Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.127
Filter
1.
Braz J Biol ; 84: e284953, 2024.
Article in English | MEDLINE | ID: mdl-39109728

ABSTRACT

This study is aimed at evaluating the effect of various types of fertilizers and growth stimulants on the productivity and quality of yellow melilot. Their increase is necessary to ensure a balanced mineral composition of livestock diet. Research methods include the analysis of field germination of seeds, the study of plant growth at various stages, and the analysis of the agrochemical composition of the soil and feed mass. The field experiments were conducted in the steppe zone of the Akmola region, Kazakhstan with fluctuating air temperature and low rainfall. The results show that the use of fertilizers and growth stimulants significantly increased the field germination of seeds, the content of protein, carotene, and feed units, as well as the yield of the green mass of the yellow melilot. Particularly high rates were achieved with the use of the Fulvimax N and Start Up fertilizers and the Gumato Fosfat N and K growth stimulants. The results indicate the potential of fertilizers and growth stimulants to improve agricultural production and emphasize the importance of choosing the optimal fertilizers to achieve maximum results. The study contributes to the expansion of knowledge about methods of increasing the yield and quality of feed crops, which is an important issue in agriculture.


Subject(s)
Animal Feed , Fertilizers , Fertilizers/analysis , Animal Feed/analysis , Kazakhstan , Germination/drug effects , Seeds/drug effects , Seeds/growth & development , Seeds/chemistry , Soil/chemistry
2.
J Agric Food Chem ; 72(33): 18606-18618, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39110027

ABSTRACT

Some germination is known to occur during the process of fermentation in cocoa beans. The impact of this biological process on the course of cocoa fermentation is not known and was thus investigated. In order to determine the impact of germination at the molecular level as well as on flavor, an untargeted metabolomics approach using Ultra Performance Liquid Chromatography-Electrospray Ionization-Time of Flight-Mass Spectrometry (UPLC-ESI-ToF-MS) with simultaneous acquisition of low- and high-collision energy mass spectra (MSe) was performed. Extracts of raw and germinated cocoa beans of the same origin were measured and compared for characteristic differences by unsupervised principal component analysis. OPLS-DA revealed 12-hydroxyjasmonic acid (HOJA) sulfate, (+)-catechin and (-)-epicatechin as most down-regulated compounds as well as two hydroxymethylglutaryl (HMG) glucosides A and B among others as decisive up-regulated compounds in the germinated material. Additionally, further HMG glucosides and 12-hydroxyjasmonic acid could be identified in cocoa for the first time by coelution with isolated and synthesized reference compounds. HOJA sulfate, which has been postulated in cocoa, and HOJA were revealed to impart bitter and astringent taste qualities.


Subject(s)
Cacao , Germination , Seeds , Cacao/chemistry , Cacao/metabolism , Cacao/growth & development , Seeds/chemistry , Seeds/growth & development , Seeds/metabolism , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization , Catechin/metabolism , Catechin/analysis , Taste , Oxylipins/metabolism , Cyclopentanes/metabolism
3.
Oxid Med Cell Longev ; 2024: 5594090, 2024.
Article in English | MEDLINE | ID: mdl-39156220

ABSTRACT

Background: Type II diabetes mellitus (DM) is an increasing health problem that has negative impacts on patients and healthcare systems, worldwide. The development of new therapies with better efficacy, fewer side effects, and lower prices are urgently needed to treat this disease. Aim: To evaluate and compare the therapeutic effects of Nigella sativa (N. sativa) seed and oil on the biochemical parameters and regeneration of pancreatic islets (or islets of Langerhans) of streptozotocin (STZ)-induced diabetic rats. Materials and Methods: The diabetic rat model was prepared by administering a single dose of STZ (35 mg/kg body weight). The whole seed or the oil of N. sativa was administered to the diabetic and control groups for a period of 28 days, but not to the negative and STZ controls. Serum blood glucose, liver enzymes, lipid profile, and renal function tests (uric acid, albumin, total protein, urea, and creatinine) were measured in all groups. After the rats were euthanized, their pancreases were extracted, and then sectioned and fixed on slides in preparation before staining with H&E stain and immunohistochemical study. Results: Treatment of STZ-diabetic rats with N. sativa seeds or oil significantly improved their serum glucose levels, lipid profiles, and liver and renal functions as well as preserved the integrity of pancreatic ß cells. Conclusion: N. sativa seeds and oil demonstrate significant therapeutic improvement effects on DM and its related complications including effective protection of islets of Langerhans. The therapeutic benefits of N. sativa seeds and oil on DM and its related complications are comparable.


Subject(s)
Diabetes Mellitus, Experimental , Nigella sativa , Plant Oils , Seeds , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Seeds/chemistry , Rats , Plant Oils/pharmacology , Plant Oils/therapeutic use , Nigella sativa/chemistry , Male , Rats, Wistar , Immunohistochemistry , Blood Glucose/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Carum
4.
Food Res Int ; 193: 114854, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160045

ABSTRACT

In this study, phenolic profile/content was analyzed by high-resolution untargeted metabolomics after short germination (72 h) and seedling growth (144 h), using three sorghum genotypes varying in tannin content (IS 29569, Macia and IS 30400). In vitro antioxidant capacity and phenolic bioaccessibility were determined by microplate-based and INFOGEST methods, respectively. A total of 58 % annotated compounds were found in all genotypes; and phenolic acids and flavonoids represent more than 80 % of sorghum total abundance. PCA analysis showed higher phenolic variability in germination times (72 %) than genotypes (51 %). Germination reduced total ion abundance (-7 %) and free:bound phenolic compounds ratio (2.4-1.1), but antioxidant capacity remained constant. These results indicate the cell matrix-phenolic decomplexation, with the free compounds were quickly consumed after radicle emergence. Germination increased phenolic bioaccessibility (mainly in oral phase) but reduces flavonoids contents in gastric/intestinal digestion steps. This work can stimulate seed germination as a viable option for sorghum-based foods development, with improved nutritional and bioactive properties.


Subject(s)
Antioxidants , Germination , Phenols , Seedlings , Sorghum , Tandem Mass Spectrometry , Sorghum/metabolism , Sorghum/growth & development , Sorghum/chemistry , Seedlings/growth & development , Seedlings/metabolism , Phenols/metabolism , Phenols/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Antioxidants/metabolism , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/chemistry , Biological Availability , Metabolomics/methods , Genotype , Tannins/analysis , Tannins/metabolism , Digestion
5.
Protein Sci ; 33(9): e5154, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180496

ABSTRACT

Due to the benefits of tomato as an antioxidant and vitamin source, allergy to this vegetable food is a clinically concerning problem. Sola l 7, a class I lipid transfer protein found in tomato seeds, has been identified as an allergen linked to severe anaphylaxis. However, the role of lipid binding in Sola l 7-induced allergy remains unclear. Here, the three-dimensional structure of recombinant Sola l 7 (rSola l 7) has been elucidated using nuclear magnetic resonance spectroscopy (NMR). Its interaction with free fatty acids has been deeply studied; fluorescence emission spectroscopy revealed that different long-chain fatty acids interact with the protein, affecting the only tyrosine residue present in Sola l 7. On the contrary, no changes in the overall secondary structure were observed after the analysis of the circular dichroism spectra in the presence of fatty acids. Unsaturated oleic and linoleic fatty acids presented higher affinity and promoted more significant changes than saturated or short-chain fatty acids. 1H-15N HSQC NMR spectra allowed to determine the regions of the protein that were modified when rSola l 7 interacts with the fatty acids, suggesting epitope modification after the interaction. For corroboration, IgG and IgE binding to rSola l 7 were assessed in the presence of free fatty acids, revealing that both IgE and IgG binding were significantly lower than in their absence, suggesting a potential protective role of unsaturated fatty acids in tomato allergy.


Subject(s)
Carrier Proteins , Food Hypersensitivity , Plant Proteins , Seeds , Solanum lycopersicum , Solanum lycopersicum/chemistry , Food Hypersensitivity/immunology , Plant Proteins/chemistry , Plant Proteins/immunology , Carrier Proteins/chemistry , Humans , Seeds/chemistry , Immunoglobulin E/immunology , Immunoglobulin E/chemistry , Immunoglobulin E/metabolism , Fatty Acids/chemistry , Antigens, Plant/chemistry , Antigens, Plant/immunology , Allergens/chemistry , Allergens/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Immunoglobulin G/chemistry , Nuclear Magnetic Resonance, Biomolecular
6.
BMC Complement Med Ther ; 24(1): 299, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135016

ABSTRACT

BACKGROUND: Peganum harmala L. is used in traditional medicine to treat several health ailments. Hence, the present work aimed to investigate the DPPH free radical scavenging, α-amylase, cytotoxic, and antifibrotic effects of the hydrophilic extract and fixed oil obtained from P. harmala seeds. METHODS: The hydrophilic extract and fixed oil of P. harmala were assessed for their abilities to scavenge DPPH free radicals and inhibit α-amylase using reference bioassays. The cytotoxicity was assessed on several cancer and normal cell lines, including B16F1, Caco-2, COLO205, HeLa, Hep 3B and Hep G2, MCF-7, and HEK-293 T cells. The MTS assay was used to evaluate the antifibrotic capabilities utilizing the human hepatic stellate (LX-2) cell line. RESULTS: P. harmala plant fixed oil has potent DPPH free radical scavenging activity with an IC50 dose of 79.43 ± 0.08 µg/ml. Besides, the hydrophilic extract has a poor anti-α-amylase effect compared with the antidiabetic drug Acarbose, with IC50 doses of 398 ± 0.59 and 25.11 ± 1.22 µg/ml, respectively. In addition, the growth of MCF-7, Hep3B, HepG2, HeLa, COLO205, CaCo2, B16F1, and HeK293t was inhibited by P. harmala hydrophilic extract with IC50 doses of 121.34 ± 1.71, 268.3 ± 0.75, 297.20 ± 1.00, 155.60 ± 1.14, 150.01 ± 0.51, 308.35 ± 0.53, 597.93 ± 1.36, and 5.38 ± 0.99 µg/ml, respectively. In addition, at 1000 µg/ml, 5-Fluorouracil reduced fibrosis cells by 0.089%, while the hydrophilic extract decreased the number of LX-2 cells by 5.81%. CONCLUSION: P. harmala plant-fixed oil exhibits potential antioxidant properties. While the hydrophilic extract showed limited effectiveness as an anti-α-amylase agent and demonstrated notable cytotoxic effects against various tested cancer cell lines. Furthermore, this extract significantly reduces the number of LX-2 fibrotic cells. These findings emphasize the therapeutic potential of these products in managing various health disorders and warrant further investigation into their mechanisms of action and clinical applications.


Subject(s)
Free Radical Scavengers , Peganum , Plant Extracts , alpha-Amylases , Humans , Peganum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , alpha-Amylases/antagonists & inhibitors , Free Radical Scavengers/pharmacology , Cell Line, Tumor , Seeds/chemistry
7.
J Agric Food Chem ; 72(33): 18573-18584, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39105709

ABSTRACT

Isoflavone is a secondary metabolite of the soybean phenylpropyl biosynthesis pathway with physiological activity and is beneficial to human health. In this study, the isoflavone content of 205 soybean germplasm resources from 3 locations in 2020 showed wide phenotypic variation. A joint genome-wide association study (GWAS) and weighted gene coexpression network analysis (WGCNA) identified 33 single-nucleotide polymorphisms and 11 key genes associated with soybean isoflavone content. Gene ontology enrichment analysis, gene coexpression, and haplotype analysis revealed natural variations in the Glyma.12G109800 (GmOMT7) gene and promoter region, with Hap1 being the elite haplotype. Transient overexpression and knockout of GmOMT7 increased and decreased the isoflavone content, respectively, in hairy roots. The combination of GWAS and WGCNA effectively revealed the genetic basis of soybean isoflavone and identified potential genes affecting isoflavone synthesis and accumulation in soybean, providing a valuable basis for the functional study of soybean isoflavone.


Subject(s)
Gene Expression Regulation, Plant , Genome-Wide Association Study , Glycine max , Isoflavones , Plant Proteins , Polymorphism, Single Nucleotide , Seeds , Glycine max/genetics , Glycine max/metabolism , Glycine max/chemistry , Isoflavones/metabolism , Isoflavones/analysis , Seeds/genetics , Seeds/chemistry , Seeds/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Regulatory Networks
8.
J Agric Food Chem ; 72(33): 18528-18536, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39105735

ABSTRACT

In recent years, there has been a need for environmentally friendly compounds for weed management in agriculture. This study is aimed to assess the phytotoxic constituents of oils obtained from oleoresins of seven Copaifera species (known as copaiba oils). Copaiba oils were separated from the resins by hydro-distillation, and the distillates were analyzed using gas chromatography-mass spectrometry (GC-MS) to characterize their chemical compositions. Multivariate analyses and molecular networking of GC-MS data were conducted to discern patterns in the chemical composition and phytotoxic activity of the oils, with the aim of identifying key compounds associated with phytotoxic activity. Seed germination bioassay revealed strong or complete germination inhibition against the monocot, Agrostis stolonifera but not the dicot Lactuca sativa. GC-MS analysis showed variations in composition among Copaifera species with some common compounds identified across multiple species. Caryophyllene oxide and junenol were associated with the observed phytotoxic effects. Automated flash chromatography was used to isolate the major compounds of the oils. Isolated compounds exhibited differing levels of phytotoxicity compared to the oils, suggesting the importance of interactions or synergism among oil components. These findings highlight the potential of copaiba oils as natural herbicidal agents and underscore the importance of considering species-specific responses in weed management strategies.


Subject(s)
Fabaceae , Gas Chromatography-Mass Spectrometry , Germination , Oils, Volatile , Seeds , Fabaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/toxicity , Oils, Volatile/pharmacology , Seeds/chemistry , Seeds/drug effects , Seeds/growth & development , Germination/drug effects , Plant Oils/chemistry , Plant Oils/toxicity , Plant Oils/pharmacology , Lactuca/drug effects , Lactuca/growth & development , Herbicides/pharmacology , Herbicides/chemistry , Herbicides/toxicity
9.
J Agric Food Chem ; 72(33): 18445-18454, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39110605

ABSTRACT

The present study delved into the chemical composition, antioxidant, and anti-inflammatory properties of three dry edible beans: Black (BL), Great Northern (GN), and Pinto (PN). The beans were soaked, cooked, and subjected to in vitro gastrointestinal (GI) digestion. BL bean exhibited significantly higher gastric (42%) and intestinal (8%) digestion rates. Comparative assessment of soluble GI-digested fractions (<3 kDa) revealed that the GN bean exhibited the highest abundance of dipeptides (P < 0.05). The BL bean fraction displayed a 4-fold increase in tripeptides (P < 0.05). Both BL and PN bean fractions are high in essential free amino acids, flavonols, and derivatives of hydroxybenzoic acid when compared to the GN bean. All the beans exhibited the ability to mitigate TNF-α-induced pro-inflammatory signaling; however, the BL bean fraction was the most effective at lowering AAPH-induced oxidative stress in HT-29 cells, followed by the GN bean (P < 0.05). In contrast, a low antioxidant effect was observed with PN beans.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cooking , Digestion , Gastrointestinal Tract , Phaseolus , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Digestion/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Phaseolus/chemistry , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/drug effects , HT29 Cells , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Models, Biological , Seeds/chemistry
10.
J Agric Food Chem ; 72(33): 18742-18752, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39132846

ABSTRACT

Sprouting of stored oilseeds due to improper storage can lead to quality defects of cold-pressed oils obtained from them. This study aimed to evaluate the effect of seed sprouting on volatile organic compounds (VOCs), aroma-active compounds, and the content of nonvolatile metabolites in cold-pressed false flax oil obtained from sprouted seeds. In this study, 88 unique VOCs were detected in sprouted oils, whereas only 42 were found in the control oils. The control oils were characterized by a higher abundance of alcohols, while all other groups of compounds were associated with sprouted seeds. The formation of many VOCs was reflected in changes in the nonvolatile precursors. Fifteen aroma-active compounds were identified in sprouted oil, with five compounds playing a significant role (FD ≥ 128) in aroma formation. The presented approach allowed identification of differences caused by seed sprouting, resulting in oils with a much stronger aroma and a richer profile of VOCs due to intensive metabolic changes. The origin of many VOCs can be explained by alterations in the content of nonvolatile metabolites.


Subject(s)
Metabolomics , Odorants , Seeds , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Plant Oils/metabolism , Plant Oils/chemistry , Flax/metabolism , Flax/chemistry , Flax/growth & development , Food Handling
11.
PLoS One ; 19(8): e0308489, 2024.
Article in English | MEDLINE | ID: mdl-39146325

ABSTRACT

Soybean is one of the most economically important crops worldwide. However, soybean yield can be substantially decreased by many diseases. Soybean genotypes could have different reactions to pathogen infection. As a first step toward investigating the biochemical basis of soybean resistance and susceptibility to disease, phytochemicals in the seeds of 52 soybean genotypes previously reported to have different reactions to diseases of soybean rust (SBR), Phomopsis seed decay (PSD), and purple seed stain (PSS) were analyzed. Using GC-MS, a total of 46 compounds were tentatively identified which included 11 chemical groups. Among those, the major group was esters, followed by carboxylic acid, ketone, and sugar moieties. Compounds having reported antioxidant, anti-microbial, and anti-inflammatory activities were also identified. UHPLC-DAD/MS analysis indicated that there were five major isoflavone components presented in the samples, including daidzin, glycitin, genistin, malonyldaidzin, and malonylglycitin. Isoflavones have been reported to play an important role in defense from plant pathogens. Although there was variance in the isoflavone content among soybean genotypes, those with the SBR resistance Rpp6 gene (PI 567102B, PI 567104B, PI 567129) consistently exhibited the highest concentrations of daidzin, glycitin, genistin, and malonyldaidzin. The SBR resistant genotype, PI 230970 (Rpp2) had the greatest amount of genistin. The SBR resistant genotype, PI 200456 (Rpp5) resistant genotype uniquely contained glycitein, a compound that was absent in the other 51 genotypes examined. A PSD-resistant genotype PI 424324B had nearly four times the amount of stigmasterol as PI 556625, which was susceptible to SBR, PSD, and PSS in our previous tests. Results of this study provide useful information for further investigation of the biochemical basis of soybean resistance to diseases. The results may also aid in selection of soybean lines for breeding for resistance to soybean rust and other diseases.


Subject(s)
Gas Chromatography-Mass Spectrometry , Genotype , Glycine max , Phytochemicals , Glycine max/genetics , Glycine max/microbiology , Glycine max/metabolism , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/chemistry , Chromatography, High Pressure Liquid , Isoflavones/analysis , Plant Diseases/microbiology , Plant Diseases/genetics , Seeds/genetics , Seeds/chemistry
12.
PLoS One ; 19(8): e0308323, 2024.
Article in English | MEDLINE | ID: mdl-39116112

ABSTRACT

Despite seed production being nutrient-limited, the influence of nutrient pathways on granivore distributions is unclear. This article examines the influence of geology and soil on the distribution of glossy black-cockatoos (Calyptorhynchus lathami), which feed almost exclusively on the kernels of casuarinas (Allocasuarina spp. and Casuarina spp.), and are selective about the trees in which they feed. To clarify the basis of this selection, Food Value (a measure of dry matter intake rate) and kernel nutrient content were compared between feeding and non-feeding trees of drooping sheoak (A. verticillata). Random forest modelling was then used to examine the influence of geology and soil chemistry on Food Value. Finally, logistic generalised additive modelling was used to examine the influence of geology on cockatoo feeding records across the range of black sheoak (A. littoralis) and forest oak (A. torulosa), drawing on a statewide dataset. Food Value-but not kernel nutrient concentrations-influenced feeding tree selection. Soils under drooping sheoak were nutritionally poor, with low nitrogen and phosphorus (despite high concentrations of these nutrients in the kernels), and characterised by two principal components: SALINITY (dominated by exchangeable magnesium and sodium, electrical conductivity, and sulphur) and ACIDITY (pH, iron, and aluminium). Random forest modelling showed that Food Value was highest on sedimentary rocks, with a high ACIDITY score, less than 18 meq 100 g-1 exchangeable calcium, and less than 4% soil organic carbon. The odds of cockatoos selecting casuarinas as feedings tree were three times higher on non-calcareous sedimentary rocks than on other rock types. Non-calcareous sedimentary rocks produce low-fertility, acid soils, which promote nitrogen-fixation by Frankia. I therefore conclude that glossy black-cockatoo distribution is controlled by the casuarina's symbiotic relationship with Frankia, which is ultimately controlled by geology; and that similar relationships may be responsible for the prevalence of several other species on low-fertility and/or acid soils.


Subject(s)
Seeds , Soil , Trees , Animals , Soil/chemistry , Seeds/chemistry , Feeding Behavior/physiology
13.
Arch Microbiol ; 206(9): 371, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122975

ABSTRACT

Bacterial growing resistance to antibiotics poses a critical threat to global health. This study investigates, for the first time, the antibiofilm properties of Vicia ervilia agglutinin (VEA) from six different V. ervilia accessions against pathogenic bacteria, and the yeast Candida albicans. In the absence of antimicrobial properties, purified VEA significantly inhibited biofilm formation, both in Gram-positive and Gram-negative bacteria, but not in C. albicans. With an inhibitory concentration ranging from 100 to 500 µg/ml, the VEA antibiofilm activity was more relevant against the Gram-positive bacteria Streptococcus aureus and Staphylococcus epidermidis, whose biofilm was reduced up to 50% by VEA purified from accessions #5 and #36. VEA antibiofilm variability between accessions was observed, likely due to co-purified small molecules rather than differences in VEA protein sequences. In conclusion, VEA seed extracts from the accessions with the highest antibiofilm activity could represent a valid approach for the development of an effective antibiofilm agent.


Subject(s)
Anti-Bacterial Agents , Biofilms , Candida albicans , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Biofilms/drug effects , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Anti-Bacterial Agents/pharmacology , Plant Lectins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds/chemistry
14.
Molecules ; 29(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124851

ABSTRACT

Diabetes mellitus, characterized by dysregulated glucose metabolism, oxidative stress, and the formation of advanced glycation end products, poses a significant global health burden. In this study, we explored the potential of sorghum (Sorghum bicolor) seeds, known for their abundant phytochemical composition, as a natural remedy for diabetes and its associated damage. High-performance liquid chromatography/high-resolution mass spectrometry analysis revealed a remarkable phenolic richness in sorghum grains, including gallic acid, quercetin, and the predominant procyanidin B-1, with ecotype-specific variations in flavonoid distribution. Elemental analysis by ICP showed an abundance of macro-elements (Ca, K, Mg), trace elements (Fe, Mn, Si, Zn), and ultra-trace elements (B, Co, Cr, Cu, Mo, Se, V) essential for human health, supporting its therapeutic and nutritional potential. Additionally, the results demonstrated variable total phenolic contents (188-297 mg GAE/g dE) and total flavonoid contents (66-78 mg QE/g dE), with corresponding differences in antioxidant activities across the five ecotypes. Treatment with sorghum seed extract (SE1) significantly reduced oxidative stress markers, such as malondialdehyde (MDA)by 40% and hydrogen peroxide (H2O2) by 63%, in diabetic mice, compared to untreated diabetic controls. Moreover, sorghum extracts exhibited a remarkable increase in antioxidant enzyme activities, including a 50% increase in superoxide dismutase (SOD) activity and a 60% increase in glutathione peroxidase (GPx) activity, indicating their potential to bolster antioxidant defenses against diabetes-induced oxidative stress. These findings underscore the therapeutic potential of sorghum seeds in diabetes management and prevention, paving the way for the development of functional foods with enhanced health benefits.


Subject(s)
Antioxidants , Oxidative Stress , Plant Extracts , Seeds , Sorghum , Sorghum/chemistry , Oxidative Stress/drug effects , Seeds/chemistry , Animals , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycation End Products, Advanced/metabolism , Flavonoids/pharmacology , Male , Glycosylation/drug effects
15.
Molecules ; 29(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124890

ABSTRACT

Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat content was similar among the samples (13%), with monounsaturated fatty acids being predominant. The coriander and mystical cumin seeds were extremely rich in C18:1n9c (81 and 85%, respectively) while, in the caraway, C18:1n12 (25%) was found together with C18:1n9c (32%). The caraway seeds also presented a higher proportion of C18:2n6c (34%) than the other seeds (13 and 8%, correspondingly). γ-Tocotrienol was the major vitamin E form in all the samples. The caraway seeds contained double the amount of protein (~18%) compared to the other seeds (~8%) but, qualitatively, the amino acid profiles among all seeds were similar. The seeds were also rich in dietary fiber (40-53%); however, differences were found in their fiber profiles. Caraway showed the highest antioxidant profile and anti-inflammatory activity and an LC-DAD-ESI/MSn analysis revealed great differences in the phenolic profiles of the samples. Cytotoxicity (NCI-H460, AGS, MCF-7, and CaCo2) and hepatotoxicity (RAW 264.7) were not observed. In sum, besides their flavoring/preservation properties, these seeds are also relevant source of bioactive compounds with health-promoting activities.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Coriandrum , Phytochemicals , Spices , Antioxidants/chemistry , Antioxidants/pharmacology , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Coriandrum/chemistry , Spices/analysis , Morocco , Cuminum/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry
16.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124938

ABSTRACT

Citrus medica L. is a traditional citrus fruit that is rich in bioactive compounds and has the potential to be used as a natural source of food additives. This study aims to evaluate the antioxidant capacity and characterize the phenolic compounds present in the peels (including flavedo and albedo), pulp, and seeds of citron. The results showed that, compared to the other parts, the pulp had a substantially higher Antioxidant Activity Coefficient (AAC) of 168.2. The albedo and the seeds had significantly lower AAC values, while the green and yellow flavedo showed noteworthy results. O-coumaric acid was the predominant phenolic acid in all of the citron fractions; it was found in the highest concentration in albedo (37.54 µg/g FW). Flavanones and flavanols were the primary flavonoids in the pulp, peel, and seeds, with total flavonoid concentration ranging from ~9 µg/g FW in seeds to 508 µg/g FW in the pulp. This research offers significant insights into the antioxidant properties of this ancient fruit, emphasizing its potential applications as a natural source of antioxidants to be used in different applications.


Subject(s)
Antioxidants , Citrus , Flavonoids , Fruit , Phenols , Plant Extracts , Seeds , Citrus/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Seeds/chemistry , Fruit/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Plant Extracts/chemistry
17.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125846

ABSTRACT

Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is used in folk medicine of Central and South America for its biological activities: i.e., antifungal, antibacterial, antiviral, and anti-inflammatory. Based on ethnopharmacological information and the increasing interest in this species, this work aimed to test a possible wide use of its essential oil (EO) in pharmaceutical and horticultural applications. Therefore, we focused the attention on the antioxidant activity of the oil as a possible tool to overcome the oxidative stress in both applications. For this purpose, we have chosen three aggressive breast cancer cell lines and two horticultural species (Solanum lycopersicum L. and Phaseolus acutifolius L.) that are very sensitive to salt stress. We determined the antioxidant activity of L. alba EO through the quantification of phenols and flavonoids. Regarding tomato and bean plants under salt stress, L. alba EO was used for the first time as a seed priming agent to enhance plant salt tolerance. In this case, the seed treatment enhanced the content of phenolic compounds, reduced power and scavenger activity, and decreased membrane lipid peroxidation, thus mitigating the oxidative stress induced by salt. While in breast cancer cells the EO treatment showed different responses according to the cell lines, i.e., in SUM149 and MDA-MB-231 the EO decreased proliferation and increased antioxidant activity and lipid peroxidation, showing high cytotoxic effects associated with the release of lactate dehydrogenase, vice versa no effect was observed in MDA-MB-468. Such antioxidant activity opens a new perspective about this essential oil as a possible tool to counteract proliferation in some cancer cell lines and in horticulture as a seed priming agent to protect from oxidative damage in crops sensitive to salinity.


Subject(s)
Antioxidants , Lippia , Oils, Volatile , Oxidative Stress , Lippia/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Oxidative Stress/drug effects , Cell Line, Tumor , Phenols/pharmacology , Solanum lycopersicum/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Seeds/chemistry
18.
PLoS One ; 19(8): e0297250, 2024.
Article in English | MEDLINE | ID: mdl-39106253

ABSTRACT

Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Coriandrum , Macrophages , Oils, Volatile , Seeds , Animals , Mice , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Seeds/chemistry , Antioxidants/pharmacology , Coriandrum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Cell Survival/drug effects , Nitric Oxide/metabolism , Phagocytosis/drug effects , Cytokines/metabolism , Jordan
19.
Sci Rep ; 14(1): 19637, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179586

ABSTRACT

Even though legumes are valuable medicinal plants with edible seeds that are extensively consumed worldwide, there is little information available on the metabolic variations between different dietary beans and their influence as potential anti-cholinesterase agents. High-resolution liquid chromatography coupled with mass spectrometry in positive and negative ionization modes combined with multivariate analysis were used to explore differences in the metabolic profiles of five commonly edible seeds, fava bean, black-eyed pea, kidney bean, red lentil, and chickpea. A total of 139 metabolites from various classes were identified including saponins, alkaloids, phenolic acids, iridoids, and terpenes. Chickpea showed the highest antioxidant and anti-cholinesterase effects, followed by kidney beans. Supervised and unsupervised chemometric analysis determined that species could be distinguished by their different discriminatory metabolites. The major metabolic pathways in legumes were also studied. Glycerophospholipid metabolism was the most significantly enriched KEGG pathway. Pearson's correlation analysis pinpointed 18 metabolites that were positively correlated with the anti-cholinesterase activity. Molecular docking of the biomarkers to the active sites of acetyl- and butyryl-cholinesterase enzymes revealed promising binding scores, validating the correlation results. The present study will add to the metabolomic analysis of legumes and their nutritional value and advocate their inclusion in anti-Alzheimer's formulations.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Fabaceae , Molecular Docking Simulation , Seeds , Alzheimer Disease/metabolism , Seeds/metabolism , Seeds/chemistry , Fabaceae/metabolism , Fabaceae/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/metabolism , Humans , Acetylcholinesterase/metabolism , Metabolomics/methods , Antioxidants/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Metabolome , Butyrylcholinesterase/metabolism
20.
Sci Rep ; 14(1): 19600, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179694

ABSTRACT

The phytochemicals of high nutritional and functional properties in Lepidium sativum L. (garden cress) seeds have nominated their seed powder (regardless of the concentration used) for enrichment of mulberry leaves in order to enhance Bombyx mori L. larval feeding, and consequently to gain ground in sericulture industry. As expected, B. mori larval feeding on L. sativum-enriched mulberry leaves showed not only a remarkable increase in mean values of certain economic parameters of B. mori, such as cocoon weight, cocoon shell weight, pupal weight, and egg yield, compared with the control group, but also showed a phenomenal increase in egg counts (on average, ca. 958-1256 eggs laid per female moth) and a significant increase in egg size (measured as egg surface area and egg volume). Male or female moth larval diet has significantly influenced the reproductive performance or fitness of both sexes of B. mori in terms of large-sized moths (measured as forewing, hind femur, and hind tibia lengths) and highly fecund moths (i.e., increased fecundity and spermatophore counts per female moth, and large-sized eggs). On the basis of B. mori female moth reproductive index, the female moths from L. sativum-fed larvae proved to have a lower reproductive index compared to their corresponding value for females of the control group, indicating more efficient utilization of larval resources for B. mori reproduction. Quantification of the three main physiological resources viz., protein, lipid and carbohydrate in the internal reproductive tract of B. mori female moths at death has nominated the female moth abdomens, or simply their bodies, as being a reasonable natural source of protein, lipid, and carbohydrate, to be involved in certain manufactures (e.g., pet feed formulations) instead of discarding them as a source of environmental pollution. Evidently, the L. sativum seed powder is of considerable interest because it remarkably improves the performance of such an economically important insect, B. mori. This is the first study for evaluating the efficacy of L. sativum seed powder in sericulture field to enhance B. mori productivity parameters.


Subject(s)
Bombyx , Larva , Lepidium sativum , Morus , Plant Leaves , Seeds , Animals , Bombyx/physiology , Plant Leaves/chemistry , Larva/physiology , Female , Seeds/chemistry , Male , Powders , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL