Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.159
Filter
1.
J Foot Ankle Res ; 17(3): e12016, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38956878

ABSTRACT

BACKGROUND: The field of medical grade footwear is dynamic. Originally, a field where individual knowledge, expertise and skills determined the footwear and its outcomes, now becoming a more evidence-based and data-driven field with protocols and systems in place to create appropriate footwear. However, scientific evidence concerning medical grade footwear is still limited. Evidently, all stakeholders, from patients to pedorthists to rehabilitation physicians, will profit from a larger evidence-base in this field. A widely supported research agenda is an essential first step to advance and facilitate new knowledge. METHODS: We formed a multidisciplinary team and followed the methodology from Dutch medical societies for the development of a research agenda on medical grade footwear. This consisted of seven steps: (1) inventory of relevant questions with users and professionals; (2) analyses of responses; (3) analyses of existing knowledge and evidence; (4) formulating research questions; (5) prioritising research questions by users and professionals; (6) finalising the research agenda and (7) implementing the research agenda. RESULTS: In phase 1, 109 participants completed a survey, including 50% pedorthists, 6% rehabilitation physicians and 3% users. Participants provided 228 potential research questions. In phases 2-4, these were condensed to 65 research questions. In phase 5, 152 participants prioritised these 65 research questions, including 50% pedorthists, 13% rehabilitation physicians and 9% users. In phase 6, the final research agenda was created, with 26 research questions, categorised based on the International Classification of Functioning Disability and Health 'process description assistive devices'. In phase 7, an implementation meeting was held with over 50 stakeholders (including users and professionals), resulting in seven applications for research projects based on one or more research questions from the research agenda. CONCLUSIONS: This research agenda structures and guides knowledge development within the field of medical grade footwear in the Netherlands and elsewhere. We expect that this will help to stimulate the field to tackle the research questions prioritised and with that to advance scientific knowledge in this field.


Subject(s)
Shoes , Humans , Netherlands , Orthotic Devices , Female , Biomedical Research , Male , Surveys and Questionnaires , Adult
2.
J Foot Ankle Res ; 17(3): e12036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951733

ABSTRACT

BACKGROUND: Motor coordination concerns are estimated to affect 5%-6% of school-aged children. Motor coordination concerns have variable impact on children's lives, with gait and balance often affected. Textured insoles have demonstrated positive impact on balance and gait in adults with motor coordination disorders related to disease or the ageing process. The efficacy of textured insoles in children is unknown. Our primary aim was to identify the feasibility of conducting a randomised controlled trial involving children with motor control issues. The secondary aim was to identify the limited efficacy of textured insoles on gross motor assessment balance domains and endurance in children with movement difficulties. METHODS: An assessor-blinded, randomised feasibility study. We advertised for children between the ages of 5-12 years, with an existing diagnosis or developmental coordination disorder or gross motor skill levels assessed as 15th percentile or below on a norm-referenced, reliable and validated scale across two cities within Australia. We randomly allocated children to shoes only or shoes and textured insoles. We collected data across six feasibility domains; demand (recruitment), acceptability (via interview) implementation (adherence), practicality (via interview and adverse events), adaptation (via interview) and limited efficacy testing (6-min walk test and balance domain of Movement ABC-2 at baseline and 4 weeks). RESULTS: There were 15 children randomised into two groups (eight received shoes alone, seven received shoes and textured insoles). We experienced moderate demand, with 46 potential participants. The insoles were acceptable, however, some parents reported footwear fixture issues requiring modification. The 6-min walk test was described as problematic for children, despite all but one child completing. Social factors impacted adherence and footwear wear time in both groups. Families reported appointment locations and parking impacting practicality. Underpowered, non-significant small to moderate effect sizes were observed for different outcome measures. Improvement in balance measures favoured the shoe and insole group, while gait velocity increase favoured the shoe only group. CONCLUSION: Our research indicates that this trial design is feasible with modifications such as recruiting with a larger multi-disciplinary organisation, providing velcro shoe fixtures and using a shorter timed walk test. Furthermore, progressing to a larger well-powered randomised control trial is justified considering our preliminary, albeit underpowered, efficacy findings. TRIAL REGISTRATION: This trial was retrospectively registered with the Australian and New Zealand Clinical Trial Registration: ACTRN12624000160538.


Subject(s)
Feasibility Studies , Foot Orthoses , Motor Skills Disorders , Postural Balance , Shoes , Humans , Postural Balance/physiology , Child , Male , Female , Motor Skills Disorders/rehabilitation , Child, Preschool , Motor Skills/physiology , Australia , Physical Endurance/physiology , Gait/physiology , Equipment Design
3.
Sci Rep ; 14(1): 13640, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871746

ABSTRACT

The real-world measurement of minimum foot clearance (mFC) during the swing phase of gait is critical in efforts to understand and reduce the risk of trip-and-fall incidents in populations with gait impairments. Past research has focused on measuring clearance of a single point on a person's foot, typically the toe-however, this may overestimate mFC and may even be the wrong region of the foot in cases of gait impairments or interventions. In this work, we present a novel method to reconstruct the swing-phase trajectory of an arbitrary number of points on a person's shoe and estimate the instantaneous height and location of whole-foot mFC. This is achieved using a single foot-mounted inertial sensor and personalized shoe geometry scan, assuming a rigid-body IMU-shoe system. This combination allows collection and analysis using out-of-lab tests, potentially including clinical environments. Validation of single marker location using the proposed method vs. motion capture showed height errors with bias less than 0.05 mm, and 95% confidence interval of - 8.18 to + 8.09 mm. The method is demonstrated in an example data set comparing different interventions for foot drop, and it shows clear differences among no intervention, functional electrical stimulation, and ankle-foot orthosis conditions. This method offers researchers and clinicians a rich understanding of a person's gait by providing objective 3D foot kinematics and allowing a unique opportunity to view the regions of the foot where minimum clearance occurs. This information can contribute to a more informed recommendation of specific interventions or assistive technology than is currently possible in standard clinical practice.


Subject(s)
Foot , Gait , Shoes , Humans , Foot/physiology , Gait/physiology , Biomechanical Phenomena , Male , Female , Adult , Walking/physiology , Gait Analysis/methods
4.
Clin Biomech (Bristol, Avon) ; 116: 106282, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850883

ABSTRACT

BACKGROUND: Rocker shoes can be used to reduce foot pressure and adjust lower limb kinetics for various patient population, such as people with diabetic peripheral neuropathy. Selecting adequate properties of the rocker sole is of great importance for its efficacy. This study investigated the capability of human-in-the-loop optimization (HILO) to individually optimize apex position and angle of rocker shoe to reduce peak pressure and collision work simultaneously. METHODS: Peak pressure, kinetic, and kinematic data were recorded from 10 healthy participants while walking at preferred speed wearing rocker shoes with adjustable apex position and angle. An evolutionary algorithm was used to find optimal apex parameters to reduce both peak pressure in medial forefoot and collision work. The optimized shoe (HILO shoe) was compared with generic optimal rocker settings (Chapman settings) and normal shoe. FINDINGS: Compared to normal shoe, the HILO shoe had lower plantar pressure (pHILO = 0.007; pChapman = 0.044) and Chapman shoe showed higher collision work (pHILO = 0.025; pChapman = 0.014). Both HILO and Chapman shoe had smaller push-off work than normal shoe (pHILO = 0.001; pChapman < 0.001) with the Chapman shoe exhibited earlier push-off onset (pHILO = 0.257; pChapman = 0.016). INTERPRETATION: The Human-in-the-loop optimization approach resulted in individualized apex settings which performed on average similar to Chapman settings but, were superior in selected cases. In these cases, medial forefoot could be further offloaded with apex angles larger than generic settings. The larger apex angle might increase the external ankle moment arm and push-off work. However, there is limited room for improvement on collision work compared to generic settings.


Subject(s)
Foot , Pressure , Shoes , Walking , Humans , Foot/physiology , Male , Adult , Female , Walking/physiology , Biomechanical Phenomena , Equipment Design , Algorithms , Young Adult
5.
Clin Biomech (Bristol, Avon) ; 116: 106281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850882

ABSTRACT

BACKGROUND: Effectiveness of therapeutic footwear in reducing peak pressure in persons with diabetes and loss of protective sensation to prevent diabetic foot ulcers varies due to manual production and possible changing foot structure. A previous two-way approach to address this issue, featuring individualized 3D-printed rocker midsoles and self-adjusting insoles, proved effective in the forefoot but less in the heel. To address this, new insoles incorporating a heel cup are developed. METHODS: In-shoe pressure was measured, while persons with diabetes and loss of protective sensation with high peak pressure (≥ 200 kPa) in the heel walked on a treadmill with control and individualized rocker shoe paired with control and new insole. FINDINGS: Generalized estimating equations revealed significant decrease in peak pressure in the proximal heel with the new insole alone and combined with rocker shoe compared to rocker shoe alone. For the distal heel, significant decrease in peak pressure is shown with the combination of new insole and rocker shoe compared to control shoe. For the forefoot and toes (excluding hallux) significant decrease in peak pressure is shown using the rocker shoe alone or combined with the heel cup compared to control shoe. INTERPRETATION: The new insole paired with rocker shoe is effective in reducing peak pressure in the distal heel. To have similar (or more) success in proximal heel, one could replace the rocker midsole with more compliant materials. The rocker shoe used separately or combined with a heel cup effectively reduces the peak pressure in the forefoot and other toes.


Subject(s)
Diabetic Foot , Equipment Design , Foot Orthoses , Heel , Pressure , Shoes , Humans , Male , Female , Middle Aged , Diabetic Foot/prevention & control , Diabetic Foot/physiopathology , Foot/physiology , Aged , Walking/physiology
6.
J Environ Manage ; 363: 121363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850911

ABSTRACT

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Subject(s)
Acoustics , Shoes , Tensile Strength , Polyesters/chemistry , Recycling
7.
Sensors (Basel) ; 24(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931685

ABSTRACT

BACKGROUND: During city running or marathon races, shifts in level ground and up-and-down slopes are regularly encountered, resulting in changes in lower limb biomechanics. The longitudinal bending stiffness of the running shoe affects the running performance. PURPOSE: This research aimed to investigate the biomechanical changes in the lower limbs when transitioning from level ground to an uphill slope under different longitudinal bending stiffness (LBS) levels in running shoes. METHODS: Fifteen male amateur runners were recruited and tested while wearing three different LBS running shoes. The participants were asked to pass the force platform with their right foot at a speed of 3.3 m/s ± 0.2. Kinematics data and GRFs were collected synchronously. Each participant completed and recorded ten successful experiments per pair of shoes. RESULTS: The range of motion in the sagittal of the knee joint was reduced with the increase in the longitudinal bending stiffness. Positive work was increased in the sagittal plane of the ankle joint and reduced in the keen joint. The negative work of the knee joint increased in the sagittal plane. The positive work of the metatarsophalangeal joint in the sagittal plane increased. CONCLUSION: Transitioning from running on a level surface to running uphill, while wearing running shoes with high LBS, could lead to improved efficiency in lower limb function. However, the higher LBS of running shoes increases the energy absorption of the knee joint, potentially increasing the risk of knee injuries. Thus, amateurs should choose running shoes with optimal stiffness when running.


Subject(s)
Lower Extremity , Running , Shoes , Humans , Male , Biomechanical Phenomena/physiology , Running/physiology , Lower Extremity/physiology , Adult , Range of Motion, Articular/physiology , Ankle Joint/physiology , Knee Joint/physiology , Young Adult
8.
Cochrane Database Syst Rev ; 6: CD007809, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38884172

ABSTRACT

BACKGROUND: Osteoarthritis (OA) affecting the first metatarsophalangeal joint (hallux rigidus) is common and painful. Several non-surgical treatments have been proposed; however, few have been adequately evaluated. Since the original 2010 review, several studies have been published necessitating this update. OBJECTIVES: To determine the benefits and harms of non-surgical treatments for big toe OA. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search was February 2023. SELECTION CRITERIA: We included randomised trials that compared any type of non-surgical treatment versus placebo (or sham), no treatment (such as wait-and-see) or other treatment. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. The major outcomes were pain, function, quality of life, radiographic joint structure, adverse events and withdrawals due to adverse events. The primary time point was 12 weeks. We used GRADE to assess the certainty of evidence. MAIN RESULTS: This update includes six trials (547 participants). The mean age of participants ranged from 32 to 62 years. Trial durations ranged from 4 to 52 weeks. Treatments were compared in single trials as follows: arch-contouring foot orthoses versus sham inserts; shoe-stiffening inserts versus sham inserts; intra-articular injection of hyaluronic acid versus saline (placebo) injection; arch-contouring foot orthoses versus rocker-sole footwear; peloid therapy versus paraffin therapy; and sesamoid mobilisation, flexor hallucis longus strengthening and gait training plus physical therapy versus physical therapy alone. Certainty of the evidence was limited by the risk of bias and imprecision. Meta-analysis was not performed due to the heterogeneity of interventions. We reported numerical data for the 12-week time point for the three trials that used a placebo/sham control group. Arch-contouring foot orthoses versus sham inserts One trial (88 participants) showed that arch-contouring foot orthoses probably lead to little or no difference in pain, function, or quality of life compared to sham inserts (moderate certainty). Mean pain (0-10 scale, 0 no pain) with sham inserts was 3.9 points compared to 3.5 points with arch-contouring foot orthoses; a difference of 0.4 points better (95% (CI) 0.5 worse to 1.3 better). Mean function (0-100 scale, 100 best function) with sham inserts was 73.3 points compared to 65.5 points with arch-contouring foot orthoses; a difference of 7.8 points worse (95% CI 17.8 worse to 2.2 better). Mean quality of life (-0.04-100 scale, 100 best score) with sham inserts was 0.8 points compared to 0.8 points with arch-contouring foot orthoses group (95% CI 0.1 worse to 0.1 better). Arch-contouring foot orthoses may show little or no difference in adverse events and withdrawal due to adverse events compared to sham inserts (low certainty). Adverse events (mostly foot pain) were reported in 6 out of 41 people with sham inserts and 4 out of 47 people with arch-contouring foot orthoses (RR 0.58, 95% CI 0.18 to 1.92). Withdrawals due to adverse events were reported in 0 out of 41 people with sham inserts and 1 out of 47 people with arch-contouring foot orthoses (Peto OR 6.58, 95% CI 0.13 to 331). Shoe-stiffening inserts versus sham inserts One trial (100 participants) showed that shoe-stiffening inserts probably lead to little or no difference in pain, function, or quality of life when compared to sham inserts (moderate certainty). Mean pain (0-100 scale, 0 no pain) with sham inserts was 63.8 points compared to 70.1 points with shoe-stiffening inserts; a difference of 6.3 points better (95% CI 0.5 worse to 13.1 better). Mean function (0-100 scale, 100 best function) with sham inserts was 81.0 points compared to 84.9 points with shoe-stiffening inserts; a difference of 3.9 points better (95% CI 3.3 worse to 11.1 better). Mean quality of life (0-100 scale, 100 best score) with sham inserts was 53.2 points compared to 53.3 points with shoe-stiffening inserts; a difference of 0.1 points better (95% CI 3.7 worse to 3.9 better). Shoe-stiffening inserts may show little or no difference in adverse events and withdrawal due to adverse events, compared to sham inserts (low certainty). Adverse events (mostly foot pain, blisters, and spine/hip pain) were reported in 31 out of 51 people with sham inserts and 29 out of 49 people with shoe-stiffening inserts (RR 0.94, 95% CI 0.42 to 2.08). Withdrawals due to adverse events were reported in 1 out of 51 people with sham inserts and 2 out of 49 people with shoe-stiffening inserts (Peto OR 2.08, 95% CI 0.19 to 22.23). Hyaluronic acid versus placebo One trial (151 participants) showed that a single intra-articular injection of hyaluronic acid probably leads to little or no difference in pain or function compared to placebo (moderate certainty). Mean pain (0-100 scale, 0 no pain) with placebo was 72.5 points compared to 68.2 points with hyaluronic acid; a difference of 4.3 points better (95% CI 2.1 worse to 10.7 better). Mean function (0-100 scale, 100 best function) was 83.4 points with placebo compared to 85.0 points with hyaluronic acid; a difference of 1.6 points better (95% CI 4.6 worse to 7.8 better). Hyaluronic acid may provide little or no difference in quality of life (0-100 scale, 100 best score) which was 79.9 points with placebo compared to 82.9 points with hyaluronic acid; a difference of 3.0 better (95% CI 1.4 worse to 7.4 better; low certainty). There may be fewer adverse events with hyaluronic acid compared to placebo. Adverse events (mostly pain at the injection site) were reported in 43 out of 76 people with placebo compared with 27 out of 75 people with hyaluronic acid (RR 0.64, 95% CI 0.44 to 0.91; low certainty). No participants withdrew from either group due to adverse events. The effects on radiographic joint structure were not reported in any study. AUTHORS' CONCLUSIONS: The existing evidence regarding the benefits and harms of non-surgical treatments for big toe OA is limited. There is moderate-certainty evidence, based upon three single placebo/sham-controlled trials, that there are no clinically important benefits of arch-contouring foot orthoses, shoe-stiffening inserts, or a single intra-articular injection of hyaluronic acid. Further placebo-controlled trials are needed to evaluate the effectiveness of non-surgical treatments for big toe OA.


Subject(s)
Foot Orthoses , Randomized Controlled Trials as Topic , Humans , Middle Aged , Adult , Hallux Rigidus , Quality of Life , Shoes , Osteoarthritis/therapy , Bias , Hyaluronic Acid/therapeutic use , Hyaluronic Acid/administration & dosage
9.
Scand J Med Sci Sports ; 34(6): e14672, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887854

ABSTRACT

Footwear has the potential to reduce soft-tissue vibrations (STV) but responses are highly subject-specific. Recent evidence shows that compressive garments minimizing STV have a beneficial effect on neuromuscular (NM) fatigue. The aim was to determine whether an individualized midsole hardness can minimize STV and NM fatigue during a half marathon. Twenty experienced runners were recruited for three visits: a familiarization session including the identification of midsole minimizing and maximizing STV amplitude (MIN and MAX, respectively), and two half marathon sessions at 95% of speed at the second ventilatory threshold. STV of the gastrocnemius medialis (GM) muscle, running kinetics, foot strike pattern, rating perceived exhaustion (RPE), and midsole liking were recorded every 3 km. NM fatigue was assessed on plantar flexors (PF) before (PRE) and after (POST) the half marathon. At POST, PF central and peripheral alterations and changes in contact time, step frequency, STV median frequency, and impact force frequency as well as foot strike pattern were found in both MIN and MAX. No significant differences in damping, STV main frequency, flight time, duty factor, and loading rate were observed between conditions whatever the time period. During the half marathon, STV amplitude of GM significantly increased over time for the MAX condition (+13.3%) only. Differences between MIN and MAX were identified for RPE and midsole liking. It could be hypothesized that, while significant, the effect of midsole hardness on STV is too low to substantially affect NM fatigue.


Subject(s)
Marathon Running , Muscle Fatigue , Muscle, Skeletal , Shoes , Vibration , Humans , Male , Adult , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Female , Marathon Running/physiology , Foot/physiology , Hardness , Biomechanical Phenomena , Running/physiology , Middle Aged
10.
Sci Rep ; 14(1): 13215, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851842

ABSTRACT

Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.


Subject(s)
Running , Shoes , Running/physiology , Humans , Biomechanical Phenomena , Pressure , Carbon Fiber/chemistry , Forefoot, Human/physiology , Finite Element Analysis , Stress, Mechanical , Weight-Bearing/physiology , Carbon/chemistry , Equipment Design , Foot/physiology
11.
ACS Appl Mater Interfaces ; 16(25): 32662-32678, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38863342

ABSTRACT

The pervasive global issue of population aging has led to a growing demand for health monitoring, while the advent of electronic wearable devices has greatly alleviated the strain on the industry. However, these devices come with inherent limitations, such as electromagnetic radiation, complex structures, and high prices. Herein, a Solaris silicone rubber-integrated PMMA polymer optical fiber (S-POF) intelligent insole sensing system has been developed for remote, portable, cost-effective, and real-time gait monitoring. The system is capable of sensitively converting the pressure of key points on the sole into changes in light intensity with correlation coefficients of 0.995, 0.952, and 0.910. The S-POF sensing structure demonstrates excellent durability with a 4.8% variation in output after 10,000 cycles and provides stable feedback for bending angles. It also exhibits water resistance and temperature resistance within a certain range. Its multichannel multiplexing framework allows a smartphone to monitor multiple S-POF channels simultaneously, meeting the requirements of convenience for daily care. Also, the system can efficiently and accurately provide parameters such as pressure, step cadence, and pressure distribution, enabling the analysis of gait phases and patterns with errors of only 4.16% and 6.25% for the stance phase (STP) and the swing phase (SWP), respectively. Likewise, after comparing various AI models, an S-POF channel-based gait pattern recognition technique has been proposed with a high accuracy of up to 96.87%. Such experimental results demonstrate that the system is promising to further promote the development of rehabilitation and healthcare.


Subject(s)
Wearable Electronic Devices , Humans , Gait/physiology , Smartphone , Artificial Intelligence , Shoes , Optical Fibers
12.
PLoS One ; 19(6): e0304640, 2024.
Article in English | MEDLINE | ID: mdl-38900749

ABSTRACT

INTRODUCTION: Minimalist shoes (MS) are beneficial for foot health. The foot is a part of the posterior chain. It is suggested that interventions on the plantar foot sole also affect the upper segments of the body. This study aimed to investigate the local and remote effects along the posterior chain of four weeks of MS walking in recreationally active young adults. METHODS: 28 healthy participants (15 female, 13 male; 25.3 ± 5.3 years; 70.2 ± 11.9 kg; 175.0 ± 7.8 cm) were randomly assigned to a control- or intervention group. The intervention group undertook a four-week incremental MS walking program, which included 3,000 steps/day in the first week, increasing to 5,000 steps/day for the remaining three weeks. The control group walked in their preferred shoe (no MS). We assessed the following parameters in a laboratory at baseline [M1], after the four-week intervention [M2], and after a four-week wash-out period [M3]: Foot parameters (i.e., Foot Posture Index-6, Arch Rigidity Index), static single-leg stance balance, foot-, ankle-, and posterior chain range of motion, and muscle strength of the posterior chain. We fitted multiple hierarchically built mixed models to the data. RESULTS: In the MS group, the Foot Posture Index (b = -3.72, t(51) = -6.05, p < .001, [-4.94, 2.51]) and balance (b = -17.96, t(49) = -2.56, p = .01, [-31.54, 4.37]) significantly improved from M1 to M2, but not all other parameters (all p >.05). The improvements remained at M3 (Foot Posture Index: b = -1.71, t(51) = -2.73, p = .009, [-4,94,0.48]; balance: b = -15.97, t(49) = -2.25, p = .03, [-29.72, 2.21]). DISCUSSION: Walking in MS for four weeks might be advantageous for foot health of recreationally active young adults but no chronic remote effects should be expected.


Subject(s)
Foot , Postural Balance , Shoes , Walking , Humans , Female , Male , Walking/physiology , Foot/physiology , Adult , Postural Balance/physiology , Young Adult , Posture/physiology , Range of Motion, Articular/physiology , Muscle Strength/physiology
13.
Scand J Med Sci Sports ; 34(6): e14687, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923087

ABSTRACT

INTRODUCTION/PURPOSE: Shoe longitudinal bending stiffness (LBS) is often considered to influence running economy (RE) and thus, running performance. However, previous results are mixed and LBS levels have not been studied in advanced footwear technology (AFT). The purpose of this study was to evaluate the effects of increased LBS from curved carbon fiber plates embedded within an AFT midsole compared to a traditional running shoe on RE and spatiotemporal parameters. METHODS: Twenty-one male trained runners completed three times 4 min at 13 km/h with two experimental shoe models with a curved carbon fiber plate embedded in an AFT midsole with different LBS values (Stiff: 35.5 N/mm and Stiffest: 43.1 N/mm), and a Control condition (no carbon fiber plate: 20.1 N/mm). We measured energy cost of running (W/kg) and spatiotemporal parameters in one visit. RESULTS: RE improved for the Stiff shoe condition (15.71 ± 0.95 W/kg; p < 0.001; n2 = 0.374) compared to the Control condition (16.13 ± 1.08 W/kg; 2.56%) and Stiffest condition (16.03 ± 1.19 W/kg; 1.98%). However, we found no significant differences between the Stiffest and Control conditions. Moreover, there were no spatiotemporal differences between shoe conditions. CONCLUSION: Changes in LBS in AFT influences RE suggesting that moderately stiff shoes have the most effective LBS to improve RE in AFT compared to very stiff shoes and traditional, flexible shoe conditions while running at 13 km/h.


Subject(s)
Energy Metabolism , Equipment Design , Running , Shoes , Humans , Running/physiology , Male , Energy Metabolism/physiology , Adult , Biomechanical Phenomena , Young Adult , Carbon Fiber
14.
PLoS One ; 19(6): e0305031, 2024.
Article in English | MEDLINE | ID: mdl-38843254

ABSTRACT

Heart rate variability (HRV) is a frequently used indicator of autonomic responses to various stimuli in horses. This study aimed to investigate HRV variables in horses undergoing cold (n = 25) or hot (n = 26) shoeing. Multiple HRV variables were measured and compared between horses undergoing cold and hot shoeing, including the time domain, frequency domain, and nonlinear variables pre-shoeing, during shoeing, and at 30-minute intervals for 120 minutes post-shoeing. The shoeing method interacted with time to change the HRV variables standard deviation of RR intervals (SDNN), root mean square of successive RR interval differences (RMSSD), very-low-frequency band, low-frequency band (LF), the LF to high-frequency band ratio, respiratory rate, total power, standard deviation perpendicular to the line of identity (SD1), and standard deviation along the line of identity (SD2). SDNN, RMSSD, and total power only increased 30 minutes after hot shoeing (all p < 0.05). Triangular interpolation of normal-to-normal intervals (TINN) and the HRV triangular index increased during and up to 120 minutes after hot shoeing (p < 0.05-0.001). TINN increased only during cold shoeing (p < 0.05). LF increased 30 and 60 minutes after hot shoeing (both p < 0.05). SD1 and SD2 also increased 30 minutes after hot shoeing (both p < 0.05). SDNN, TINN, HRV triangular index, LF, total power, and SD2 were higher in hot-shoed than cold-shoed horses throughout the 120 minutes post-shoeing. Differences in HRV were found, indicating increased sympathovagal activity in hot shoed horses compared to cold shoed horses.


Subject(s)
Cold Temperature , Heart Rate , Hot Temperature , Animals , Horses/physiology , Heart Rate/physiology , Male , Female , Respiratory Rate/physiology , Shoes
15.
Dermatol Online J ; 30(1)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38762854

ABSTRACT

Retronychia is commonly underdiagnosed and exhibits classic features of proximal nail fold elevation and nail plate layering. Herein we summarize the literature and discuss cause, diagnosis, and treatment of this condition.


Subject(s)
Nails, Ingrown , Shoes , Humans , Nail Diseases/diagnosis , Nail Diseases/pathology , Nails/pathology , Nails, Ingrown/therapy
16.
Int J Sports Physiol Perform ; 19(7): 705-711, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38815961

ABSTRACT

PURPOSE: Determine the effects of advanced footwear technology (AFT) in track spikes and road-racing shoes on running economy (RE). METHODS: Four racing shoes (3 AFT and 1 control) and 3 track spikes (2 AFT and 1 control) were tested in 9 male distance runners on 2 visits. Shoes were tested in a random sequence over 5-minute trials on visit 1 (7 trials at 16 km·h-1; 5-min rest between trials) and in the reverse/mirrored order on visit 2. Metabolic data were collected and averaged across visits. RESULTS: There were significant differences across footwear conditions for oxygen consumption (F = 13.046; P < .001) and energy expenditure (F = 14.710; P < .001). Oxygen consumption (in milliliters per kilogram per minute) in both the first AFT spike (49.1 [1.7]; P < .001; dz = 2.1) and the other AFT spike (49.3 [1.7]; P < .001; dz = 1.7) was significantly lower than the control spike (50.2 [1.6]), which represented a 2.1% (1.0%) and 1.8% (1.0%) improvement in RE, respectively, for the AFT spikes. When comparing the subjects' most economic shoe by oxygen consumption (49.0 [1.5]) against their most economic spike (49.0 [1.8]), there were no statistical differences (P = .82). Similar statistical conclusions were made when comparing energy expenditure (in watts per kilogram). CONCLUSIONS: AFT track spikes improved RE ∼2% relative to a traditional spike. Despite their heavier mass, AFT shoes resulted in similar RE as AFT spikes. This could make the AFT shoe an attractive option for longer track races, particularly in National Collegiate Athletic Association and high school athletics, where there are no stack-height rules.


Subject(s)
Energy Metabolism , Equipment Design , Oxygen Consumption , Running , Shoes , Sports Equipment , Humans , Male , Running/physiology , Young Adult , Adult
17.
Technol Health Care ; 32(S1): 487-499, 2024.
Article in English | MEDLINE | ID: mdl-38759071

ABSTRACT

BACKGROUND: Shoes upper has been shown to affect the shoe microclimate (temperature and humidity). However, the existing data on the correlation between the microclimate inside footwear and the body's physical factors is still quite limited. OBJECTIVE: This study examined whether shoes air permeability would influence foot microclimate and spatial characteristics of lower limb and body. METHODS: Twelve recreational male habitual runners were instructed to finish an 80 min experimental protocol, wearing two running shoes with different air permeability. RESULTS: Participants wearing CLOSED upper structure shoe exhibited higher in-shoe temperature and relative humidity. Although there was no significant difference, shank temperature and metabolism in OPEN upper structure shoes were lower. CONCLUSIONS: This indicates that the air permeability of shoes can modify the microclimate of the feet, potentially affecting the lower limb temperature. This study provides relevant information for the design and evaluation of footwear.


Subject(s)
Humidity , Microclimate , Running , Shoes , Humans , Male , Running/physiology , Adult , Young Adult , Temperature , Foot/physiology , Body Temperature/physiology , Equipment Design
18.
Article in English | MEDLINE | ID: mdl-38758669

ABSTRACT

BACKGROUND: Socks are mainly used to give the foot more comfort while wearing shoes. Stitch density of the knitted fabric used in socks can significantly affect the sock properties because it is one of the most important fabric structural factors influencing the mechanical properties. Continuous plantar pressures can cause serious damage, particularly under the metatarsal heads, and it is deduced that using socks redistributes and reduces peak plantar pressures. If peak pressure under the metatarsal heads is predicted, then it will be possible to produce socks with the best mechanical properties to reduce the pressure in these critical areas. METHODS: Plain knitted socks with three different stitch lengths (high, medium, and low) were produced. Static plantar pressure measurements by the Gaitview system were accomplished on ten women and then compared with the barefoot situation. Also, the peak plantar pressure of three types of socks under the metatarsal heads are theoretically predicted using the Hertz contact theory. RESULTS: Experimental results indicate that all socks redistribute the plantar pressure from high to low plantar pressure regions compared with barefoot. In particular, socks with high stitch length have the best performance. By increasing the stitch length, we can significantly reduce the peak plantar pressure of the socks. Correspondingly, the Hertz contact theory resulted in a trend of mean peak pressure reductions in the forefoot region similar to the socks with different stitch densities. CONCLUSIONS: The theoretical results show that by using the Hertz contact theory, static plantar pressure in the forefoot region can be well predicted at a mean error of approximately 9% compared with the other experimental findings.


Subject(s)
Foot , Pressure , Humans , Female , Foot/physiology , Adult , Biomechanical Phenomena , Clothing , Shoes , Weight-Bearing/physiology , Young Adult
19.
PLoS One ; 19(5): e0303826, 2024.
Article in English | MEDLINE | ID: mdl-38758937

ABSTRACT

BACKGROUND: The global number of people with diabetes is estimated to reach 643 million by 2030 of whom 19-34% will present with diabetic foot ulceration. Insoles which offload high-risk ulcerative regions on the foot, by removing insole material, are the main contemporary conservative treatment to maintain mobility and reduce the likelihood of ulceration. However, their effect on the rest of the foot and relationship with key gait propulsive and balance kinematics and kinetics has not been well researched. PURPOSE: The aim of this study is to investigate the effect of offloading insoles on gait kinematics, kinetics, and plantar pressure throughout the gait cycle. METHODS: 10 healthy subjects were recruited for this experiment to walk in 6 different insole conditions. Subjects walked at three speeds on a treadmill for 10 minutes while both plantar pressure and gait kinematics, kinetics were measured using an in-shoe pressure measurement insole and motion capture system/force plates. Average peak plantar pressure, pressure time integrals, gait kinematics and centre of force were analysed. RESULTS: The average peak plantar pressure and pressure time integrals changed by -30% (-68% to 3%) and -36% (-75% to -1%) at the region of interest when applying offloading insoles, whereas the heel strike and toe-off velocity changed by 15% (-6% to 32%) and 12% (-2% to 19%) whilst walking at three speeds. CONCLUSION: The study found that offloading insoles reduced plantar pressure in the region of interest with loading transferred to surrounding regions increasing the risk of higher pressure time integrals in these locations. Heel strike and toe-off velocities were increased under certain configurations of offloading insoles which may explain the higher plantar pressures and supporting the potential of integrating kinematic gait variables within a more optimal therapeutic approach. However, there was inter-individual variability in responses for all variables measured supporting individualised prescription.


Subject(s)
Calcaneus , Foot Orthoses , Gait , Pressure , Humans , Gait/physiology , Biomechanical Phenomena , Pilot Projects , Male , Female , Adult , Calcaneus/physiology , Healthy Volunteers , Shoes , Kinetics , Walking/physiology , Metatarsus/physiology , Foot/physiology
20.
Sensors (Basel) ; 24(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793985

ABSTRACT

Sensory peripheral neuropathy is a common complication of diabetes mellitus and the biggest risk factor for diabetic foot ulcers. There is currently no available treatment that can reverse sensory loss in the diabetic population. The application of mechanical noise has been shown to improve vibration perception threshold or plantar sensation (through stochastic resonance) in the short term, but the therapeutic use, and longer-term effects have not been explored. In this study, vibrating insoles were therapeutically used by 22 participants, for 30 min per day, on a daily basis, for a month by persons with diabetic sensory peripheral neuropathy. The therapeutic application of vibrating insoles in this cohort significantly improved VPT by an average of 8.5 V (p = 0.001) post-intervention and 8.2 V (p < 0.001) post-washout. This statistically and clinically relevant improvement can play a role in protection against diabetic foot ulcers and the delay of subsequent lower-extremity amputation.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Vibration , Humans , Pilot Projects , Vibration/therapeutic use , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Female , Middle Aged , Diabetic Foot/therapy , Aged , Diabetic Neuropathies/therapy , Diabetic Neuropathies/physiopathology , Foot/physiopathology , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/physiopathology , Shoes , Sensation/physiology , Foot Orthoses
SELECTION OF CITATIONS
SEARCH DETAIL
...