Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 147: 179-188, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003038

ABSTRACT

Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil. Phytoremediation of contaminated soil is an environmental and sustainable technology, and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals. However, the effects of high concentrations of multiple heavy metals (HCMHMs) on plants and native soil microorganisms remain uncertain. Thus, further clarification of the mechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required. Using the plant Sedum alfredii (S. alfredii) to restore HCMHM-contaminated soil, we further explored the mechanism of S. alfredii and native soil microorganisms in the remediation of HCMHM soils. The results showed that (i) S. alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil, which is conducive to the effect of plants on heavy metals. In addition, it can also enrich the absorbed heavy metals in its roots and leaves; (ii) native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes, such as trpE, trpG, bjaI, rpfF, ACSL, and yidC, and promote the expression of the pathway that converts serine to cysteine, then synthesize substances to chelate heavy metals. In addition, we speculated that genes such as K19703, K07891, K09711, K19703, K07891, and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals. The results provide scientific basis for S. alfredii to remediate heavy metals contaminated soils, and confirm the potential of phytoremediation of HCMHM contaminated soil.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Sedum , Soil Microbiology , Soil Pollutants , Soil Pollutants/analysis , Soil Pollutants/metabolism , Sedum/metabolism , Metals, Heavy/analysis , Rhizosphere , Soil/chemistry
2.
Sci Rep ; 14(1): 18035, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098964

ABSTRACT

To increase the efficiency of phytoremediation to clean up heavy metals in soil, assisted with alternating current (AC) electric field technology is a promising choice. Our experiments utilized the hyperaccumulator Sedum alfredii Hance and the fast-growing, high-biomass willow (Salix sp.). We investigated the efficiency of AC field combined with S. alfredii-willow intercropping for removing Cd from soils with different pH values. In the AC electric field treatment with S. alfredii-willow intercropping, the available Cd content in acidic soil increased by 50.00% compared to the control, and in alkaline soil, the increase was 100.00%. Furthermore, AC electric field promoted Cd uptake by plants in both acidic and alkaline soils, with Cd accumulation in the aboveground increased by 20.52% (P < 0.05) and 11.73%, respectively. In conclusion, the integration of AC electric fields with phytoremediation demonstrates significant favorable effectiveness.


Subject(s)
Biodegradation, Environmental , Cadmium , Electricity , Sedum , Soil Pollutants , Soil , Cadmium/metabolism , Soil Pollutants/metabolism , Hydrogen-Ion Concentration , Sedum/metabolism , Sedum/growth & development , Soil/chemistry , Salix/metabolism
3.
Sci Total Environ ; 947: 174585, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38986688

ABSTRACT

The focus on phytoremediation in soil cadmium (Cd) remediation is driven by its cost-effectiveness and eco-friendliness. Selecting suitable hyperaccumulators and optimizing their growth conditions are key to enhance the efficiency of heavy metal absorption and accumulation. Our research has concentrated on the role of salicylic acid (SA) and jasmonic acid (JA) in facilitating Cd phytoextraction by "Sedum alfredii (S. alfredii)" through improved soil-microbe interactions. Results showed that SA or JA significantly boosted the growth, stress resistance, and Cd extraction efficiency in S. alfredii. Moreover, these phytohormones enhanced the chemical and biochemical attributes of the rhizosphere soil, such as pH and enzyme activity, affecting soil-root interactions. High-throughput sequencing analysis has shown that Patescibacteria and Umbelopsis enhanced S. alfredii's growth and Cd extraction by modifying the bioavailability and the chemical conditions of Cd in soil. Structural Equation Model analysis further verified that phytohormones significantly enhanced the interaction between S. alfredii, soil, and microbes, leading to a marked increase in Cd accumulation in the plant. These discoveries emphasized the pivotal role of phytohormones in modulating the hyperaccumulators' response to environmental stress and offered significant scientific support for further enhancing the potential of hyperaccumulators in ecological restoration technologies using phytohormones.


Subject(s)
Biodegradation, Environmental , Cadmium , Cyclopentanes , Oxylipins , Rhizosphere , Salicylic Acid , Sedum , Soil Microbiology , Soil Pollutants , Cadmium/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Soil Pollutants/metabolism , Sedum/metabolism , Cyclopentanes/metabolism , Microbiota , Plant Growth Regulators/metabolism
4.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719039

ABSTRACT

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Plant Growth Regulators , Pseudomonas fluorescens , Sedum , Soil Pollutants , Soil , Sedum/metabolism , Soil Pollutants/metabolism , Metals, Heavy/metabolism , Plant Growth Regulators/metabolism , Soil/chemistry , Pseudomonas fluorescens/metabolism , Soil Microbiology
5.
J Hazard Mater ; 472: 134517, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38739960

ABSTRACT

Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.


Subject(s)
Biodegradation, Environmental , Cadmium , Plant Proteins , Sedum , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Sedum/metabolism , Sedum/genetics , Sedum/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant/drug effects , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics
6.
Chemosphere ; 360: 142417, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797210

ABSTRACT

Silicon (Si) effectively promote the yield of many crops, mainly due to its ability to enhance plants resistance to stress. However, how Si helps hyperaccumulators to extract Cadmium (Cd) from soil has remained unclear. In this study, Sedum alfredii Hance (S. alfredii) was used as material to study how exogenous Si affected biomass, Cd accumulation, antioxidation, cell ultrastructure, subcellular distribution and changes in gene expression after Cd exposure. The study has shown that as Si concentration increases (1, 2 mM), the shoot biomass of plants increased by 33.1%-63.6%, the Cd accumulation increased by 31.9%-96.6%, and the chlorophyll, carotenoid content, photosynthetic gas exchange parameters significantly increased. Si reduced Pro and MDA, promoted the concentrations of SOD, CAT and POD to reduce antioxidant stress damage. In addition, Si promoted GSH and PC to chelate Cd in vacuoles, repaired damaged cell ultrastructure, improved the fixation of Cd and cell wall (especially in pectin), and reduced the toxic effects of Cd. Transcriptome analysis found that genes encoding Cd detoxification, Cd absorption and transport were up-regulated by Si supplying, including photosynthetic pathways (PSB, LHCB, PSA), antioxidant defense systems (CAT, APX, CSD, RBOH), cell wall biosynthesis such as pectinesterase (PME), chelation (GST, MT, NAS, GR), Cd absorption (Nramp3, Nramp5, ZNT) and Cd transport (HMA, PCR). Our result revealed the tentative mechanism of Si promotes Cd accumulation and enhances Cd tolerance in S. alfredii, and thereby provides a solid theoretical support for the practical use of Si fertilizer in phytoextraction.


Subject(s)
Cadmium , Photosynthesis , Sedum , Silicon , Soil Pollutants , Sedum/drug effects , Sedum/metabolism , Sedum/genetics , Cadmium/toxicity , Cadmium/metabolism , Silicon/pharmacology , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Transcriptome/drug effects , Gene Expression Profiling , Chlorophyll/metabolism , Gene Expression Regulation, Plant/drug effects , Biomass
7.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729407

ABSTRACT

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Subject(s)
Cadmium , Salicylic Acid , Sedum , Soil Pollutants , Transcriptome , Cadmium/toxicity , Salicylic Acid/metabolism , Sedum/drug effects , Sedum/metabolism , Sedum/genetics , Sedum/growth & development , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Transcriptome/drug effects , Metabolomics , Oxidative Stress/drug effects , Metabolome/drug effects
8.
J Hazard Mater ; 472: 134551, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743979

ABSTRACT

Most hyperaccumulators cannot maintain vigorous growth throughout the year, which may result in a low phytoextraction efficiency for a few months. In the present study, rotation of two hyperaccumulators is proposed to address this issue. An 18-month field experiment was conducted to evaluate the phytoextraction efficiency of Cd by the monoculture and rotation of Celosia argentea and Sedum plumbizincicola. The results showed that rotation increased amount of extracted Cd increased by 2.3 and 1.6 times compared with monoculture of C. argentea and S. plumbizincicola. In rotation system, the biomass of S. plumbizincicola and Cd accumulation in C. argentea increased by 54.4% and 40.7%, respectively. Rotation reduced fallow time and increased harvesting frequency, thereby enhancing Cd phytoextraction. Planting C. argentea significantly decreased soil pathogenic microbes and increased the abundances of plant growth-promoting rhizobacteria (PGPR) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes, which may be beneficial for the growth of S. plumbizincicola. Planting S. plumbizincicola increased the abundance of sulfur oxidization (SOX) system genes and decreased soil pH (p < 0.05), thereby increasing the Cd uptake by C. argentea. These findings indicated that rotation of C. argentea and S. plumbizincicola is a promising method for promoting Cd phytoextraction.


Subject(s)
Biodegradation, Environmental , Cadmium , Celosia , Sedum , Soil Pollutants , Cadmium/metabolism , Sedum/metabolism , Sedum/growth & development , Soil Pollutants/metabolism , Celosia/metabolism , Soil Microbiology , Agriculture , Biomass
9.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564870

ABSTRACT

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Subject(s)
Sedum , Soil Pollutants , Zinc/metabolism , Cadmium/metabolism , Sedum/metabolism , Biological Transport , Ion Transport , Plant Roots/metabolism , Soil Pollutants/analysis
10.
Sci Total Environ ; 914: 169939, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211868

ABSTRACT

Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 µmol/L. The results determined that a concentration of 1 µmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 µmol/L JA under 300 µmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.


Subject(s)
Cyclopentanes , Oxylipins , Sedum , Soil Pollutants , Cadmium/analysis , Sedum/metabolism , Antioxidants/metabolism , Gene Expression Profiling , Soil Pollutants/analysis , Biodegradation, Environmental , Plant Roots/metabolism
11.
Environ Pollut ; 343: 123289, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38176638

ABSTRACT

The Cd tolerance protein SaCTP3, which responds to Cd stress, was identified in Sedum alfredii; however, how to improve the efficiency of phytoremediation of Cd-contaminated soil using the CTP gene remains unknown. In this study, the phytoremediation potential of SaCTP3 of Sedum alfredii was identified. In the yeast Cd-sensitive strain Δycf1 overexpressing SaCTP3, the accumulation of Cd was higher than that in the Δycf1 strain overexpressing an empty vector. Transgenic sorghum plants overexpression SaCTP3 were further constructed to verify the function of SaCTP3. Compared to wild-type plants, the SaCTP3-overexpressing lines exhibited higher Cd accumulation under 500 µM Cd conditions. The average Cd content inSaCTP3-overexpressing plants is more than four times higher than that of WT plants. This was accompanied by an enhanced ability to scavenge ROS, as evidenced by the significantly increased activities of peroxidase, catalase, and superoxide dismutase in response to Cd stress. Pot experiments further demonstrated that SaCTP3 overexpression resulted in improved soil Cd scavenging and photosynthetic abilities. After 20 days of growth, the average Cd content in the soil planted with SaCTP3-overexpressing sorghum decreased by 19.4%, while the residual Cd content in the soil planted with wild-type plants was only reduced by 5.4%. This study elucidated the role of SaCTP3 from S.alfredii, highlighting its potential utility in genetically modifying sorghum for the effective phytoremediation of Cd.


Subject(s)
Sedum , Soil Pollutants , Sorghum , Cadmium/analysis , Sedum/genetics , Sedum/metabolism , Sorghum/genetics , Ectopic Gene Expression , Plants, Genetically Modified/metabolism , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Plant Roots/metabolism
12.
Sci Total Environ ; 912: 168828, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029975

ABSTRACT

Sedum plumbizincicola is a promising hyperaccumulator for heavy metal phytoremediation. It grows in heavy metal polluted soil and stores specific endophyte resources with heavy metal tolerance or growth promotion characteristics. In this study, the endophyte communities of S. plumbizincicola, growing naturally in the field (two former mining locations and one natural location) were investigated, and their structure and function were comparatively studied. The bioaccumulation and translocation characteristics of cadmium (Cd) and selenium (Se) in S. plumbizincicola were also evaluated. The results showed that the heavy metal pollution reduced the richness and diversity of endophyte communities. Soil pH and Cd concentration could be the key factors affecting the composition of the endophyte community. Co-occurrence network analysis identified that 22 keystone taxa belonging to Actinobacteriota, Firmicutes, Myxococcota and Proteobacteria were positively correlated with Cd bioaccumulation and translocation. The predicted endophyte metabolic pathways were enriched in physiological metabolism, immune system, and genetic Information processing. These findings may help to understand how endophytes assist host plants to enhance their adaptability to harsh environments, and provide a basis for further exploration of plant-endophyte interactions and improvement in phytoremediation efficiency.


Subject(s)
Metals, Heavy , Sedum , Soil Pollutants , Cadmium/analysis , Soil , Sedum/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Biodegradation, Environmental , Bacteria/metabolism , Hydrogen-Ion Concentration
13.
Environ Geochem Health ; 45(11): 8317-8336, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37597084

ABSTRACT

The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.


Subject(s)
Arsenic , Crassulaceae , Sedum , Soil Pollutants , Arsenic/toxicity , Sedum/metabolism , Sedum/microbiology , Crassulaceae/metabolism , Phosphates , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Plant Roots/metabolism , Cadmium
14.
Environ Sci Pollut Res Int ; 30(38): 88986-88997, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37450188

ABSTRACT

Modeling plants for biomass production and metal uptake from surrounding environment is strongly dependent on the moisture content of soil. Therefore, experiments were conducted to find out how soil moisture affects the phenotypic traits, photosynthetic efficiency, metabolic profile, and metal accumulation in the hyperaccumulating ecotype of Sedum alfredii (S. alfredii). A total of six water potential gradients were set: 0 ~ -15 kPa (T1), -15 ~ -30 kPa (T2), -30 ~ -45 kPa (T3), -45 ~ -60 kPa (T4), -60 ~ -75 kPa (T5), and -75 ~ -90 kPa (T6). Different water potential treatments had a significant effect on plant growth and metal uptake efficiency. Compared to T3, T2 was more effective in promoting plant growth and development, with an increase in biomass of 23% and 17% in both fresh weight (FW) and dry weight (DW), respectively. T2 and T3 had the highest cadmium (Cd) content in the shoot (280.2 mg/kg) and (283.3 mg/kg), respectively, whereas T1 had the lowest values (204.7 mg/kg). Cd availability for plants in the soil was affected by moving soil moisture cycles. Changes in soil moisture that were either too high or too low compared to the ideal soil water content for S. alfredii growth resulted in a significant reduction in Cd accumulation in shoots. Tryptophan, phenylalanine, and other amino acids were accumulated in T5, whereas only tryptophan and phenylalanine slightly increased in T1. Sugars and alcohols such as sucrose, trehalose, mannitol, galactinol, and mannobiose increased in T5, while they decreased significantly in T1. Interestingly, in contrast to T1, the two impaired metabolic pathways in T5 (galactose and starch metabolism) were identified to be glucose metabolic pathways. These findings provide scientific information (based on experiments) to improve biomass production and metal uptake efficiency in hyperaccumulating ecotype of S. alfredii for phytoremediation-contaminated agricultural fields.


Subject(s)
Sedum , Soil Pollutants , Cadmium/analysis , Sedum/metabolism , Ecotype , Soil/chemistry , Dehydration/metabolism , Tryptophan , Soil Pollutants/analysis , Plant Roots/metabolism , Photosynthesis , Biodegradation, Environmental
15.
Environ Sci Pollut Res Int ; 30(38): 89616-89626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37454382

ABSTRACT

Intercropping of specific accumulators with industrial crops is used in moderately metal contaminated agricultural land. The distribution characteristics and environmental risks of non-accumulated ions in intercropping fields have rarely been reported. This study analyzed dissolved organic matter (DOM) fractionation and metal chemical forms to investigate the bioavailability, transformation, and uptake of non-hyperaccumulated metals in different cultivation patterns of a Cd hyperaccumulator (Sedum alfredii Hance) and a commercial crop (Cicer arietinum L.). The study focused on the distribution and transformation of heavy metals, with a particular emphasis on the role of DOM in intercropping. The contents of DOM in the rhizosphere soils of the Cd hyperaccumulator monoculture and the intercropping field were obviously greater than the DOM concentration in the commercial crop monoculture. The content of soluble Cd was significantly lower in the former two planting patterns than in the latter. In contrast, soluble Pb and Cu exhibited opposite content characteristics. In addition, the metal extraction ability of DOM extracted from the C. arietinum monoculture was lower than those from the Cd hyperaccumulator monoculture and the intercropping field. The concentrations of Cd in both below-ground and aerial parts of C. arietinum intercropping were significantly lower than those in its monoculture, since S. alfredii depleted soil Cd. Contrastingly, the contents of Cu and Pb in C. arietinum harvested from intercropping were significantly greater than those in its monoculture because the intercropped Cd hyperaccumulator activated Cu and Pb by changing soil DOM content and fractionations without absorbing them. The findings provide valuable insights into the use of intercropping to remediate moderately metal-contaminated agricultural land and highlight the potential risks associated with intercropping in multi-metal-contaminated fields.


Subject(s)
Agriculture , Cicer , Sedum , Sedum/metabolism , Cicer/metabolism , Agriculture/methods , Soil Pollutants/analysis , Soil Pollutants/metabolism , Metals/analysis , Metals/metabolism , Cadmium/analysis , Cadmium/metabolism , Lead/analysis , Lead/metabolism , Dissolved Organic Matter , Soil/chemistry , Biodegradation, Environmental , Environmental Restoration and Remediation/methods
16.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511604

ABSTRACT

The cadmium hyperaccumulator Sedum plumbizincicola has remarkable abilities for cadmium (Cd) transport, accumulation and detoxification, but the transcriptional regulation mechanisms responsible for its Cd hyperaccumulation remain unknown. To address this knowledge gap, we conducted a comparative transcriptome study between S. plumbizincicola and the non-hyperaccumulating ecotype (NHE) of Sedum alfredii with or without Cd treatment. Our results revealed many differentially expressed genes involved in heavy metal transport and detoxification that were abundantly expressed in S. plumbizincicola. Additionally, we identified a large number of differentially expressed transcription factor genes, highlighting the complexity of transcriptional regulatory networks. We further screened four transcription factor genes that were highly expressed in the roots of S. plumbizincicola as candidate genes for creating CRISPR/Cas9 knockout mutations. Among these, the SpARR11 and SpMYB84 mutant lines exhibited decreased Cd accumulation in their aboveground parts, suggesting that these two transcription factors may play a role in the regulation of the Cd hyperaccumulation in S. plumbizincicola. Although further research will be required to determine the precise targeted genes of these transcription factors, combined transcriptome analysis and CRISPR/Cas9 technology provides unprecedented opportunities for identifying transcription factors related to Cd hyperaccumulation and contributes to the understanding of the transcriptional regulation mechanism of hyperaccumulation in S. plumbizincicola.


Subject(s)
Sedum , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Sedum/metabolism , CRISPR-Cas Systems , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcription Factors/genetics , Biodegradation, Environmental , Plant Roots/genetics , Plant Roots/metabolism
17.
Environ Pollut ; 327: 121546, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37019266

ABSTRACT

Cd contamination is a world-wild concern for its toxicity and accumulation in food chain. Sedum alfredii Hance (Crassulaceae) is a zinc (Zn) and cadmium (Cd) hyperaccumulator native to China and widely applied for the phytoremediation at Zn or Cd contaminated sites. Although many studies report the uptake, translocation and storage of Cd in S. alfredii Hance, limited information is known about the genes and underlying mechanisms of genome stability maintenance under Cd stress. In this study, a gene resembling DNA-damage repair/toleration 100 (DRT100) was Cd inducible and designated as SaDRT100. Heterologous expression of SaDRT100 gene in yeasts and Arabidopsis thaliana enhanced Cd tolerance capability. Under Cd stress, transgenic Arabidopsis with SaDRT100 gene exhibited lower levels of reactive oxygen species (ROS), fewer Cd uptake in roots and less Cd-induced DNA damage. Evidenced by the subcellular location in cellular nucleus and expression in aerial parts, we suggested the involvement of SaDRT100 in combating Cd-induced DNA damage. Our findings firstly uncovered the roles of SaDRT100 gene in Cd hypertolerance and genome stability maintenance in S. alfredii Hance. The potential functions of DNA protection make SaDRT100 gene a candidate in genetic engineering for phytoremediation at multi-component contaminated sites.


Subject(s)
Sedum , Soil Pollutants , Cadmium/toxicity , Cadmium/metabolism , Sedum/genetics , Sedum/metabolism , Zinc/metabolism , Biodegradation, Environmental , DNA/metabolism , Soil Pollutants/analysis , Plant Roots/metabolism
18.
Environ Sci Technol ; 57(14): 5891-5902, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36988089

ABSTRACT

This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species Sedum plumbizincicola. To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δ114/110Cd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The Δ66Znplant-initial solution or Δ66Znplant-final solution values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (Δ114/110Cd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (Δ114/110Cd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the Δ114/110Cdtranslocation values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in S. plumbizincicola but had little effect on those of Zn.


Subject(s)
Cadmium , Sedum , Soil Pollutants , Soil , Biodegradation, Environmental , Cadmium/analysis , Cadmium/metabolism , Isotopes/analysis , Isotopes/metabolism , Isotopes/pharmacology , Plant Roots/chemistry , Plant Roots/metabolism , Sedum/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Zinc/analysis , Zinc Isotopes/analysis , Zinc Isotopes/metabolism , Zinc Isotopes/pharmacology
19.
J Hazard Mater ; 449: 130970, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36801723

ABSTRACT

Phytoextraction is an environmentally friendly phytoremediation technology that can reduce the total amount of heavy metals (HMs) in the soil. Hyperaccumulators or hyperaccumulating transgenic plants with biomass are important biomaterials for phytoextraction. In this study, we show that three different HM transporters from the hyperaccumulator Sedum pumbizincicola, SpHMA2, SpHMA3, and SpNramp6, possess Cd transport. These three transporters are located at the plasma membrane, tonoplast, and plasma membrane, respectively. Their transcripts could be strongly stimulated by multiple HMs treatments. To create potential biomaterials for phytoextraction, we overexpressed the three single genes and two combining genes, SpHMA2&SpHMA3 and SpHMA2&SpNramp6, in rapes having high biomass and environmental adaptability, and found that the aerial parts of the SpHMA2-OE3 and SpHMA2&SpNramp6-OE4 lines accumulated more Cd from single Cd-contaminated soil because SpNramp6 transports Cd from root cells to the xylem and SpHMA2 from the stems to the leaves. However, the accumulation of each HM in the aerial parts of all selected transgenic rapes was strengthened in multiple HMs-contaminated soils, probably due to the synergistic transport. The HMs residuals in the soil after the transgenic plant phytoremediation were also greatly reduced. These results provide effective solutions for phytoextraction in both Cd and multiple HMs-contaminated soils.


Subject(s)
Brassica napus , Metals, Heavy , Sedum , Soil Pollutants , Cadmium/metabolism , Sedum/metabolism , Brassica napus/metabolism , Soil Pollutants/metabolism , Metals, Heavy/metabolism , Soil , Biodegradation, Environmental , Membrane Transport Proteins/metabolism , Plants, Genetically Modified/metabolism
20.
Sci Total Environ ; 870: 161808, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36706996

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) pollution is a global ecological soil problem. Screening and establishing an efficient phytoremediation system would be beneficial for alleviating this problem. The ornamental plant Sedum spectabile was selected as the remediation plant to study the removal efficiencies of PAHs after adding different concentrations of nano-SiO2, nano-CeO2, and traditional Na-montmorillonite (Na-MMT). The results demonstrated that shoot biomass was increased and photosynthesis was enhanced by the nanomaterial amendments. The uptake of 16 PAHs by S. spectabile was remarkably increased. Moreover, the two highest shoot concentrations were 7.61 (Phe) and 12.03 (Flo) times that of the control, and the two highest translocation factors were 31 (BbF) and 28 (BaP) times that of the control. Furthermore, 16S rRNA gene sequencing showed that the addition of nano-SiO2 increased the abundance of Acidobacteria, and the genera related to PAH degradation was higher under nanomaterial treatments. The very high Si concentration in the shoots of S. spectabile had a significant linear correlation with the concentration of PAHs. In conclusion, the S. spectabile remediation system assisted by two nanomaterials was effective for the removal of PAHs from soil, and the transfer of PAHs to easily harvested aboveground plant parts was especially worthy of attention.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Sedum , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Sedum/metabolism , Soil Pollutants/analysis , RNA, Ribosomal, 16S , Biodegradation, Environmental , Soil , Plants/metabolism , Soil Microbiology , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL