Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.973
1.
Microbes Environ ; 39(5)2024.
Article En | MEDLINE | ID: mdl-38839370

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Bacteria , Hydrothermal Vents , Iron , Microbial Consortia , RNA, Ribosomal, 16S , Seawater , Corrosion , Iron/metabolism , Iron/chemistry , Seawater/microbiology , Seawater/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Hydrothermal Vents/microbiology , Phylogeny
2.
Glob Chang Biol ; 30(6): e17345, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831686

Observations from the California Current System (CalCS) indicate that the long-term trend in ocean acidification (OA) and the naturally occurring corrosive conditions for the CaCO3 mineral aragonite (saturation state Ω < 1) have a damaging effect on shelled pteropods, a keystone group of calcifying organisms in the CalCS. Concern is heightened by recent findings suggesting that shell formation and developmental progress are already impacted when Ω falls below 1.5. Here, we quantify the impact of low Ω conditions on pteropods using an individual-based model (IBM) with life-stage-specific mortality, growth, and behavior in a high-resolution regional hindcast simulation of the CalCS between 1984 and 2019. Special attention is paid to attributing this impact to different processes that lead to such low Ω conditions, namely natural variability, long-term trend, and extreme events. We find that much of the observed damage in the CalCS, and specifically >70% of the shell CaCO3 loss, is due to the pteropods' exposure to naturally occurring low Ω conditions as a result of their diel vertical migration (DVM). Over the hindcast period, their exposure to damaging waters (Ω < 1.5) increases from 9% to 49%, doubling their shell CaCO3 loss, and increasing their mortality by ~40%. Most of this increased exposure is due to the shoaling of low Ω waters driven by the long-term trend in OA. Extreme OA events amplify this increase by ~40%. Our approach can quantify the health of pteropod populations under shifting environmental conditions, and attribute changes in fitness or population structure to changes in the stressor landscape across hierarchical time scales.


Calcium Carbonate , Seawater , Calcium Carbonate/analysis , Animals , Seawater/chemistry , California , Animal Shells/chemistry , Hydrogen-Ion Concentration , Water Movements , Gastropoda/physiology , Gastropoda/growth & development , Climate Change
3.
Sci Rep ; 14(1): 12896, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839894

Healthy ecosystems and species have some degree of resilience to changing conditions, however as the frequency and severity of environmental changes increase, resilience may be diminished or lost. In Sweden, one example of a species with reduced resilience is the Atlantic cod (Gadus morhua). This species has been subjected to overfishing, and with additional pressures such as habitat degradation and changing environmental conditions there has been little to no recovery, despite more than a decade of management actions. Given the historical ecological, economical, and cultural significance of cod, it is important to understand how Atlantic cod respond to global climate change to recover and sustainably manage this species in the future. A multi-stressor experiment was conducted to evaluate physiological responses of juvenile cod exposed to warming, ocean acidification, and freshening, changes expected to occur in their nursery habitat. The response to single drivers showed variable effects related to fish biometrics and increased levels of oxidative stress dependent parameters. Importantly, two separate responses were seen within a single treatment for the multi-stressor and freshening groups. These within-treatment differences were correlated to genotype, with the offshore ecotype having a heightened stress response compared to the coastal ecotype, which may be better adapted to tolerate future changes. These results demonstrate that, while Atlantic cod have some tolerance for future changes, ecotypes respond differently, and cumulative effects of multiple stressors may lead to deleterious effects for this important species.


Climate Change , Ecotype , Gadus morhua , Gadus morhua/physiology , Animals , Ecosystem , Stress, Physiological , Oceans and Seas , Sweden , Seawater/chemistry , Adaptation, Physiological , Oxidative Stress
4.
Harmful Algae ; 135: 102646, 2024 May.
Article En | MEDLINE | ID: mdl-38830712

Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.


Microcystins , Microcystins/metabolism , Microcystins/analysis , Bacteria/metabolism , Cyanobacteria/metabolism , Cyanobacteria/physiology , Microbiota , Seawater/microbiology , Seawater/chemistry , Plankton , Hydrogen-Ion Concentration
5.
Harmful Algae ; 135: 102632, 2024 May.
Article En | MEDLINE | ID: mdl-38830710

This article presents the first results on shellfish toxicity in the Slovenian sea (Gulf of Trieste, Adriatic Sea) since the analytical methods for the detection of biotoxins (PSP, ASP, DSP and other lipophilic toxins) in bivalve molluscs were included in the national monitoring program in 2013. In addition to toxins, the composition and abundance of toxic phytoplankton and general environmental characteristics of the seawater (surface temperature and salinity) were also monitored. During the 2014-2019 study period, only lipophilic toxins were detected (78 positive tests out of 446 runs), of which okadaic acid (OA) predominated in 97 % of cases, while dinophysistoxin-2 and yessotoxins only gave a positive result in one sampling event each. The number of samples that did not comply with the EC Regulation for the OA group was 17 or 3.8 % of all tests performed, all of which took place from September to November, while a few positive OA tests were also recorded in December, April, and May. This toxicity pattern was consistent with the occurrence pattern of the five most common DSP-producing dinoflagellates, which was supported by the development of warm and thermohaline stratified waters: Dinophysis caudata, D. fortii, D. sacculus, D. tripos and Phalacroma rotundatum. The strong correlation (r = 0.611, p < 0.001) between D. fortii, reaching abundances of up to 950 cells L-1, and OA suggests that D. fortii is the main cause of OA production in Slovenian waters. Strong interannual variations in OA and phytoplankton dynamics, exacerbated by the effects of anthropogenic impacts in this coastal ecosystem, reduce the predictability of toxicity events and require continuous and efficient monitoring. Our results also show that the introduction of the LC-MS/MS method for lipophilic toxins has improved the management of aquaculture activities, which was not as accurate based on mouse bioassays.


Marine Toxins , Mytilus , Okadaic Acid , Phytoplankton , Okadaic Acid/analysis , Okadaic Acid/toxicity , Animals , Marine Toxins/analysis , Slovenia , Seafood/analysis , Seawater/chemistry , Dinoflagellida
6.
Sci Rep ; 14(1): 12757, 2024 06 04.
Article En | MEDLINE | ID: mdl-38830941

Reef-building corals live in highly hydrodynamic environments, where water flow largely controls the complex chemical microenvironments surrounding them-the concentration boundary layer (CBL). The CBL may be key to alleviate ocean acidification (OA) effects on coral colonies by partially isolating them. However, OA effects on coral CBL remain poorly understood, particularly under different flow velocities. Here, we investigated these effects on the reef-building corals Acropora cytherea, Pocillopora verrucosa, and Porites cylindrica. We preconditioned corals to a control (pH 8.0) and OA (pH 7.8) treatment for four months and tested how low flow (2 cm s-1) and moderate flow (6 cm s-1) affected O2 and H+ CBL traits (thickness, surface concentrations, and flux) inside a unidirectional-flow chamber. We found that CBL traits differed between species and flow velocities. Under OA, traits remained generally stable across flows, except surface pH. In all species, the H+ CBL was thin and led to lower surface pH. Still, low flow thickened H+ CBLs and increased light elevation of surface pH. In general, our findings reveal a weak to null OA modulation of the CBL. Moreover, the OA-buffering capacity by the H+ CBL may be limited in coral species, though low flow could enhance CBL sheltering.


Anthozoa , Oceans and Seas , Oxygen , Seawater , Anthozoa/physiology , Anthozoa/metabolism , Animals , Hydrogen-Ion Concentration , Oxygen/metabolism , Oxygen/chemistry , Seawater/chemistry , Coral Reefs , Water Movements , Ocean Acidification
7.
Food Res Int ; 186: 114375, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729732

The proximal composition and its seasonal variation of the green seaweed Ulva sp. harvested in a traditional saline (earthen ponds used for marine salt extraction) from Cadiz Bay (Southern Spain) was evaluated. Ulva sp. was also collected in a reference location within the Bay in order to compare and evaluate the effects of the particular characteristics of the saline in the composition of the macroalgae. Moisture, protein, lipid, ash, carbohydrate, fiber and macro- (Na, K, Ca, Mg), micro-mineral contents (Fe, Zn, Cu) and heavy metals (As, Cd, Co, Cr, Hg, Ni, Pb, Sn) of harvested biomass samples as well as environmental parameters of seawater (temperature, salinity, pH, DO, NH4+, NO3-, NO2- and PO43-) were measured. The results showed that Ulva sp. from the earthen ponds in the traditional salina was a better source of proteins, lipids, K and Mg, highlighting in summer with values of 27.54 % versus 6.11 %; 6.71 % versus 3.26 %; 26.60 mg g-1 versus 14.21 mg g-1 and 23.13 mg g-1 versus 17.79 mg g-1, respectively. It also had Na/K and Ca/Mg ratios of less than one, suggesting a healthy food source. Considering the Commission Recommendation (EU) 2018/464 as a working reference, Ulva sp. did not exceed the limit of toxic metals for human consumption.A season and site-season significant interaction on the composition of the seaweeds was observed. The proximal and mineral composition of Ulva sp. was influenced by the special features and environmental conditions of the earthen ponds. Hence, significant differences were observed in the macroalgae collected in the earthen ponds in summer and autumn, in contrast to the winter and spring samples, whose characteristics were similar to those from the inner bay. The closure of the lock-gates in summer to favor the production of salt significantly modified the environmental characteristics of the saline, affecting the physiological capacity of Ulva sp. to assimilate and storage nutrients, and therefore its tissue composition. As a consequence, the highest contents of lipid, ash, Ca, K, Mg and Fe were estimated in the macroalgae.


Metals, Heavy , Minerals , Nutritive Value , Seawater , Ulva , Ulva/chemistry , Minerals/analysis , Metals, Heavy/analysis , Seawater/chemistry , Humans , Spain , Seasons , Seaweed/chemistry , Lactuca/chemistry , Salinity
8.
Sci Rep ; 14(1): 10302, 2024 05 05.
Article En | MEDLINE | ID: mdl-38705904

Microbeads find widespread usage in personal care items and cosmetics, serving as exfoliants or scrubbing agents. Their micro-scale size poses challenges in effective drainage capture and given their origin from non-biodegradable oil-based plastics, this contributes substantially to marine pollution. In this study, microbeads were prepared by a simple yet scalable melt homogenization method using four types of polyhydroxyalkanoates (PHA), namely poly[(R)-3-hydroxybutyrate] (P(3HB)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (P(3HB-co-3HV)), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (P(3HB-co-3HHx)) and poly[(R)-3-hydroxybutyrate-co-(R)-4-hydroxyvalerate] (P(3HB-co-4HB)). Microbeads with different surface smoothness, compressive strength (6.2-13.3 MPa) and diameter (from 1 ~ 150 µm) could be produced. The microbeads were subjected to a comprehensive degradation analysis using three techniques: enzymatic, Biochemical Oxygen Demand (BOD) evaluations, and in situ degradation tests in the deep-sea off Misaki Port in the northern Pacific Ocean (depth of 757 m). Qualitatively, results from enzymatic and in situ degradation demonstrated significant degradation within one week and five months, respectively. Quantitatively, BOD findings indicated that all PHA microbeads degraded similarly to cellulose (~ 85% biodegradability in 25 days). In conclusion, PHA microbeads from this study exhibit promising potential as alternatives to conventional non-biodegradable microbeads.


Biodegradation, Environmental , Microspheres , Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Seawater/chemistry
9.
Harmful Algae ; 134: 102625, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705619

There is a concern that harmful algal bloom (HAB) species may increase under climate change. Yet, we lack understanding of how ecological interactions will be affected under ocean warming and acidification (OWA) conditions. We tested the antagonistic effects of three strains of the dinoflagellate HAB species Alexandrium catenella on three target species (the chlorophyte Tetraselmis sp., the cryptomonad Rhodomonas salina, and the diatom Thalassiosira weissflogii) at various biomass ratios between species, at ambient (16 °C and 400 µatm CO2) and OWA (20 °C and 2000 µatm CO2) conditions. In these experiments the Alexandrium strains had been raised under OWA conditions for ∼100 generations. All three non-HAB species increased their growth rate under OWA relative to ambient conditions. Growth rate inhibition was evident for R. salina and Tetraselmis sp. under OWA conditions, but not under ambient conditions. These negative effects were exacerbated at higher concentrations of Alexandrium relative to non-HAB species. By contrast, T. weissflogii showed positive growth in the presence of two strains of Alexandrium under ambient conditions, whereas growth was unaffected under OWA. Contrary to our expectations, A. catenella had a slight negative response in the presence of the diatom. These results demonstrate that Alexandrium exerts higher antagonistic effects under OWA compared to ambient conditions, and these effects are species-specific and density dependent. These negative effects may shift phytoplankton community composition under OWA conditions.


Dinoflagellida , Dinoflagellida/physiology , Hydrogen-Ion Concentration , Seawater/chemistry , Harmful Algal Bloom/physiology , Diatoms/physiology , Climate Change
10.
Harmful Algae ; 134: 102627, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705620

Due to climate changes and eutrophication, blooms of predominantly toxic freshwater cyanobacteria are intensifying and are likely to colonize estuaries, thus impacting benthic organisms and shellfish farming representing a major ecological, health and economic risk. In the natural environment, Microcystis form large mucilaginous colonies that influence the development of both cyanobacterial and embedded bacterial communities. However, little is known about the fate of natural colonies of Microcystis by salinity increase. In this study, we monitored the fate of a Microcystis dominated bloom and its microbiome along a French freshwater-marine gradient at different phases of a bloom. We demonstrated changes in the cyanobacterial genotypic composition, in the production of specific metabolites (toxins and compatible solutes) and in the heterotrophic bacteria structure in response to the salinity increase. In particular M. aeruginosa and M. wesenbergii survived salinities up to 20. Based on microcystin gene abundance, the cyanobacteria became more toxic during their estuarine transfer but with no selection of specific microcystin variants. An increase in compatible solutes occurred along the continuum with extensive trehalose and betaine accumulations. Salinity structured most the heterotrophic bacteria community, with an increased in the richness and diversity along the continuum. A core microbiome in the mucilage-associated attached fraction was highly abundant suggesting a strong interaction between Microcystis and its microbiome and a likely protecting role of the mucilage against an osmotic shock. These results underline the need to better determine the interactions between the Microcystis colonies and their microbiome as a likely key to their widespread success and adaptation to various environmental conditions.


Fresh Water , Microbiota , Fresh Water/microbiology , Microcystis/physiology , Cyanobacteria/physiology , Cyanobacteria/metabolism , Cyanobacteria/genetics , Salinity , Microcystins/metabolism , Harmful Algal Bloom , Seawater/microbiology , Seawater/chemistry , France
11.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705733

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Bacteria , Geologic Sediments , Iron , Methane , Oxidation-Reduction , Sulfur , Methane/metabolism , Iron/metabolism , Sulfur/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Seawater/chemistry , Sulfides/metabolism , Sulfates/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny
12.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733446

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Environmental Monitoring , Phosphorus , Seawater , Trace Elements , Water Pollutants, Chemical , North Sea , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Phosphorus/analysis , Nutrients/analysis , Nitrogen/analysis , Metals/analysis , Eutrophication
13.
Glob Chang Biol ; 30(5): e17316, 2024 May.
Article En | MEDLINE | ID: mdl-38767231

Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year-round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote and Synechococcus communities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote, Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. Unlike Synechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates than Synechococcus. This work both produces and demonstrates the necessity of taxon- and site-specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change.


Climate Change , Phytoplankton , Seasons , Synechococcus , Synechococcus/physiology , Synechococcus/growth & development , Phytoplankton/physiology , Seawater/chemistry , Temperature
14.
Sci Total Environ ; 932: 173000, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38719050

Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 µatm, 1052 µatm, 2066 µatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.


Seawater , Starfish , Animals , Seawater/chemistry , Hydrogen-Ion Concentration , Starfish/physiology , Global Warming , Carbon Dioxide , Oceans and Seas , Climate Change , Fatty Acids/metabolism , Lipid Metabolism , Ocean Acidification
15.
World J Microbiol Biotechnol ; 40(7): 203, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753033

The viable but non-culturable (VBNC) state is considered a survival strategy employed by bacteria to endure stressful conditions, allowing them to stay alive. Bacteria in this state remain unnoticed in live cell counts as they cannot proliferate in standard culture media. VBNC cells pose a significant health risk because they retain their virulence and can revive when conditions normalize. Hence, it is crucial to develop fast, reliable, and cost-effective methods to detect bacteria in the VBNC state, particularly in the context of public health, food safety, and microbial control assessments. This research examined the biomolecular changes in Escherichia coli W3110 induced into the VBNC state in artificial seawater under three different stress conditions (temperature, metal, and antibiotic). Initially, confirmation of VBNC cells under various stresses was done using fluorescence microscopy and plate counts. Subsequently, lipid peroxidation was assessed through the TBARS assay, revealing a notable increase in peroxidation end-products in VBNC cells compared to controls. ATR-FTIR spectroscopy and chemomometrics were employed to analyze biomolecular changes, uncovering significant spectral differences in RNA, protein, and nucleic acid concentrations in VBNC cells compared to controls. Notably, RNA levels increased, while protein and nucleic acid amounts decreased. ROC analyses identified the 995 cm- 1 RNA band as a consistent marker across all studied stress conditions, suggesting its potential as a robust biomarker for detecting cells induced into the VBNC state under various stressors.


Biomarkers , Escherichia coli , Lipid Peroxidation , Microbial Viability , Escherichia coli/growth & development , Escherichia coli/genetics , Escherichia coli/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Anti-Bacterial Agents/pharmacology , Stress, Physiological , Seawater/microbiology , Seawater/chemistry , Temperature , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Culture Media/chemistry
16.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772667

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Anti-Bacterial Agents , Biofouling , Biosensing Techniques , Electrochemical Techniques , Mercury , Seawater , Mercury/analysis , Seawater/chemistry , Seawater/microbiology , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Biofouling/prevention & control , Aptamers, Nucleotide/chemistry , Silver/chemistry , Water Pollutants, Chemical/analysis , Metal Nanoparticles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Metallocenes
17.
Ecotoxicol Environ Saf ; 278: 116440, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38733806

The distribution of polycyclic aromatic hydrocarbons (PAHs) in the ocean is affected by the sorption-desorption process of sediment particles. This process is determined by the concentration of PAHs in seawater, water temperature, and organic matter content of sediment particles. Quantitative relationships between the net sorption rates (=the difference of sorption and desorption rates) and these factors have not been established yet and used in PAH transport models. In this study, phenanthrene was chosen as the representative of PAHs. Three groups of experimental data were collected to address the dependence of the net sorption processes on the initial concentration, water temperature, and organic carbon content representing organic matter content. One-site and two-compartment mass-transfer models were tested to represent the experimental data using various parameters. The results showed that the two-compartment mass-transfer model performed better than the one-site mass-transfer model. The parameters of the two-compartment mass-transfer model include the sorption rate coefficients kafand kas (L g-1 min-1), and the desorption rate coefficients kdf and kds (min-1). The parameters at different temperatures and organic carbon contents were obtained by numerical simulations. Linear relationships were obtained between the parameters and water temperature, as well as organic carbon content. kaf, kas and kdf decreased linearly, while kds increased linearly with temperature. kaf, kas and kdf increased linearly, while kds decreased linearly with organic carbon content. The r2 values between the simulation results based on the relationships and the experimental results reached 0.96-0.99, which supports the application of the model to simulate sorption-desorption processes at different water temperatures and organic carbon contents in a realistic ocean.


Geologic Sediments , Phenanthrenes , Seawater , Temperature , Water Pollutants, Chemical , Phenanthrenes/chemistry , Geologic Sediments/chemistry , Adsorption , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Seawater/chemistry , Environmental Monitoring/methods , Models, Theoretical , Models, Chemical
18.
Nat Commun ; 15(1): 4365, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778052

Biotic-abiotic hybrid photocatalytic system is an innovative strategy to capture solar energy. Diversifying solar energy conversion products and balancing photoelectron generation and transduction are critical to unravel the potential of hybrid photocatalysis. Here, we harvest solar energy in a dual mode for Cu2-xSe nanoparticles biomineralization and seawater desalination by integrating the merits of Shewanella oneidensis MR-1 and biogenic nanoparticles. Photoelectrons generated by extracellular Se0 nanoparticles power Cu2-xSe synthesis through two pathways that either cross the outer membrane to activate periplasmic Cu(II) reduction or are directly delivered into the extracellular space for Cu(I) evolution. Meanwhile, photoelectrons drive periplasmic Cu(II) reduction by reversing MtrABC complexes in S. oneidensis. Moreover, the unique photothermal feature of the as-prepared Cu2-xSe nanoparticles, the natural hydrophilicity, and the linking properties of bacterium offer a convenient way to tailor photothermal membranes for solar water production. This study provides a paradigm for balancing the source and sink of photoelectrons and diversifying solar energy conversion products in biotic-abiotic hybrid platforms.


Biomineralization , Copper , Seawater , Shewanella , Solar Energy , Shewanella/metabolism , Copper/chemistry , Copper/metabolism , Seawater/microbiology , Seawater/chemistry , Salinity , Water Purification/methods , Nanoparticles/chemistry , Catalysis/radiation effects
19.
Nature ; 629(8012): 603-608, 2024 May.
Article En | MEDLINE | ID: mdl-38750234

Natural iron fertilization of the Southern Ocean by windblown dust has been suggested to enhance biological productivity and modulate the climate1-3. Yet, this process has never been quantified across the Southern Ocean and at annual timescales4,5. Here we combined 11 years of nitrate observations from autonomous biogeochemical ocean profiling floats with a Southern Hemisphere dust simulation to empirically derive the relationship between dust-iron deposition and annual net community production (ANCP) in the iron-limited Southern Ocean. Using this relationship, we determined the biological response to dust-iron in the pelagic perennially ice-free Southern Ocean at present and during the last glacial maximum (LGM). We estimate that dust-iron now supports 33% ± 15% of Southern Ocean ANCP. During the LGM, when dust deposition was 5-40-fold higher than today, the contribution of dust to Southern Ocean ANCP was much greater, estimated at 64% ± 13%. We provide quantitative evidence of basin-wide dust-iron fertilization of the Southern Ocean and the potential magnitude of its impact on glacial-interglacial timescales, supporting the idea of the important role of dust in the global carbon cycle and climate6-8.


Carbon Cycle , Climate , Dust , Iron , Oceans and Seas , Seawater , Dust/analysis , Ice Cover , Iron/analysis , Nitrates/analysis , Seawater/chemistry
20.
PLoS One ; 19(5): e0299235, 2024.
Article En | MEDLINE | ID: mdl-38805414

In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.


Halomonas , Petroleum Pollution , Halomonas/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Petroleum/metabolism , Seawater/microbiology , Seawater/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Biodegradation, Environmental
...