrinsic regenerative properties between neurons may help to improve the quality of regeneration, prioritizing the growth of axon subpopulations to their targets. Here, we present a comparative analysis of regeneration across four key peripheral neuron populations: motoneurons, proprioceptors, cutaneous mechanoreceptors, and nociceptors. Using Cre/Ai9 mice that allow fluorescent labeling of neuronal subtypes, we found that nociceptors showed the greater regeneration after a sciatic crush, followed by motoneurons, mechanoreceptors, and, finally, proprioceptors. By breeding these Cre mice with Ribotag mice, we isolated specific translatomes and defined the regenerative response of these neuronal subtypes after axotomy. Only 20% of the regulated genes were common, revealing a diverse response to injury among neurons, which was also supported by the differential influence of neurotrophins among neuron subtypes. Among differentially regulated genes, we proposed MED12 as a specific regulator of the regeneration of proprioceptors. Altogether, we demonstrate that the intrinsic regenerative capacity differs between peripheral neuron subtypes, opening the door to selectively modulate these responses.


Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Nerve Regeneration/physiology , Motor Neurons/physiology , Nociceptors/physiology , Nociceptors/metabolism , Sequence Analysis, RNA , Mechanoreceptors/physiology , Mechanoreceptors/metabolism , Axotomy , Male , Sciatic Nerve/injuries , Neurons/physiology
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 556-561, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752241

ABSTRACT

Objective: To compare the effect of sciatic nerve block (SNB) combined with continuted femoral nerve block (FNB) or continuted adductor canal block (ACB) on pain and motor function after total knee arthroplasty (TKA). Methods: A total of 60 patients with TKA-treated osteoarthritis of the knee who met the selection criteria were enrolled between November 2020 and February 2021 and randomised allocated into the study group (SNB combined with continuted ACB) and the control group (SNB combined with continuted FNB), with 30 cases in each group. There was no significant difference in gender, age, body mass, height, body mass index, preoperative Hospital for Special Surgery (HSS) score, femoral tibial angle, and medial proximal tibial angle between the two groups ( P>0.05). The operation time, the initial time to the ground, the initial walking distance, and the postoperative hospital stay were recorded. At 2, 4, 6, 12, 24, and 48 hours after operation, the numerical rating scale (NRS) score was used to evaluate the rest pain around the knee joint, the quadriceps femoris muscle strength was evaluated by the freehand muscle strength method, and the knee flexion and extension angles were measured. Results: There was no significant difference in the operation time and initial walking distance between the two groups ( P>0.05); the initial time to the ground and postoperative hospital stay of the study group were significantly shorter than those of the control group ( P<0.05). Except for the 48-hour postoperative NRS score of the study group, which was significantly lower than that of the control group ( P<0.05), there was no significant difference in the NRS scores between the two groups at the remaining time points ( P>0.05). The quadriceps femoris muscle strength from 4 to 24 hours postoperatively and the knee extension angle from 2 to 6 hours postoperatively of the study group were significantly better than those of the control group ( P<0.05); the differences in the quadriceps femoris muscle strength and knee extension and flexion angles between the two groups at the remaining time points were not significant ( P>0.05). Conclusion: SNB combined with either continuted ACB or continuted FNB can effectively relieve pain in patients after TKA, and compared with combined continuted FNB, combined continuted ACB has less effect on quadriceps femoris muscle strength, and patients have better recovery of knee flexion and extension mobility.


Subject(s)
Arthroplasty, Replacement, Knee , Femoral Nerve , Nerve Block , Pain, Postoperative , Sciatic Nerve , Humans , Arthroplasty, Replacement, Knee/methods , Nerve Block/methods , Pain, Postoperative/etiology , Pain, Postoperative/prevention & control , Osteoarthritis, Knee/surgery , Female , Male , Pain Measurement , Operative Time , Aged , Length of Stay
19.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 598-607, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38752248

ABSTRACT

Objective: To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods: Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 µmol/L H 2O 2), group C (adding 100 µmol/L H 2O 2+100 µmol/L SMC), group D (adding 100 µmol/L H 2O 2+200 µmol/L SMC), group E (adding 100 µmol/L H 2O 2+400 µmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). Results: MTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B ( P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups ( P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher ( P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group ( P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group ( P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group ( P<0.05). Conclusion: SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.


Subject(s)
Nerve Regeneration , Oxidative Stress , Rats, Sprague-Dawley , Schwann Cells , Sciatic Nerve , Selenium , Selenocysteine , Animals , Nerve Regeneration/drug effects , Rats , Male , Selenocysteine/analogs & derivatives , Selenocysteine/pharmacology , Schwann Cells/metabolism , Schwann Cells/drug effects , Oxidative Stress/drug effects , Sciatic Nerve/drug effects , Selenium/pharmacology , Cell Proliferation/drug effects , Peripheral Nerve Injuries/metabolism
20.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723761

ABSTRACT

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Subject(s)
Exosomes , Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Exosomes/metabolism , Macrophages/metabolism , Peripheral Nerve Injuries/metabolism , Rats , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Receptor, ErbB-2/metabolism , Male , Ubiquitination , Mice , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Mice, Inbred C57BL , Lipopolysaccharides
SELECTION OF CITATIONS
SEARCH DETAIL
...