Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 270(Pt 1): 132062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705340

ABSTRACT

Oral drug administration, especially when composed of mucoadhesive delivery systems, has been a research trend due to increased residence time and contact with the mucosa, potentially increasing drug bioavailability and stability. In this context, this study aimed to develop self-assembly mucoadhesive beads composed of blends of κ-carrageenan and sericin (κ-Car/Ser) loaded with the anti-inflammatory drug indomethacin (IND). We investigated the swelling, adhesion behaviour, and mechanical/physical properties of the beads, assessing their effects on cell viability, safety and permeation characteristics in both 2D and triple-culture model. The swelling ratio of the beads indicated pH-responsiveness, with maximum water absorption at pH 6.8, and strong mucoadhesion, increasing primarily with higher polymer concentrations. The beads exhibited thermal stability and no chemical interaction with IND, showing improved mechanical properties. Furthermore, the beads remained stable during accelerated and long-term storage studies. The beads were found to be biocompatible, and IND encapsulation improved cell viability (>70 % in both models, 79 % in VN) and modified IND permeation through the models (6.3 % for F5 formulation (κ-Car 0.90 % w/v | Ser 1.2 % w/v| IND 3.0 g); 10.9 % for free IND, p < 0.05). Accordingly, κ-Car/Ser/IND beads were demonstrated to be a promising IND drug carrier to improve oral administration while mitigating the side effects of non-steroidal anti-inflammatories.


Subject(s)
Carrageenan , Delayed-Action Preparations , Indomethacin , Sericins , Indomethacin/chemistry , Indomethacin/administration & dosage , Indomethacin/pharmacokinetics , Carrageenan/chemistry , Administration, Oral , Humans , Sericins/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Liberation , Cell Survival/drug effects , Microspheres , Animals , Caco-2 Cells , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 262(Pt 1): 129823, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38296146

ABSTRACT

The crosslinking of the polymer matrix with compatible macromolecules results in a three-dimensional network structure that offers an enhancement in the controlled release properties of the material. In this sense, this work aimed to improve the release profile of mefenamic acid (MAC) through crosslinking strategies. κ-Carrageenan/sericin crosslinked blend was obtained by covalent and thermal crosslinking and the different formulations were characterized. The gastroresistant potential and release profile were evaluated in the dissolution assay. The effect and characterization of the particles were investigated. Multiple units presented high entrapment efficiency (94.11-104.25), high drug loading (36.50-47.50 %) and adequate particle size (1.34-1.57 mm) with rough surface and visually spherical shape. The Weibull model showed that drug release occurred by relaxation, erosion and Fickian diffusion. Material stability and absence of MAC -polymer interactions were demonstrated by FTIR and thermogravimetric analysis. DSC showed a stable character of MAC in the drug-loaded beads. Moreover, the application studies of κ-Car/Ser/carboxymethylcellulose in the in vitro intestine mode showed that the crosslinked blend increased cell viability (>85 %), while free MAC exhibited a cytotoxic effect. Finally, the crosslinked k-Car/Ser blend MAC -loaded showed promising properties of a sustained release form of anti-inflammatory drug.


Subject(s)
Sericins , Sericins/chemistry , Mefenamic Acid/pharmacology , Polymers , Carrageenan/chemistry , Drug Liberation , Delayed-Action Preparations/chemistry
3.
Int J Biol Macromol ; 246: 125558, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37392907

ABSTRACT

Modified release of multiparticulate pharmaceutical forms is a key therapeutic strategy to reduce side effects and toxicity caused by high and repeated doses of immediate-release oral drugs. This research focused on the encapsulation of indomethacin (IND) in the crosslinked k-Car/Ser polymeric matrix by covalent and thermal methods to evaluate drug delivery modulation and properties of the crosslinked blend. Therefore, the entrapment efficiency (EE %), drug loading (DL %) and physicochemical properties of the particles were investigated. The particles presented a spherical shape and a rough surface with a mean diameter of 1.38-2.15 mm (CCA) and 1.56-1.86 mm (thermal crosslink). FTIR investigation indicated the presence of IDM in the particles and X-ray pattern showed the maintenance of crystallinity of IDM. The in vitro release in acidic medium (pH 1.2) and phosphate buffer saline solution (pH 6.8) was 1.23-6.81 % and 81-100 %, respectively. Considering the results, the formulations remained stable after 6 months. The Weibull equation was adequately fitted for all formulations and a diffusion mechanism, swelling and relaxation of chain were observed. IDM-loaded k-carrageenan/sericin/CMC increases cell viability (> 75 % for neutral red and > 81 % for MTT). Finally, all formulations present gastro-resistance, pH response and altered release and have the potential to be used as drug delivery careers.


Subject(s)
Indomethacin , Sericins , Indomethacin/chemistry , Carrageenan , Pharmaceutical Preparations , Drug Delivery Systems
4.
Int J Biol Macromol ; 232: 123381, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36731703

ABSTRACT

This study aimed to develop a natural and multiparticulate carrier of k-carrageenan (k-Car) and sericin (Ser) for encapsulation of indomethacin (IND) in order to minimize gastrointestinal effects caused by immediate-release. Increasing the amount of IND in the formulations subtly reduced the entrapment efficiency (EE) and drug loading (DL) due to matrix saturation. Sericin was essential to improve EE and DL when compared to pure k-Car (EE > 90 % and DL > 47 %) with suitable particle sizes (1.3461 ± 0.1891-1.7213 ± 0.1586 mm). The incorporation and integrity of IND in the particles were confirmed by analytical techniques of HPLC, XRD, FTIR, and SEM. Additionally, the k-Car/Ser matrix was pH-responsive with low IND release at pH 1.2 and extended-release at pH 6.8. The Weibull model had an adequate fit to the experimental data with R2aju 0.950.99 and AIC 82.4-24.9, with curves in parabolic profile (b < 1) and indicative of a controlled drug-release mechanism by diffusion. Besides, k-Car/Ser/IND and placebo were not cytotoxic (cell viability > 85 % at 150-600 µM) for the Caco-2 cell line. Therefore, the polymeric matrix is gastro-resistant, stable, and biocompatible to carry indomethacin and deliver it to the intestinal environment.


Subject(s)
Indomethacin , Sericins , Humans , Indomethacin/pharmacology , Carrageenan , Polymers , Caco-2 Cells , Drug Delivery Systems
5.
Environ Sci Pollut Res Int ; 29(53): 79788-79797, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34561807

ABSTRACT

Currently, the world faces difficulties related to the quantity and quality of water because of industrial expansion, population growth, and urbanization intensification. Biosorption is considered a promising technology that can be applied to remove toxic metals (TMs) and rare-earth metals (REMs) in wastewater at low concentrations, due to its efficiency and low cost. In this work, we investigated different non-conventional biosorbents to remove metallic ions (TMs and REMs) in biosorptive affinity tests. Metallic affinity assays among lanthanum and different biosorbents showed that greater affinities were found for sericin-alginate beads crosslinked with polyvinyl alcohol (SAPVA) (0.280 mmol/g) and polyethylene glycol diglycidyl ether (SAPEG) (0.277 mmol/g), expanded vermiculite (0.281 mmol/g), Sargassum filipendula seaweed (0.287 mmol/g), and seaweed biomass waste (0.289 mmol/g). Among the biosorbents evaluated, SAPVA and SAPEG beads, besides to sericin-alginate beads crosslinked with proanthocyanidins (SAPAs) were selected for affinity assays with other REMs and TMs. Compared to other particles, SAPVA beads showed higher potential for biosorption by REMs with the following order of affinity: Yb3+ > Dy3+ > Nd3+ > Ce3+ > La3+. Additionally, the biosorptive affinity of TMs by SAPVA beads followed the order: Al3+ > Cr3+ > Pb2+ > Cu2+ > Cd2+ > Zn2+ > Ni2+.


Subject(s)
Metals, Heavy , Metals, Rare Earth , Proanthocyanidins , Sericins , Metals, Heavy/analysis , Wastewater , Adsorption , Cadmium , Polyvinyl Alcohol , Lanthanum , Lead , Biomass , Alginates , Ions , Water , Polyethylene Glycols , Ethers , Hydrogen-Ion Concentration , Kinetics
6.
Biotechnol Appl Biochem ; 69(2): 660-667, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34053116

ABSTRACT

An ecofriendly and low-cost film composed by cassava starch, polyvinyl alcohol, and sericin blend (CS-PVA-SS) was synthesized, characterized, and applied as a novel support for Botryosphaeria ribis EC-01 lipase immobilization by enzyme-film-enzyme adsorption. Film revealed thickness between 230 and 309 µm and higher flexibility and malleability in comparison with film without SS. Based on p-nitrophenyl palmitate hydrolysis reaction, the activity retention of immobilized lipase was 987%. For optimal conditions, the yield in ethyl oleate was 95% for immobilized enzyme. Maximum yield was obtained at 49°C, molar ratio oleic acid:ethanol of 1:3, 1.25 g lipase film or 50 U (1.03 ± 0.03 mg protein) and 30 h. Even after seven cycles of use, immobilized lipase showed 52% reduction in ester yield. Biodegradable and biorenewable film is a promising material as a support to immobilize lipases and application in biocatalysis.


Subject(s)
Lipase , Sericins , Biocatalysis , Enzyme Stability , Enzymes, Immobilized/metabolism , Esterification , Lipase/metabolism , Oleic Acid , Sericins/metabolism
7.
Mater Sci Eng C Mater Biol Appl ; 118: 111412, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255014

ABSTRACT

Different polymer matrix compositions based on sericin and alginate blend (using or not the covalent crosslinking agents dibasic sodium phosphate, polyvinyl alcohol and polyethylene glycol) were evaluated to entrap naproxen. Sericin has been shown to be essential for improving incorporation efficiency. Comparing the formulations with and without crosslinking agent, the best results were obtained for that composed only of sericin and alginate, with satisfactory values of entrapment efficiency (>80%) and drug loading capacity (>20%). In this case, delayed release (<10% in acid medium) and prolonged release (~360 min) were achieved, with a complex release mechanism involving swelling and polymer chain relaxation. The incorporation of the drug could be confirmed by the techniques of characterization of X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), as well as drug compatibility with the polymer matrix. In addition, particles of suitable size for multiparticulate systems were obtained and with higher thermal stability when compared to the pure drug.


Subject(s)
Alginates , Sericins , Delayed-Action Preparations , Drug Liberation , Glucuronic Acid , Hexuronic Acids , Microscopy, Electron, Scanning , Microspheres , Naproxen , Spectroscopy, Fourier Transform Infrared
8.
Einstein (Sao Paulo) ; 18: eAO4876, 2020.
Article in English, Portuguese | MEDLINE | ID: mdl-31576909

ABSTRACT

OBJECTIVE: To investigate the effects of sericin extracted from silkworm Bombyx mori cocoon on morphophysiological parameters in mice with obesity induced by high-fat diet. METHODS: Male C57Bl6 mice aged 9 weeks were allocated to one of two groups - Control and Obese, and fed a standard or high-fat diet for 10 weeks, respectively. Mice were then further subdivided into four groups with seven mice each, as follows: Control, Control-Sericin, Obese, and Obese-Sericin. The standard or high fat diet was given for 4 more weeks; sericin (1,000mg/kg body weight) was given orally to mice in the Control-Sericin and Obese-Sericin Groups during this period. Weight gain, food intake, fecal weight, fecal lipid content, gut motility and glucose tolerance were monitored. At the end of experimental period, plasma was collected for biochemical analysis. Samples of white adipose tissue, liver and jejunum were collected and processed for light microscopy analysis; liver fragments were used for lipid content determination. RESULTS: Obese mice experienced significantly greater weight gain and fat accumulation and had higher total cholesterol and glucose levels compared to controls. Retroperitoneal and periepididymal adipocyte hypertrophy, development of hepatic steatosis, increased cholesterol and triglyceride levels and morphometric changes in the jejunal wall were observed. CONCLUSION: Physiological changes induced by obesity were not fully reverted by sericin; however, sericin treatment restored jejunal morphometry and increased lipid excretion in feces in obese mice, suggesting potential anti-obesity effects.


Subject(s)
Anti-Obesity Agents/therapeutic use , Diet, High-Fat , Obesity/drug therapy , Sericins/therapeutic use , Adipose Tissue/pathology , Animals , Anti-Obesity Agents/pharmacology , Body Weight/drug effects , Cholesterol/analysis , Diet, High-Fat/adverse effects , Eating/drug effects , Fatty Liver/pathology , Gastrointestinal Transit/drug effects , Glucose Tolerance Test , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/physiopathology , Reproducibility of Results , Sericins/pharmacology , Time Factors , Treatment Outcome , Triglycerides/analysis , Weight Gain/drug effects
9.
Einstein (São Paulo, Online) ; 18: eAO4876, 2020. tab, graf
Article in English | LILACS | ID: biblio-1039734

ABSTRACT

ABSTRACT Objective To investigate the effects of sericin extracted from silkworm Bombyx mori cocoon on morphophysiological parameters in mice with obesity induced by high-fat diet. Methods Male C57Bl6 mice aged 9 weeks were allocated to one of two groups - Control and Obese, and fed a standard or high-fat diet for 10 weeks, respectively. Mice were then further subdivided into four groups with seven mice each, as follows: Control, Control-Sericin, Obese, and Obese-Sericin. The standard or high fat diet was given for 4 more weeks; sericin (1,000mg/kg body weight) was given orally to mice in the Control-Sericin and Obese-Sericin Groups during this period. Weight gain, food intake, fecal weight, fecal lipid content, gut motility and glucose tolerance were monitored. At the end of experimental period, plasma was collected for biochemical analysis. Samples of white adipose tissue, liver and jejunum were collected and processed for light microscopy analysis; liver fragments were used for lipid content determination. Results Obese mice experienced significantly greater weight gain and fat accumulation and had higher total cholesterol and glucose levels compared to controls. Retroperitoneal and periepididymal adipocyte hypertrophy, development of hepatic steatosis, increased cholesterol and triglyceride levels and morphometric changes in the jejunal wall were observed. Conclusion Physiological changes induced by obesity were not fully reverted by sericin; however, sericin treatment restored jejunal morphometry and increased lipid excretion in feces in obese mice, suggesting potential anti-obesity effects.


RESUMO Objetivo Investigar os efeitos da sericina extraída de casulos de Bombyx mori na morfofisiologia de camundongos com obesidade induzida por dieta hiperlipídica. Métodos Camundongos machos C57Bl6, com 9 semanas de idade, foram distribuídos em Grupos Controle e Obeso, que receberam ração padrão para roedores ou dieta hiperlipídica por 10 semanas, respectivamente. Posteriormente, os animais foram redistribuídos em quatro grupos, com sete animais cada: Controle, Controle-Sericina, Obeso e Obeso-Sericina. Os animais permaneceram recebendo ração padrão ou hiperlipídica por 4 semanas, período no qual a sericina foi administrada oralmente na dose de 1.000mg/kg de massa corporal aos Grupos Controle-Sericina e Obeso-Sericina. Parâmetros fisiológicos, como ganho de peso, consumo alimentar, peso das fezes em análise de lipídios fecais, motilidade intestinal e tolerância à glicose foram monitorados. Ao término do experimento, o plasma foi coletado para dosagens bioquímicas e fragmentos de tecido adiposo branco; fígado e jejuno foram processados para análises histológicas, e amostras hepáticas foram usadas para determinação lipídica. Resultados Camundongos obesos apresentaram ganho de peso e acúmulo de gordura significativamente maior que os controles, aumento do colesterol total e glicemia. Houve hipertrofia dos adipócitos retroperitoneais e periepididimais, instalação de esteatose e aumento do colesterol e triglicerídeos hepáticos, bem como alteração morfométrica da parede jejunal. Conclusão O tratamento com sericina não reverteu todas as alterações fisiológicas promovidas pela obesidade, mas restaurou a morfometria jejunal e aumentou a quantidade de lipídios eliminados nas fezes dos camundongos obesos, apresentando-se como potencial tratamento para a obesidade.


Subject(s)
Animals , Male , Anti-Obesity Agents/therapeutic use , Sericins/therapeutic use , Obesity/drug therapy , Time Factors , Triglycerides/analysis , Body Weight/drug effects , Gastrointestinal Transit/drug effects , Weight Gain/drug effects , Adipose Tissue/pathology , Cholesterol/analysis , Reproducibility of Results , Treatment Outcome , Anti-Obesity Agents/pharmacology , Sericins/pharmacology , Eating/drug effects , Fatty Liver/pathology , Diet, High-Fat/adverse effects , Glucose Tolerance Test , Liver/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/physiopathology
10.
Biofouling ; 35(7): 732-741, 2019 08.
Article in English | MEDLINE | ID: mdl-31468985

ABSTRACT

Silk sericin is a globular protein whose resistance against fouling is important for applications in biomaterials and water-purification membranes. Here it is shown how sericin generates a water-exclusion zone that may facilitate antifouling behavior. Negatively charged microspheres were used to mimic the surface charge and hydrophobic domains in bacteria. Immersed in water, regenerated silk sericin formed a 100-µm-sized exclusion zone (for micron-size foulants), along with a proton gradient with a decrease of >2 pH-units. Thus, when in contact with sericin, water molecules near the surface restructure to form a physical exclusionary barrier that might prevent biofouling. The decreased pH turns the aqueous medium unviable for neutrophilic bacteria. Therefore, resistance to biofouling seems explainable, among other factors, on the basis of water-exclusionary phenomena. Furthermore, sericin may play a role in triggering the fibroin assembly process by lowering the pH to the required value.


Subject(s)
Biofouling , Sericins/chemistry , Animals , Bombyx , Water/chemistry
11.
Neurol Res ; 41(4): 326-334, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30638158

ABSTRACT

OBJECTIVE: To verify the action of sericin associated to swim exercise with overload, on sciatic nerve repair in Wistar rats, after 22 days of nerve compression. METHODS: Forty animals been composed of five groups: control, injury, injury-sericin, injury-swimming and injury-sericin-swimming. During the lesion procedure, sericin, in hydrolyzed form, applied directly to the injury in the injury-sericin and injury-sericin-swimming groups. Injury-swimming and injury-sericin-swimming groups underwent to 5 days per week for 3 weeks, with a 10% overload of the animal's body weight, and a weekly progressive evolution of swimming time, lasting 15, 20 and 25 min/day. Pre and throughout the treatment period the animals performed evaluation of sciatic functional index and pressure pain threshold with digital von Frey filament. Euthanasia was performed on the 22nd postoperative day, and two fragments of the nerve were collected and prepared for descriptive and quantitative analysis. RESULTS: The sciatic functional index assessment showed significant differences in the motor function of the control until the 14th day. Regarding the allodynia, there was revealed a significant improvement in injury-swimming performance relative to injury, injury-sericin and injury-sericin-swimming, and the number of viable and non-viable nerve fibers smaller than 4 µm in diameter was significantly higher in the injury-sericin-swimming. CONCLUSION: swimming showed a better evolution of the nociceptive threshold and allodynia. Sericin treatment had exacerbated pro-inflammatory characteristics. On the other hand, the association of sericine and swimming showed a possible regulatory effect by resting swimming exercise, with a significant increase of fibers of smaller diameter.


Subject(s)
Physical Conditioning, Animal/methods , Sciatic Neuropathy/drug therapy , Sciatic Neuropathy/rehabilitation , Sericins/therapeutic use , Swimming , Animals , Disease Models, Animal , Pain Measurement , Pain Threshold/drug effects , Pain Threshold/physiology , Rats , Rats, Wistar , Sciatic Nerve/pathology , Sciatic Neuropathy/physiopathology , Sericins/metabolism , Severity of Illness Index , Statistics, Nonparametric , Treatment Outcome
12.
Environ Sci Pollut Res Int ; 26(28): 28455-28469, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30293102

ABSTRACT

In this study, two novel low water-soluble sericin and alginate-based biosorbents were successfully developed for precious metal removal from wastewater: sericin and alginate particles chemically crosslinked by proantocyanidins (SAPAs) and sericin, alginate and polyvinyl alcohol particles (SAPVA). The proportions of proantocynidins (PAs) or polyvinyl alcohol (PVA) added to sericin (2.5% w/v) and alginate (2.0% w/v) blend were 0.5, 1.5, 2.5 and 3.5% w/v. Among these concentrations, particles produced with 0.5% w/v of PVA or 2.5% w/v of PAs presented the lowest water solubility percentages (3.74 ± 0.05 and 3.56 ± 0.21%, respectively) and the following metallic affinity order: AuCl4- > PdCl42- > PtCl62- > Ag+. Then, gold biosorption kinetics by SAPAs was evaluated at three gold initial concentrations (72.88, 187.12, and 273.79 mg/L), and its performance was compared to activated carbon adsorbent uptake. The data modeling revealed that the process follows pseudo-first-order kinetics and is mainly controlled by external diffusion. SAPAs before and after gold biosorption (SAPAs-gold) were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, optical microscopy, helium pycnometry, mercury porosimetry, N2 physisorption, and Fourier-transform infrared spectroscopy.


Subject(s)
Alginates/chemistry , Polyvinyl Alcohol/chemistry , Sericins/analysis , Gold , Kinetics , Microscopy, Electron, Scanning , Sericins/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Wastewater
13.
Biol Res ; 51(1): 54, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30497518

ABSTRACT

BACKGROUND: Hyperpigmentation disorders such as post-inflammatory hyperpigmentation are major concerns not only in light-skinned people but also in Asian populations with darker skin. The anti-tyrosinase and immunomodulatory effects of sericin have been known for decades. However, the therapeutic effects of sericin on hyperpigmentation disorders have not been well documented. METHODS: In this study, we used an in vitro model to study the anti-tyrosinase, tolerogenic, and anti-melanogenic effects of sericin on Staphylococcus aureus peptidoglycan (PEG)-stimulated melanocytes, dendritic cells (DCs), and artificial skin (MelanoDerm™). Enzyme-linked immunosorbent assay, conventional and immunolabeled electron microscopy, and histopathological studies were performed. RESULTS: The results revealed that urea-extracted sericin has strong anti-tyrosinase properties as shown by a reduction of tyrosinase activity in melanin pigments both 48 h and 10 days after allergic induction with PEG. Anti-inflammatory cytokines including interleukin (IL)-4, IL-10, and transforming growth factor-ß were upregulated upon sericin treatment (10, 20, and 50 µg/mL), whereas production of allergic chemokines, CCL8 and CCL18, by DCs was diminished 48 h after allergic induction with PEG. Moreover, sericin lowered the expression of micropthalmia-associated transcription factor (MITF), a marker of melanogenesis regulation, in melanocytes and keratinocytes, which contributed to the reduction of melanin size and the magnitude of melanin deposition. However, sericin had no effect on melanin transport between melanocytes and keratinocytes, as demonstrated by a high retention of cytoskeletal components. CONCLUSION: In summary, sericin suppresses melanogenesis by inhibition of tyrosinase activity, reduction of inflammation and allergy, and modulation of MITF function.


Subject(s)
Hyperpigmentation/drug therapy , Keratinocytes/drug effects , Melanocytes/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Sericins/pharmacology , Cells, Cultured , Humans , Hypersensitivity , Inflammation , Keratinocytes/ultrastructure , Melanocytes/ultrastructure , Microphthalmia-Associated Transcription Factor , Microscopy, Electron , Signal Transduction/drug effects , Transcription Factors/drug effects
14.
Environ Sci Pollut Res Int ; 25(26): 25967-25982, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29968211

ABSTRACT

In this study, particles produced from sericin-alginate blend were used as non-conventional bioadsorbent for removing Cr(III) and Cr(VI) from aqueous solutions. Besides chromium mitigation, the use of sericin-alginate particles as bioadsorbent aims to offer an environmental solution of added value for sericin, which is a by-product from silk industry. Sericin-alginate particles in natura and loaded with Cr(III) and Cr(VI) were characterized using N2 physical adsorption analysis, optical microcopy, mercury porosimetry, helium pycnometry, scanning electron microscope coupled with energy dispersive X-ray spectrometer, Fourier transform infrared spectrometer, and X-ray diffraction. Kinetic studies on the removal of Cr(III) (at pH = 3.5) and Cr(VI) (at pH = 2) indicate the ion exchange mechanism with Ca(II) and the predominance of external mass transfer resistance. Cr(VI) uptake occurs through an adsorption-coupled reduction process, and bioadsorption equilibrium is reached after ~ 1000 min. Cr(III) bioadsorption occurs faster (~ 210 min). The Cr(VI) bioadsorption is endothermic, as bioadsorption capacity increases with temperature: 0.0783 mmol/g (20 °C), 0.1960 mmol/g (30 °C), 0.4570 mmol/g (40 °C), and 0.7577 mmol/g (55 °C). The three-parameter isotherm model of Tóth best represents the equilibrium data of total chromium. From Langmuir isotherm model, the maximum bioadsorption capacity is higher for total chromium, 0.25 mmol/g (30 °C), than for trivalent chromium, 0.023 mmol/g (30 °C). The comparison of bioadsorption capacities with different biomaterials confirms sericin-alginate particles as potential bioadsorbent of chromium.


Subject(s)
Alginates/chemistry , Bombyx/metabolism , Chromium/chemistry , Sericins/chemistry , Water Pollutants, Chemical/chemistry , Water Purification , Adsorption , Animals , Kinetics , X-Ray Diffraction
15.
Einstein (Sao Paulo) ; 16(1): eAO4137, 2018.
Article in Portuguese, English | MEDLINE | ID: mdl-29694624

ABSTRACT

Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.


Subject(s)
Lower Extremity/innervation , Muscle, Skeletal/innervation , Physical Conditioning, Animal/physiology , Sericins/pharmacology , Swimming/physiology , Animals , Disease Models, Animal , Lower Extremity/injuries , Lower Extremity/pathology , Muscle, Skeletal/injuries , Muscle, Skeletal/pathology , Nerve Crush , Random Allocation , Rats , Rats, Wistar
16.
Biol. Res ; 51: 54, 2018. graf
Article in English | LILACS | ID: biblio-1011398

ABSTRACT

BACKGROUND: Hyperpigmentation disorders such as post-inflammatory hyperpigmentation are major concerns not only in light-skinned people but also in Asian populations with darker skin. The anti-tyrosinase and immunomodulatory effects of sericin have been known for decades. However, the therapeutic effects of sericin on hyperpigmentation disorders have not been well documented. METHODS: In this study, we used an in vitro model to study the anti-tyrosinase, tolerogenic, and anti-melanogenic effects of sericin on Staphylococcus aureus peptidoglycan (PEG)-stimulated melanocytes, dendritic cells (DCs), and artificial skin (MelanoDerm™). Enzyme-linked immunosorbent assay, conventional and immunolabeled electron microscopy, and histopathological studies were performed. RESULTS: The results revealed that urea-extracted sericin has strong anti-tyrosinase properties as shown by a reduction of tyrosinase activity in melanin pigments both 48 h and 10 days after allergic induction with PEG. Anti-inflammatory cytokines including interleukin (IL)-4, IL-10, and transforming growth factor-p were upregulated upon sericin treatment (10, 20, and 50 µg/mL), whereas production of allergic chemokines, CCL8 and CCL18, by DCs was diminished 48 h after allergic induction with PEG. Moreover, sericin lowered the expression of micropthalmia-associated transcription factor (MITF), a marker of melanogenesis regulation, in melanocytes and keratinocytes, which contributed to the reduction of melanin size and the magnitude of melanin deposition. However, sericin had no effect on melanin transport between melanocytes and keratinocytes, as demonstrated by a high retention of cytoskeletal components. CONCLUSION: In summary, sericin suppresses melanogenesis by inhibition of tyrosinase activity, reduction of inflammation and allergy, and modulation of MITF function.


Subject(s)
Humans , Keratinocytes/drug effects , Monophenol Monooxygenase/antagonists & inhibitors , Hyperpigmentation/drug therapy , Sericins/pharmacology , Melanocytes/drug effects , Transcription Factors/drug effects , Microscopy, Electron , Signal Transduction/drug effects , Keratinocytes/ultrastructure , Cells, Cultured , Microphthalmia-Associated Transcription Factor , Hypersensitivity , Inflammation , Melanocytes/ultrastructure
17.
Einstein (Säo Paulo) ; 16(1): eAO4137, 2018. tab, graf
Article in English | LILACS | ID: biblio-891463

ABSTRACT

Abstract Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.


RESUMO Objetivo Analisar o efeito da proteína sericina associada ao exercício físico de natação na histomorfometria do músculo plantar de ratos Wistar. Métodos Foram utilizados 40 ratos adultos divididos aleatoriamente em 5 grupos, com 8 animais cada: Controle, Lesão, Sericina, Natação, Natação e Sericina. Três dias após a compressão do nervo isquiático, os Grupos Natação e Exercício e Sericina foram submetidos ao exercício físico de natação durante 21 dias. Após, os animais foram sacrificados, e o músculo plantar foi processado. Resultados Não houve diferença da área da secção transversa entre os grupos, quantidade de núcleos periféricos, quantidade de fibra, relação núcleo/fibra e diâmetro menor. A análise morfológica revelou que no Grupo Natação ocorreu hipertrofia das fibras, assim como nos Grupos Exercício e Sericina e Lesão, o dano muscular foi evidente. O percentual de conjuntivo intramuscular parece ter sido mantido no Grupo Exercício em relação aos demais grupos. Conclusão A associação da proteína sericina e exercício físico de natação não foi eficiente na melhora das propriedades musculares, embora a aplicação do exercício físico tenha sido eficiente na manutenção do conjuntivo intramuscular, e no não agravamento dos efeitos deletérios consequentes da lesão nervosa periférica.


Subject(s)
Animals , Rats , Physical Conditioning, Animal/physiology , Swimming/physiology , Muscle, Skeletal/innervation , Lower Extremity/innervation , Sericins/pharmacology , Random Allocation , Rats, Wistar , Muscle, Skeletal/injuries , Muscle, Skeletal/pathology , Lower Extremity/injuries , Lower Extremity/pathology , Disease Models, Animal , Nerve Crush
18.
Biomed Res Int ; 2016: 8175701, 2016.
Article in English | MEDLINE | ID: mdl-27965981

ABSTRACT

Silk sericin is a natural polymer produced by silkworm, Bombyx mori, which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.


Subject(s)
Biomedical Technology/methods , Bombyx/chemistry , Sericins/metabolism , Animal Structures/anatomy & histology , Animals , Drug Delivery Systems , Humans , Sericins/biosynthesis , Tissue Engineering
19.
Biol Res ; 45(1): 45-50, 2012.
Article in English | MEDLINE | ID: mdl-22688983

ABSTRACT

Sericin is a silk protein woven from silkworm cocoons (Bombyx mori). In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Colon/drug effects , Colonic Neoplasms/pathology , Sericins/pharmacology , Silk/chemistry , Animals , Bombyx , Cattle , Cell Line, Tumor , Cell Survival , Colon/cytology , Colonic Neoplasms/metabolism , Colonic Neoplasms/prevention & control , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Molecular Weight , Sericins/chemistry
20.
Biol. Res ; 45(1): 45-50, 2012. ilus, tab
Article in English | LILACS | ID: lil-626746

ABSTRACT

Sericin is a silk protein woven from silkworm cocoons (Bombyx mori). In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.


Subject(s)
Animals , Cattle , Humans , Apoptosis/drug effects , Cell Proliferation/drug effects , Colon/drug effects , Colonic Neoplasms/pathology , Sericins/pharmacology , Silk/chemistry , Bombyx , Cell Line, Tumor , Cell Survival , Colon/cytology , Colonic Neoplasms/metabolism , Colonic Neoplasms/prevention & control , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Molecular Weight , Sericins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL