Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.471
Filter
1.
J Environ Sci (China) ; 148: 364-374, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095171

ABSTRACT

Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.


Subject(s)
Diatoms , Salinity , Silicon , Water Pollutants, Chemical , Adsorption , Silicon/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Estuaries , Seawater/chemistry , Metals/chemistry
2.
J Environ Sci (China) ; 148: 541-552, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095187

ABSTRACT

The ocean serves as a repository for various types of artificial nanoparticles. Nanoplastics (NPs) and nano zinc oxide (nZnO), which are frequently employed in personal care products and food packaging materials, are likely simultaneously released and eventually into the ocean with surface runoff. Therefore, their mutual influence and shared destiny in marine environment cannot be ignored. This study examined how nanomaterials interacted and transported through sea sand in various salinity conditions. Results showed that NPs remained dispersed in brine, while nZnO formed homoaggregates. In seawater of 35 practical salinity units (PSU), nZnO formed heteroaggregates with NPs, inhibiting NPs mobility and decreasing the recovered mass percentage (Meff) from 24.52% to 12.65%. In 3.5 PSU brackish water, nZnO did not significantly aggregate with NPs, and thus barely affected their mobility. However, NPs greatly enhanced nZnO transport with Meff increasing from 14.20% to 25.08%, attributed to the carrier effect of higher mobility NPs. Cotransport from brackish water to seawater was simulated in salinity change experiments and revealed a critical salinity threshold of 10.4 PSU, below which the mobility of NPs was not affected by coexisting nZnO and above which nZnO strongly inhibited NP transport. This study highlights the importance of considering the mutual influence and shared destiny of artificial nanoparticles in the marine environment and how their interaction and cotransport are dependent on changes in seawater salinity.


Subject(s)
Saline Waters , Salinity , Seawater , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Seawater/chemistry , Saline Waters/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Porosity , Microplastics , Models, Chemical , Metal Nanoparticles/chemistry
3.
Bull Exp Biol Med ; 177(2): 252-255, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090463

ABSTRACT

All bacterial strains studied retained the viability and ability to form both mono- and polycultural biofilms under conditions of long-term culturing in artificial seawater at 6°C and without addition of nutrients. Bacillus sp. and Pseudomonas japonica presumably stimulated the growth and reproduction of the pathogenic bacteria Listeria monocytogenes and Yersinia pseudotuberculosis. Preserved cell viability in a monoculture biofilm for a long period without adding a food source can indicate allolysis. At the same time, in a polycultural biofilm, the metabolites secreted by saprotrophic strains can stimulate the growth of L. monocytogenes and Y. pseudotuberculosis.


Subject(s)
Biofilms , Listeria monocytogenes , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/growth & development , Yersinia pseudotuberculosis/physiology , Biofilms/growth & development , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Animals , Seawater/microbiology , Pseudomonas/physiology , Pseudomonas/growth & development , Pseudomonas/metabolism , Microbial Interactions/physiology
4.
Nat Commun ; 15(1): 6620, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103321

ABSTRACT

Microorganisms consume and transform dissolved organic matter (DOM) into various forms. However, it remains unclear whether the ecological patterns and drivers of DOM chemodiversity are analogous to those of microbial communities. Here, a large-scale investigation is conducted along the Chinese coasts to resolve the intrinsic linkages among the complex intertidal DOM pools, microbial communities and environmental heterogeneity. The abundance of DOM molecular formulae best fits log-normal distribution and follows Taylor's Law. Distance-decay relationships are observed for labile molecular formulae, while latitudinal diversity gradients are noted for recalcitrant molecular formulae. Latitudinal patterns are also observed for DOM molecular features. Negative cohesion, bacterial diversity, and molecular traits are the main drivers of DOM chemodiversity. Stochasticity analyses demonstrate that determinism dominantly shapes the DOM compositional variations. This study unveils the intrinsic mechanisms underlying the intertidal DOM chemodiversity and microbial communities from ecological perspectives, deepening our understanding of microbially driven chemical ecology.


Subject(s)
Ecosystem , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Organic Chemicals/metabolism , Biodiversity , China , Microbiota , Seawater/microbiology
5.
BMC Microbiol ; 24(1): 293, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107684

ABSTRACT

There is an enormous diversity of life forms present in the extremely intricate marine environment. The growth and development of seaweeds in this particular environment are controlled by the bacteria that settle on their surfaces and generate a diverse range of inorganic and organic chemicals. The purpose of this work was to identify epiphytic and endophytic bacterial populations associated with ten common marine macroalgae from various areas along the Mediterranean Sea coast in Alexandria. This was done to target their distribution and possible functional aspects. Examine the effects of the algal habitat on the counting and phenotypic characterization of bacteria, which involves grouping bacteria based on characteristics such as shape, colour, mucoid nature, type of Gram stain, and their ability to generate spores. Furthermore, studying the physiological traits of the isolates under exploration provides insight into the optimum environmental circumstances for bacteria associated with the formation of algae. The majority of the bacterial isolates exhibited a wide range of enzyme activities, with cellulase, alginase, and caseinase being the most prevalent, according to the data. Nevertheless, 26% of the isolates displayed amylolytic activity, while certain isolates from Miami, Eastern Harbor, and Montaza lacked catalase activity. Geographical variations with the addition of algal extract may impact on the enumeration of the bacterial population, and this might have a relationship with host phylogeny. The most significant observation was that endophytic bacteria associated with green algae increased in all sites, while those associated with red algae increased in Abu Qir and Miami sites and decreased in Eastern Harbor. At the species level, the addition of algal extract led to a ninefold increase in the estimated number of epiphytic bacteria for Cladophora pellucida in Montaza. Notably, after adding algal extract, the number of presented endophytic bacteria associated with Codium sp. increased in Abu Qir while decreasing with the same species in Montaza. In addition to having the most different varieties of algae, Abu Qir has the most different bacterial isolates.


Subject(s)
Bacteria , Endophytes , Phylogeny , RNA, Ribosomal, 16S , Seaweed , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Egypt , Seaweed/microbiology , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/physiology , Mediterranean Sea , RNA, Ribosomal, 16S/genetics , Biodiversity , Seawater/microbiology , DNA, Bacterial/genetics , Ecosystem
6.
Microbiome ; 12(1): 143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090708

ABSTRACT

BACKGROUND: Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS: We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS: Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.


Subject(s)
Bacteriophages , Sargassum , Seawater , Symbiosis , Sargassum/microbiology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Seawater/microbiology , Seawater/virology , Genome, Viral , Metagenome , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Genomics , Microbiota , Phylogeny , Genome, Bacterial , Synechococcus/virology , Synechococcus/genetics
7.
Commun Biol ; 7(1): 929, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095605

ABSTRACT

Mesoscale eddies influence the distribution of diazotrophic (nitrogen-fixing) cyanobacteria, impacting marine productivity and carbon export. Non-cyanobacterial diazotrophs (NCDs) are emerging as potential contributors to marine nitrogen fixation, relying on organic matter particles for resources, impacting nitrogen and carbon cycling. However, their diversity and biogeochemical importance remain poorly understood. In the subtropical North Atlantic along a single transect, this study explored the horizontal and vertical spatial variability of NCDs associated with suspended, slow-sinking, and fast-sinking particles collected with a marine snow catcher. The investigation combined amplicon sequencing with hydrographic and biogeochemical data. Cyanobacterial diazotrophs and NCDs were equally abundant, and their diversity was explained by the structure of the eddy. The unicellular symbiotic cyanobacterium UCYN-A was widespread across the eddy, whereas Trichodesmium and Crocosphaera accumulated at outer fronts. The diversity of particle-associated NCDs varied more horizontally than vertically. NCDs constituted most reads in the fast-sinking fractions, mainly comprising Alphaproteobacteria, whose abundance significantly differed from the suspended and slow-sinking fractions. Horizontally, Gammaproteobacteria and Betaproteobacteria exhibited inverse distributions, influenced by physicochemical characteristics of water intrusions at the eddy periphery. Niche differentiations across the anticyclonic eddy underscored NCD-particle associations and mesoscale dynamics, deepening our understanding of their ecological role and impact on ocean biogeochemistry.


Subject(s)
Cyanobacteria , Nitrogen Fixation , Atlantic Ocean , Cyanobacteria/genetics , Cyanobacteria/metabolism , Seawater/microbiology
8.
Environ Monit Assess ; 196(9): 795, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112815

ABSTRACT

A comparative assessment of phytoplankton dynamics during low tide (LT) and high tide (HT) was conducted from February 2022 to January 2023 in a tropical mesotidal creek, Manori, Mumbai, India. In total, 124 phytoplankton species were recorded. The HT resulted in greater species richness (124 species) and diversity indices (Shannon-Wiener's index) than the LT (102 species). The Pielou's evenness (J') and Simpson's dominance index (1-D) did not show significant fluctuations with the tides due to the marine phytoplankton species moving rhythmically in and out of the creek with the tides. Overall, the seasonal abundance was maximum during pre-monsoon at HT (5.79 × 103 u/L) and lowest in monsoon at LT (0.45 × 103 u/L), whereas spatial abundance was maximum at S1 (HT- 4.04 × 103 u/L) at HT and lowest at S3 (LT- 0.75 × 103 u/L) at LT. The diatoms dominated in their abundance (1.83 × 103 u/L and 3.82 × 103 u/L in HT) and diversity (77 in LT and 92 in HT). The species such as Coscinodiscus centralis, Coscinodiscus granii, Coscinodiscus radiatus, Triops furca, Melosira varians, Nitzchsia palea, Chaetoceros affinis, Skeletonema marinoi, Stephanocyclus meneghinianus, Planktoniella sol and Skeletonema costatum were the dominant native residents in the creek. SIMPER analysis revealed that the maximum similarity was during the monsoon (47.65%), and the minimum was during the pre-monsoon (38.10%) at LT. However, in HT, the maximum similarity of phytoplankton shifted to post-monsoon (63.85%) and the minimum during the pre-monsoon (46.71%). The mean value of richness (d') and Shannon's diversity (H') showed a moderate phytoplankton diversity in the system. The environmental parameters (water temperature > pH > nitrate > salinity > DO > Alk > silicate) have a greater influence on the distribution of the phytoplankton community with tides as revealed by the Canonical correspondence analysis. Therefore, it has been found that tides play a significant role in the distribution and abundance of the phytoplankton community in a mesotidal creek environment.


Subject(s)
Biodiversity , Environmental Monitoring , Phytoplankton , Wetlands , India , Seasons , Tidal Waves , Diatoms/growth & development , Seawater
9.
Environ Microbiol Rep ; 16(4): e13314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086173

ABSTRACT

Widespread marine microbiomes exhibit compositional and functional differentiation as a result of adaptation driven by environmental characteristics. We investigated the microbial communities in both seawater and sediments on the slope (7-9 km) and the bottom (9-11 km) of the Challenger Deep of the Mariana Trench to explore community differentiation. Both metagenome-assembled genomes (MAGs) and 16S rRNA amplicon sequence variants (ASVs) showed that the microbial composition in the seawater was similar to that of sediment on the slope, while distinct from that of sediment in the bottom. This scenario suggested a potentially stronger community interaction between seawater and sediment on the slope, which was further confirmed by community assembly and population movement analyses. The metagenomic analysis also indicates a specific stronger potential of nitrate reduction and sulphate assimilation in the bottom seawater, while more versatile nitrogen and sulphur cycling pathways occur on the slope, reflecting functional differentiations among communities in conjunction with environmental features. This work implies that microbial community differentiation occurred in the different hadal niches, and was likely an outcome of microbial adaptation to the extreme hadal trench environment, especially the associated hydrological and geological conditions, which should be considered and measured in situ in future studies.


Subject(s)
Bacteria , Geologic Sediments , Microbiota , RNA, Ribosomal, 16S , Seawater , Seawater/microbiology , Geologic Sediments/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny , Metagenomics , Metagenome , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism
10.
Euro Surveill ; 29(32)2024 Aug.
Article in English | MEDLINE | ID: mdl-39119721

ABSTRACT

BackgroundThe Vibrio genus comprises several bacterial species present in the Baltic Sea region (BSR), which are known to cause human infections.AimTo provide a comprehensive retrospective analysis of Vibrio-induced infections in the BSR from 1994 to 2021, focusing on the 'big four' Vibrio species - V. alginolyticus, V. cholerae non-O1/O139, V. parahaemolyticus and V. vulnificus - in eight European countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden) bordering the Baltic Sea.MethodsOur analysis includes data on infections, Vibrio species distribution in coastal waters and environmental data received from national health agencies or extracted from scientific literature and online databases. A redundancy analysis was performed to determine the potential impact of several independent variables, such as sea surface temperature, salinity, the number of designated coastal beaches and year, on the Vibrio infection rate.ResultsFor BSR countries conducting surveillance, we observed an exponential increase in total Vibrio infections (n = 1,553) across the region over time. In Sweden and Germany, total numbers of Vibrio spp. and infections caused by V. alginolyticus and V. parahaemolyticus positively correlate with increasing sea surface temperature. Salinity emerged as a critical driver of Vibrio spp. distribution and abundance. Furthermore, our proposed statistical model reveals 12 to 20 unreported cases in Lithuania and Poland, respectively, countries with no surveillance.ConclusionsThere are discrepancies in Vibrio surveillance and monitoring among countries, emphasising the need for comprehensive monitoring programmes of these pathogens to protect human health, particularly in the context of climate change.


Subject(s)
Vibrio Infections , Vibrio , Humans , Retrospective Studies , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Vibrio/isolation & purification , Vibrio/classification , Baltic States/epidemiology , Seawater/microbiology , Europe/epidemiology , Oceans and Seas
11.
Microbiologyopen ; 13(4): e1428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119822

ABSTRACT

Interactions between phytoplankton and heterotrophic bacteria significantly influence the cycling of organic carbon in the ocean, with many of these interactions occurring at the micrometer scale. We explored potential associations between specific phytoplankton and bacteria in two size fractions, 0.8-3 µm and larger than 3 µm, at three naturally iron-fertilized stations and one high nutrient low chlorophyll station in the Southern Ocean. The composition of phytoplankton and bacterial communities was determined by sequencing the rbcL gene and 16S rRNA gene from DNA and RNA extracts, which represent presence and potential activity, respectively. Diatoms, particularly Thalassiosira, contributed significantly to the DNA sequences in the larger size fractions, while haptophytes were dominant in the smaller size fraction. Correlation analysis between the most abundant phytoplankton and bacterial operational taxonomic units revealed strong correlations between Phaeocystis and picoeukaryotes with SAR11, SAR116, Magnetospira, and Planktomarina. In contrast, most Thalassiosira operational taxonomic units showed the highest correlations with Polaribacter, Sulfitobacteria, Erythrobacter, and Sphingobium, while Fragilariopsis, Haslea, and Thalassionema were correlated with OM60, Fluviicola, and Ulvibacter. Our in-situ observations suggest distinct associations between phytoplankton and bacterial taxa, which could play crucial roles in nutrient cycling in the Southern Ocean.


Subject(s)
Bacteria , Diatoms , Oceans and Seas , RNA, Ribosomal, 16S , Seawater , Diatoms/classification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Haptophyta/classification , Haptophyta/growth & development , Phytoplankton/classification , Phytoplankton/growth & development , Phylogeny , DNA, Bacterial/genetics , Sequence Analysis, DNA , Seasons
12.
Nature ; 632(8024): 320-326, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112620

ABSTRACT

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.


Subject(s)
Anthozoa , Anthropogenic Effects , Coral Reefs , Global Warming , Hot Temperature , Oceans and Seas , Animals , Anthozoa/physiology , Australia , Climate Models , Extinction, Biological , Global Warming/history , Global Warming/prevention & control , Global Warming/statistics & numerical data , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities/history , Pacific Ocean , Seawater/analysis
13.
PLoS One ; 19(8): e0303363, 2024.
Article in English | MEDLINE | ID: mdl-39116055

ABSTRACT

Ocean oil pollution has a large impact on the environment and the health of living organisms. Bioremediation cleaning strategies are promising eco-friendly alternatives for tackling this problem. Previously, we designed and reported a hydrocarbon (HC) degrading microbial consortium of four marine strains belonging to the species Alloalcanivorax xenomutans, Halopseudomonas aestusnigri, Paenarthrobacter sp., and Pseudomonas aeruginosa. However, the knowledge about the metabolic potential of this bacterial consortium for HC bioremediation is not yet well understood. Here, we analyzed the complete genomes of these marine bacterial strains accompanied by a phylogenetic reconstruction along with 138 bacterial strains. Synteny between complete genomes of the same species or genus, revealed high conservation among strains of the same species, covering over 91% of their genomic sequences. Functional predictions highlighted a high abundance of genes related to HC degradation, which may result in functional redundancy within the consortium; however, unique and complete gene clusters linked to aromatic degradation were found in the four genomes, suggesting substrate specialization. Pangenome gain and loss analysis of genes involved in HC degradation provided insights into the evolutionary history of these capabilities, shedding light on the acquisition and loss of relevant genes related to alkane and aromatic degradation. Our work, including comparative genomic analyses, identification of secondary metabolites, and prediction of HC-degrading genes, enhances our understanding of the functional diversity and ecological roles of these marine bacteria in crude oil-contaminated marine environments and contributes to the applied knowledge of bioremediation.


Subject(s)
Biodegradation, Environmental , Genome, Bacterial , Genomics , Hydrocarbons , Phylogeny , Hydrocarbons/metabolism , Genomics/methods , Microbial Consortia/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Seawater/microbiology
14.
PeerJ ; 12: e17844, 2024.
Article in English | MEDLINE | ID: mdl-39131615

ABSTRACT

High abundances of gelatinous zooplankton (GZ) can significantly impact marine ecosystem by acting as both sink and source of organic matter (OM) and nutrients. The decay of GZ bloom can introduce significant amount of OM to the ocean interior, with its variability influenced by GZ life traits and environmental factors, impacting microbial communities vital to marine biogeochemical cycles. The invasive ctenophores Mnemiopsis leidyi has formed massive blooms in the northern Adriatic Sea since 2016. However, the variability in the chemical composition and egg production of blooming populations, as well as the role of environmental factors in governing this variability, remains largely unknown. Our analysis of biometry, chemical composition, and fecundity of M. leidyi sampled in the Gulf of Trieste in 2021 revealed stable carbon and nitrogen content throughout bloom development, with no significant correlation with seawater temperature, salinity, oxygen, and chlorophyll a concentration. Although the studied population exhibited homogeneity in terms of biometry and chemical composition, the number of produced eggs varied substantially, showing no clear correlation with environmental variables and being somewhat lower than previously reported for the study area and other Mediterranean areas. We observed a positive correlation between the wet weight of individuals and the percentage of hatched eggs, as well as a significant positive correlation between the percentage of hatched eggs and ambient seawater temperature. Additionally, we noted that the speed of hatching decreased with decreasing seawater temperature in autumn, corresponding to the end of M. leidyi bloom.


Subject(s)
Ctenophora , Animals , Ctenophora/growth & development , Nitrogen/analysis , Nitrogen/metabolism , Seawater/chemistry , Ovum/chemistry , Ovum/growth & development , Eutrophication , Mediterranean Sea , Carbon/analysis , Carbon/metabolism , Ecosystem , Temperature
15.
Astrobiology ; 24(8): 795-812, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159437

ABSTRACT

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.


Subject(s)
Exobiology , Extraterrestrial Environment , Salts , Exobiology/methods , Extraterrestrial Environment/chemistry , Salts/analysis , Salts/chemistry , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Amino Acids/analysis , Salinity , Organic Chemicals/analysis , Space Flight , Seawater/chemistry , Seawater/microbiology , Seawater/analysis
16.
Nat Commun ; 15(1): 6840, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122723

ABSTRACT

The world's oceans are under threat from the prevalence of heatwaves caused by climate change. Despite this, there is a lack of understanding regarding their impact on seawater oxygen levels - a crucial element in sustaining biological survival. Here, we find that heatwaves can trigger low-oxygen extreme events, thereby amplifying the signal of deoxygenation. By utilizing in situ observations and state-of-the-art climate model simulations, we provide a global assessment of the relationship between the two types of extreme events in the surface ocean (0-10 m). Our results show compelling evidence of a remarkable surge in the co-occurrence of marine heatwaves and low-oxygen extreme events. Hotspots of these concurrent stressors are identified in the study, indicating that this intensification is more pronounced in high-biomass regions than in those with relatively low biomass. The rise in the compound events is primarily attributable to long-term warming primarily induced by anthropogenic forcing, in tandem with natural internal variability modulating their spatial distribution. Our findings suggest the ocean is losing its breath under the influence of heatwaves, potentially experiencing more severe damage than previously anticipated.


Subject(s)
Climate Change , Oceans and Seas , Seawater , Seawater/chemistry , Oxygen , Climate Models , Hot Temperature , Extreme Heat/adverse effects , Biomass
17.
BMC Plant Biol ; 24(1): 765, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123105

ABSTRACT

The present study focused on the physiological and biochemical aspects of Tricleocarpa fragilis, red seaweed belonging to the phylum Rhodophyta, along the South Andaman coast, with particular attention given to its symbiotic relationships with associated flora and fauna. The physicochemical parameters of the seawater at the sampling station, such as its temperature, pH, and salinity, were meticulously analyzed to determine the optimal harvesting period for T. fragilis. Seaweeds attach to rocks, dead corals, and shells in shallow areas exposed to moderate wave action because of its habitat preferences. Temporal variations in biomass production were estimated, revealing the highest peak in March, which was correlated with optimal seawater conditions, including a temperature of 34 ± 1.1 °C, a pH of 8 ± 0.1, and a salinity of 32 ± 0.8 psu. GC‒MS analysis revealed n-hexadecanoic acid as the dominant compound among the 36 peaks, with major bioactive compounds identified as fatty acids, diterpenes, phenolic compounds, and hydrocarbons. This research not only enhances our understanding of ecological dynamics but also provides valuable insights into the intricate biochemical processes of T. fragilis. The established antimicrobial potential and characterization of bioactive compounds from T. fragilis lay a foundation for possible applications in the pharmaceutical industry and other industries.


Subject(s)
Rhodophyta , Seaweed , Rhodophyta/physiology , Rhodophyta/metabolism , Seaweed/physiology , Seaweed/metabolism , Seawater/chemistry , Ecosystem , Biomass , Fatty Acids/metabolism , Symbiosis/physiology , Animals
18.
Microbiome ; 12(1): 149, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123272

ABSTRACT

BACKGROUND: Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS: Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS: This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.


Subject(s)
Metagenome , Phylogeny , Genome, Bacterial , Geologic Sediments/microbiology , Genomics , Seawater/microbiology , Aquatic Organisms/genetics , Secondary Metabolism , Metagenomics
19.
Environ Sci Technol ; 58(33): 14709-14717, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102585

ABSTRACT

The use of ultrafiltration to isolate high molecular weight dissolved organic matter (HMWDOM) from seawater is a fundamental tool in the environmental organic chemist's toolbox. Yet, important characteristics of HMWDOM relevant to its origin and cycling, such as its molecular weight distribution, remain poorly defined. We used diffusion-ordered NMR spectroscopy coupled with mixed-mode chromatography to separate and characterize two major components of marine HMWDOM: acylpolysaccharides (APS) and high molecular weight humic substances (HS). The molecular weights (MWs) of APS and HS both fell within distinct, narrow envelopes; 2.0-16 kDa for APS and 0.9-6.5 kDa for HS. In water samples from the North Pacific Ocean the average MW of both components decreased with depth through the mesopelagic. However, the minimum MW of APS was >2 kDa, well above the molecular weight cutoff of the ultrafilter, suggesting APS removal processes below 2 kDa are highly efficient. The MW distribution of APS shows only small variations with depth, while the MW distribution of HS narrowed due to removal of HMW components. Despite the narrowing of the MW distribution, the concentration of HS did not decrease with depth between 15 and 915 m. This suggests that HMW HS produced in surface waters was either degraded into lower MW compounds without significant remineralization, or that HMW HS was remineralized but replaced by an additional source of HS in the mesopelagic ocean. Based on these results, we propose potential pathways for the production and removal of these major components of HMWDOM.


Subject(s)
Humic Substances , Molecular Weight , Seawater/chemistry , Magnetic Resonance Spectroscopy , Organic Chemicals/chemistry
20.
Environ Sci Technol ; 58(33): 14775-14785, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39106281

ABSTRACT

The photodegradation of macroplastics in the marine environment remains poorly understood. Here, we investigated the weathering of commercially available plastics (tabs 1.3 × 4.4 × 0.16 cm), including high-density polyethylene, low-density polyethylene, polypropylene, polystyrene, and polycarbonate, in seawater under laboratory-simulated ultraviolet A radiation for 3-9 months, equivalent to 25-75 years of natural sunlight exposure without considering other confounding factors. After the exposure, the physical integrity and thermal stability of the tabs remained relatively intact, suggesting that the bulk polymer chains were not severely altered despite strong irradiation, likely due to their low specific surface area. In contrast, the surface layer (∼1 µm) of the tabs was highly oxidized and eroded after 9 months of accelerated weathering. Several antioxidant additives were identified in the plastics through low temperature pyrolysis coupled with gas chromatography/mass spectrometry (Pyr-GC/MS) analysis. The Pyr-GC/MS results also revealed many new oxygen-containing compounds formed during photodegradation, and these compounds indicated the dominance of chain scission reactions during weathering. These findings highlight the strong resistance of industrial macroplastics to weathering, emphasizing the need for a broader range of plastics with varying properties and sizes to accurately estimate plastic degradation in the marine environment.


Subject(s)
Plastics , Ultraviolet Rays , Photolysis , Seawater/chemistry , Gas Chromatography-Mass Spectrometry , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL