Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.258
Filter
2.
mBio ; 15(9): e0038424, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39087767

ABSTRACT

Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE: The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.


Subject(s)
Bacterial Proteins , Cytosol , Interferon Type I , Macrophages , Mycobacterium marinum , Serpins , Mycobacterium marinum/pathogenicity , Mycobacterium marinum/genetics , Mycobacterium marinum/metabolism , Animals , Mice , Macrophages/microbiology , Cytosol/microbiology , Cytosol/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Serpins/metabolism , Serpins/genetics , Interferon Type I/metabolism , Mycobacterium Infections, Nontuberculous/microbiology , Humans , Mice, Inbred C57BL , Cell Death , Feedback, Physiological , Host-Pathogen Interactions , Signal Transduction , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/genetics , Female
3.
Invest Ophthalmol Vis Sci ; 65(10): 27, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39167401

ABSTRACT

Purpose: The purpose of this study was to examine possible involvement of vascular endothelial growth factor (VEGF) receptor (VEGFR)-1/Flt-1 in pigment epithelium-derived factor (PEDF)-promoted survival of retinal neurons. Methods: Survival of growth factor-deprived retinal ganglion cells (RGCs) and R28 cells and activation of ERK-1/-2 MAP kinases were assessed in the presence of PEDF, placental growth factor (PlGF), and VEGF using cell cultures, viability assays and quantitation of ERK-1/-2 phosphorylation. VEGFR-1/Flt-1 expression was determined using quantitative PCR (qPCR) and Western blotting. VEGFR-1/Flt-1 was knocked down in R28 cells by small interfering RNA (siRNA). Binding of a PEDF-IgG Fc fusion protein (PEDF-Fc) to retinal neurons, immobilized VEGFR-1/Flt-1 and VEGFR-1/Flt-1-derived peptides was studied using binding assays and peptide scanning. Results: PEDF in combination with PlGF stimulated increased cell survival and ERK-1/-2 MAP kinase activation compared to effects of either factor alone. VEGFR-1/Flt-1 expression in RGCs and R28 cells was significantly upregulated by hypoxia, VEGF, and PEDF. VEGFR-1/Flt-1 ligands (VEGF and PlGF) or soluble VEGFR-1 (sflt-1) competed with PEDF-Fc for binding to R28 cells. Depleting R28 cells of VEGFR-1/Flt-1 resulted in reduced PEDF-Fc binding when comparing VEGFR-1/Flt-1 siRNA- and control siRNA-treated cells. PEDF-Fc interacted with immobilized sflt-1, which was specifically blocked by VEGF and PlGF. PEDF-Fc binding sites were mapped to VEGFR-1/Flt-1 extracellular domains D3 and D4. Peptides corresponding to D3 and D4 specifically inhibited PEDF-Fc binding to R28 cells. These peptides and sflt-1 significantly inhibited PEDF-promoted survival of R28 cells. Conclusions: These results suggest that PEDF can target VEGFR-1/Flt-1 and this interaction plays a significant role in PEDF-mediated neuroprotection in the retina.


Subject(s)
Blotting, Western , Cell Survival , Eye Proteins , Nerve Growth Factors , Serpins , Vascular Endothelial Growth Factor Receptor-1 , Animals , Rats , Cells, Cultured , Eye Proteins/metabolism , Eye Proteins/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Nerve Growth Factors/genetics , Phosphorylation , Retinal Ganglion Cells/metabolism , Serpins/metabolism , Serpins/pharmacology , Serpins/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics
4.
Sci Rep ; 14(1): 16567, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019933

ABSTRACT

Serine proteases are important regulators of airway epithelial homeostasis. Altered serum or cellular levels of two serpins, Scca1 and Spink5, have been described for airway diseases but their function beyond antiproteolytic activity is insufficiently understood. To close this gap, we generated fly lines with overexpression or knockdown for each gene in the airways. Overexpression of both fly homologues of Scca1 and Spink5 induced the growth of additional airway branches, with more variable results for the respective knockdowns. Dysregulation of Scca1 resulted in a general delay in fruit fly development, with increases in larval and pupal mortality following overexpression of this gene. In addition, the morphological changes in the airways were concomitant with lower tolerance to hypoxia. In conclusion, the observed structural changes of the airways evidently had a strong impact on the airway function in our model as they manifested in a lower physical fitness of the animals. We assume that this is due to insufficient tissue oxygenation. Future work will be directed at the identification of key molecular regulators following the airway-specific dysregulation of Scca1 and Spink5 expression.


Subject(s)
Asthma , Drosophila melanogaster , Serpins , Trachea , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Trachea/metabolism , Trachea/pathology , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Serpins/metabolism , Serpins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Oxygen/metabolism
5.
Vaccine ; 42(20): 126161, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39060200

ABSTRACT

BACKGROUND: Rhipicephalus microplus poses a significant problem for livestock worldwide and is primarily controlled with synthetic acaricides. The continuous use of acaricides results in the selection of resistance and causes environmental harm. Vaccination presents an alternative solution to this problem, although searching for the suitable antigen is still a work in progress. Salivary proteins hold promise for inclusion in vaccine formulation due to their roles in modulating host responses, assisting blood feeding and pathogen transmission. Serpins are a class of proteinase inhibitors and are among the molecules found in tick saliva that modulate host blood coagulation, inflammation, and adaptive immune responses. Previous studies have demonstrated the potential of R. microplus serpin 17 (RmS-17) to interfere with the host's defenses, and antibodies have been shown to neutralize its effects. This makes RmS-17 an putative target for vaccine development. METHODS: Epitope mapping of RmS-17 was achieved using in silico approach combining linear B-cell epitope and antigenicity predictor. In addition, epitope mapping using overlapping peptides in an ELISA screening was used. The serpin tridimensional structure and the epitopes spatial location within the molecule were determined. Peptides were synthetized based on the predictions and used for the production of rabbit anti-sera. Purified IgG's were used to assess the antibodies capacity to neutralize RmS-17. RESULTS: Through in silico mapping, nine potential B cell epitope regions were screened, with p1RmS-17 and p2RmS-17 selected for the experiment based on antigen prediction. In the ELISA screening using overlapping peptides, eight antibody-binding regions were identified, and p3RmS-17 and p4RmS-17 were chosen. Antibodies raised against p3RmS-17 and p4RmS-17 partially neutralized RmS-17 activity. CONCLUSION: It was found that antibodies against a single epitope are sufficient to partially neutralize RmS-17 activity. These findings support the possibility of using an epitope-based vaccine for immunization against R. microplus.


Subject(s)
Epitope Mapping , Rhipicephalus , Serpins , Animals , Rhipicephalus/immunology , Serpins/immunology , Serpins/genetics , Serpins/metabolism , Epitopes, B-Lymphocyte/immunology , Rabbits , Antibodies, Neutralizing/immunology , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Immunoglobulin G/immunology , Enzyme-Linked Immunosorbent Assay
6.
PLoS One ; 19(7): e0304451, 2024.
Article in English | MEDLINE | ID: mdl-38968282

ABSTRACT

Serine protease inhibitors (serpins) include thousands of structurally conserved proteins playing key roles in many organisms. Mutations affecting serpins may disturb their conformation, leading to inactive forms. Unfortunately, conformational consequences of serpin mutations are difficult to predict. In this study, we integrate experimental data of patients with mutations affecting one serpin with the predictions obtained by AlphaFold and molecular dynamics. Five SERPINC1 mutations causing antithrombin deficiency, the strongest congenital thrombophilia were selected from a cohort of 350 unrelated patients based on functional, biochemical, and crystallographic evidence supporting a folding defect. AlphaFold gave an accurate prediction for the wild-type structure. However, it also produced native structures for all variants, regardless of complexity or conformational consequences in vivo. Similarly, molecular dynamics of up to 1000 ns at temperatures causing conformational transitions did not show significant changes in the native structure of wild-type and variants. In conclusion, AlphaFold and molecular dynamics force predictions into the native conformation at conditions with experimental evidence supporting a conformational change to other structures. It is necessary to improve predictive strategies for serpins that consider the conformational sensitivity of these molecules.


Subject(s)
Molecular Dynamics Simulation , Mutation , Humans , Protein Conformation , Serpins/genetics , Serpins/chemistry , Serpins/metabolism , Protein Folding , Antithrombin III/genetics , Antithrombin III/chemistry , Antithrombin III/metabolism
7.
J Biol Chem ; 300(8): 107533, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971315

ABSTRACT

Immune complex (IC)-driven formation of neutrophil extracellular traps (NETs) is a major contributing factor to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Exogenous recombinant human serpin B1 (rhsB1) can regulate NET formation; however, its mechanism(s) of action is currently unknown as is its ability to regulate IC-mediated NET formation and other neutrophil effector functions. To investigate this, we engineered or post-translationally modified rhsB1 proteins that possessed specific neutrophil protease inhibitory activities and pretreated isolated neutrophils with them prior to inducing NET formation with ICs derived from patients with SLE, PMA, or the calcium ionophore A23187. Neutrophil activation and phagocytosis assays were also performed with rhsB1 pretreated and IC-activated neutrophils. rhsB1 dose-dependently inhibited NET formation by all three agents in a process dependent on its chymotrypsin-like inhibitory activity, most likely cathepsin G. Only one variant (rhsB1 C344A) increased surface levels of neutrophil adhesion/activation markers on IC-activated neutrophils and boosted intracellular ROS production. Further, rhsB1 enhanced complement-mediated neutrophil phagocytosis of opsonized bacteria but not ICs. In conclusion, we have identified a novel mechanism of action by which exogenously administered rhsB1 inhibits IC, PMA, and A2138-mediated NET formation. Cathepsin G is a well-known contributor to autoimmune disease but to our knowledge, this is the first report implicating it as a potential driver of NET formation. We identified the rhsB1 C334A variant as a candidate protein that can suppress IC-mediated NET formation, boost microbial phagocytosis, and potentially impact additional neutrophil effector functions including ROS-mediated microbial killing in phagolysosomes.


Subject(s)
Extracellular Traps , Neutrophils , Phagocytosis , Humans , Phagocytosis/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Extracellular Traps/immunology , Extracellular Traps/metabolism , Serpins/metabolism , Serpins/genetics , Serpins/immunology , Serpins/pharmacology , Neutrophil Activation/drug effects , Lupus Erythematosus, Systemic/immunology , Recombinant Proteins/pharmacology , Recombinant Proteins/metabolism , Reactive Oxygen Species/metabolism , Cathepsin G/metabolism , Chymotrypsin/metabolism
8.
Sci Rep ; 14(1): 15982, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987610

ABSTRACT

The search for prognostic markers in breast cancer has bumped into a typical feature of these tumors, intra and intertumoral heterogeneity. Changes in the expression profile, localization of these proteins or shedding to the surrounding stroma can be useful in the search for new markers. In this context, classification by molecular subtypes can bring perspectives for both diagnosis and screening for appropriate treatments. However, the Triple Negative (TN) subtype, which is already the one with the worst prognosis, lacks appropriate and consistent molecular markers. In this work, we analyzed 346 human breast cancer samples in tissue microarrays (TMA) from cases diagnosed with invasive breast carcinoma to assess the expression and localization pattern of Maspin and their correlation with clinical parameters. To complement our findings, we also used TCGA data to analyze the mRNA levels of these respective genes. Our data suggests that the TN subtype demonstrates a higher level of cytoplasmic Maspin compared to the other subtypes. Maspin transcript levels follow the same trend. However, TN patients with lower Maspin expression tend to have worse overall survival and free-survival metastasis rates. Finally, we used Maspin expression data to verify possible relationships with the clinicopathological information of our cohort. Our univariate analyses indicate that Maspin is related to the expression of estrogen receptor (ER) and progesterone receptor (PR). Furthermore, Maspin expression levels also showed correlation with Scarff-Bloom-Richardson (SBR) parameter, and stromal Maspin showed a relationship with lymph node involvement. Our data is not consistently robust enough to categorize Maspin as a prognostic marker. However, it does indicate a change in the expression profile within the TN subtype.


Subject(s)
Biomarkers, Tumor , Serpins , Triple Negative Breast Neoplasms , Humans , Serpins/metabolism , Serpins/genetics , Female , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Adult , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic
9.
Cancer Immunol Res ; 12(8): 1108-1122, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38833270

ABSTRACT

Allogeneic chimeric antigen receptor (CAR)-expressing T cells offer many advantages over autologous therapies, but their benefits are curtailed by graft-versus-host disease and elimination by recipient immune cells. Moreover, just as with autologous therapies, allogeneic CAR T cells are susceptible to activation-induced cell death (AICD) caused by chronic antigen exposure (CAE). Granzyme B- and Fas/Fas ligand-initiated caspase-mediated apoptoses are key mechanisms of T-cell death caused by T/NK cell-mediated allorejection or CAE. We explored a protective strategy of engineering CAR T cells to overexpress variants of the Granzyme B-specific serine protease inhibitor SERPINB9 (SB9) to improve allogeneic T-cell persistence and antitumor efficacy. We showed that the overexpression of an SB9 variant with broadened caspase specificity, SB9(CAS), not only significantly reduced rejection of allogeneic CAR T cells but also increased their resistance to AICD and enabled them to thrive better under CAE, thus improving allogeneic T-cell persistence and antitumor activity in vitro and in vivo. In addition, although SB9(CAS) overexpression improved the efficacy of allogeneic CAR T-cell therapy by conferring protection to cell death, we did not observe any autonomous growth, and the engineered CAR T cells were still susceptible to an inducible suicide switch. Hence, SB9(CAS) overexpression is a promising strategy that can strengthen current development of cell therapies, broadening their applications to address unmet medical needs.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Serpins , T-Lymphocytes , Animals , Humans , Serpins/genetics , Serpins/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor
10.
Reprod Biomed Online ; 49(2): 103981, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38870625

ABSTRACT

RESEARCH QUESTION: What is the involvement of pigment epithelium-derived factor (PEDF), expressed in granulosa cells, in folliculogenesis? DESIGN: mRNA expression of PEDF and other key factors [Cyp19, anti-Müllerian hormone receptor (AMHR) and vascular endothelial growth factor (VEGF)] in mice follicles was examined in order to typify the expression of PEDF in growing follicles and in human primary granulosa cells (hpGC), and to follow the interplay between PEDF and the other main players in folliculogenesis: FSH and AMH. RESULTS: mRNA expression of PEDF increased through folliculogenesis, although the pattern differed from that of the other examined genes, affecting the follicular angiogenic and oxidative balance. In hpGC, prolonged exposure to FSH stimulated the up-regulation of PEDF mRNA. Furthermore, a negative correlation between AMH and PEDF was observed: AMH stimulation reduced the expression of PEDF mRNA and PEDF stimulation reduced the expression of AMHR mRNA. CONCLUSIONS: Folliculogenesis, an intricate process that requires close dialogue between the oocyte and its supporting granulosa cells, is mediated by various endocrine and paracrine factors. The current findings suggest that PEDF, expressed in granulosa cells, is a pro-folliculogenesis player that interacts with FSH and AMH in the process of follicular growth. However, the mechanism of this process is yet to be determined.


Subject(s)
Anti-Mullerian Hormone , Eye Proteins , Granulosa Cells , Nerve Growth Factors , Ovarian Follicle , Serpins , Serpins/metabolism , Serpins/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Female , Eye Proteins/metabolism , Eye Proteins/genetics , Animals , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Humans , Mice , Anti-Mullerian Hormone/metabolism , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Cells, Cultured
11.
Clin Genet ; 106(3): 367-373, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38831697

ABSTRACT

SERPINA11 is a hitherto poorly characterised gene belonging to Clade A of the SERPIN superfamily, with unknown expression pattern and functional significance. We report a perinatal lethal phenotype in two foetuses from the same family associated with a biallelic loss of function variant in SERPINA11, and provide functional evidence to support its candidature as a Mendelian disorder. The SERPINA11 variant-associated foetal phenotype is characterised by gross and histopathological features of extracellular matrix disruption. Western blot and immunofluorescence analyses revealed SERPINA11 expression in multiple mouse tissues, with pronounced expression in the bronchiolar epithelium. We observed a significant decrease in SERPINA11 immunofluorescence in the affected foetal lung compared with a healthy gestation-matched foetus. Protein expression data from HEK293T cell lines following site-directed mutagenesis support the loss of function nature of the variant. Transcriptome analysis from the affected foetal liver indicated the possibility of reduced SERPINA11 transcript abundance. This novel serpinopathy appears to be a consequence of the loss of inhibition of serine proteases involved in extracellular matrix remodelling, revealing SERPINA11 as a protease inhibitor critical for embryonic development.


Subject(s)
Genes, Lethal , Serpins , Animals , Female , Humans , Male , Mice , Pregnancy , Fetus , HEK293 Cells , Pedigree , Phenotype , Serpins/genetics , Serpins/metabolism
12.
Vet Res ; 55(1): 78, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877574

ABSTRACT

Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.


Subject(s)
Endoplasmic Reticulum Stress , Epithelial Cells , Oxidative Stress , Serpins , Trichinella spiralis , Animals , Endoplasmic Reticulum Stress/drug effects , Trichinella spiralis/physiology , Mice , Oxidative Stress/drug effects , Swine , Serpins/metabolism , Serpins/genetics , Serine Proteinase Inhibitors/pharmacology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Jejunum/drug effects
13.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38695247

ABSTRACT

Inherited ichthyosis comprises a series of heterogeneous dermal conditions; it mainly manifests as widespread hyperkeratosis, xerosis and scaling of the skin. At times, overlapping symptoms require differential diagnosis between ichthyosis and several other similar disorders. The present study reports seven patients with confirmed or suspected to be associated with ichthyosis by conducting a thorough clinical and genetic investigation. Genetic testing was conducted using whole­exome sequencing, with Sanger sequencing as the validation method. The MEGA7 program was used to analyze the conservation of amino acid residues affected by the detected missense variants. The enrolled patients exhibited ichthyosis­like but distinct clinical manifestations. Genetic analysis identified diagnostic variations in the FLG, STS, KRT10 and SERPINB7 genes and clarified the carrying status of each variant in the respective family members. The two residues affected by the detected missense variants remained conserved across multiple species. Of note, the two variants, namely STS: c.452C>T(p.P151L) and c.647_650del(p.L216fs) are novel. In conclusion, a clear genetic differential diagnosis was made for the enrolled ichthyosis­associated patients; the study findings also extended the mutation spectrum of ichthyosis and provided solid evidence for the counseling of the affected families.


Subject(s)
Exome Sequencing , Filaggrin Proteins , Ichthyosis , Keratoderma, Palmoplantar , Pedigree , Steryl-Sulfatase , Humans , Female , Male , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/diagnosis , Keratoderma, Palmoplantar/pathology , Child , Ichthyosis/genetics , Ichthyosis/diagnosis , Adult , Genetic Testing , Serpins/genetics , Keratin-10/genetics , Adolescent , Child, Preschool , Mutation, Missense , Mutation , Young Adult , Genetic Predisposition to Disease
14.
Pest Manag Sci ; 80(9): 4470-4481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38666388

ABSTRACT

BACKGROUND: The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS: We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION: Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.


Subject(s)
Aphids , Nicotiana , Plant Proteins , Serine Proteinase Inhibitors , Animals , Aphids/genetics , Nicotiana/genetics , Nicotiana/parasitology , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Serpins/genetics , Serpins/metabolism
15.
Cardiovasc Res ; 120(8): 943-953, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38666458

ABSTRACT

AIMS: Following myocardial infarction (MI), the heart repairs itself via a fibrotic repair response. The degree of fibrosis is determined by the balance between deposition of extracellular matrix (ECM) by activated fibroblasts and breakdown of nascent scar tissue by proteases that are secreted predominantly by inflammatory cells. Excessive proteolytic activity and matrix turnover has been observed in human heart failure, and protease inhibitors in the injured heart regulate matrix breakdown. Serine protease inhibitors (Serpins) represent the largest and the most functionally diverse family of evolutionary conserved protease inhibitors, and levels of the specific Serpin, SerpinA3, have been strongly associated with clinical outcomes in human MI as well as non-ischaemic cardiomyopathies. Yet, the role of Serpins in regulating cardiac remodelling is poorly understood. The aim of this study was to understand the role of Serpins in regulating scar formation after MI. METHODS AND RESULTS: Using a SerpinA3n conditional knockout mice model, we observed the robust expression of Serpins in the infarcted murine heart and demonstrate that genetic deletion of SerpinA3n (mouse homologue of SerpinA3) leads to increased activity of substrate proteases, poorly compacted matrix, and significantly worse post-infarct cardiac function. Single-cell transcriptomics complemented with histology in SerpinA3n-deficient animals demonstrated increased inflammation, adverse myocyte hypertrophy, and expression of pro-hypertrophic genes. Proteomic analysis of scar tissue demonstrated decreased cross-linking of ECM peptides consistent with increased proteolysis in SerpinA3n-deficient animals. CONCLUSION: Our study demonstrates a hitherto unappreciated causal role of Serpins in regulating matrix function and post-infarct cardiac remodelling.


Subject(s)
Disease Models, Animal , Fibrosis , Mice, Knockout , Myocardial Infarction , Myocardium , Ventricular Remodeling , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Mice, Inbred C57BL , Serpins/metabolism , Serpins/genetics , Ventricular Function, Left , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Acute-Phase Proteins
16.
Neuropathol Appl Neurobiol ; 50(2): e12980, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647003

ABSTRACT

Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.


Subject(s)
Serpins , Humans , Serpins/metabolism , Serpins/genetics , Animals , Central Nervous System Diseases/pathology , Central Nervous System Diseases/metabolism , Central Nervous System/pathology , Central Nervous System/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism
18.
Mol Metab ; 82: 101905, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431218

ABSTRACT

OBJECTIVE: Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS: Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS: In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS: KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Noncommunicable Diseases , Serpins , Humans , Mice , Animals , Glucose/metabolism , Insulin Resistance/physiology , Serpins/genetics , Overweight , Insulin/metabolism , Obesity/metabolism , Mice, Transgenic , Diet, High-Fat/adverse effects , Homeostasis , Weight Loss , RNA, Messenger/metabolism
20.
J Cardiothorac Surg ; 19(1): 141, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504347

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of morality among all malignant tumors. Smoking is one of the most important causes of NSCLC, which contributes not only to the initiation of NSCLC but also to its progression. The identification of specific biomarkers associated with smoking will promote diagnosis and treatment. METHODS: Data mining was used to identify the smoking associated gene SERPINB12. CCK8 assays, colony formation assays, a mouse xenograft model and transwell assays were performed to measure the biological functions of SERPINB12 in NSCLC. GSEA, luciferase reporter assays and immunofluorescence were conducted to explore the potential molecular mechanisms of SERPINB12 in NSCLC. RESULTS: In this study, by data mining the TCGA database, we found that SERPINB12 was greatly upregulated in NSCLC patients with cigarette consumption behavior, while the expression level was positively correlated with disease grade and poor prognosis. SERPINB12 is a kind of serpin peptidase inhibitor, but its function in malignant tumors remains largely unknown. Functionally, knockdown of SERPINB12 observably inhibited the proliferation and metastasis of NSCLC cells in vitro and in vivo. Moreover, downregulation of SERPINB12 attenuated Wnt signaling by inhibiting the nuclear translocation of ß-catenin, which explained the molecular mechanism underlying tumor progression. CONCLUSIONS: In conclusion, SERPINB12 functions as a tumorigenesis factor, which could be a promising biomarker for NSCLC patients with smoking behavior, as well as a therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Serpins , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Wnt Signaling Pathway/genetics , Up-Regulation , Cell Line, Tumor , Smoking/adverse effects , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Serpins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL