Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 113.604
1.
PeerJ ; 12: e17488, 2024.
Article En | MEDLINE | ID: mdl-38827303

Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.


Apoptosis , Catechin , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Osteoblasts , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Catechin/analogs & derivatives , Catechin/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Cadmium/toxicity , Cell Differentiation/drug effects , Cell Line , Membrane Proteins
2.
Chem Biol Drug Des ; 103(6): e14558, 2024 Jun.
Article En | MEDLINE | ID: mdl-38828741

This study aimed to explore the active components and the effect of Hedyotis diffusa (HD) against Alzheimer's disease (AD) via network pharmacology, molecular docking, and experimental evaluations. We conducted a comprehensive screening process using the TCMSP, Swiss Target Prediction, and PharmMapper databases to identify the active components and their related targets in HD. In addition, we collected potential therapeutic targets of AD from the Gene Cards, Drugbank, and OMIM databases. Afterward, we utilized Cytoscape to establish both protein-protein interaction (PPI) networks and compound-target (C-T) networks. To gain further insights into the functional aspect, we performed GO and KEGG pathway analyses using the David database. Next, we employed Autodock vina to estimate the binding force between the components and the hub genes. To validate our network pharmacology findings, we conducted relevant experiments on Caenorhabditis elegans, further confirming the reliability of our results. Then a total of six active compounds and 149 therapeutic targets were detected. Through the analysis of the association between active compounds, therapeutic targets, and signaling pathways, it was observed that the therapeutic effect of HD primarily encompassed the inhibition of Aß, suppression of AChE activity, and mitigating oxidative stress. Additionally, our investigation revealed that the key active compounds in HD primarily consisted of iridoids, which exhibited resistance against AD by acting on the Alzheimer's disease pathway and the AGE-RAGE signaling pathway in diabetic complications.


Alzheimer Disease , Caenorhabditis elegans , Hedyotis , Molecular Docking Simulation , Network Pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Hedyotis/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Humans , Protein Interaction Maps/drug effects , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Signal Transduction/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
J Toxicol Sci ; 49(6): 281-288, 2024.
Article En | MEDLINE | ID: mdl-38825487

Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 µM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.


Gene Expression Profiling , Nitric Oxide , Transcriptome , Humans , Nitric Oxide/metabolism , Transcriptome/drug effects , Cell Adhesion/drug effects , Cell Adhesion/genetics , HEK293 Cells , Cell Movement/drug effects , Cell Movement/genetics , Inflammation/genetics , Inflammation/chemically induced , Signal Transduction/drug effects , Signal Transduction/genetics
4.
Int Heart J ; 65(3): 475-486, 2024.
Article En | MEDLINE | ID: mdl-38825493

This study aimed to investigate the molecular mechanisms underlying the protective effects of cyclooxygenase (cox) inhibitors against myocardial hypertrophy.Rat H9c2 cardiomyocytes were induced by mechanical stretching. SD rats underwent transverse aortic constriction to induce pressure overload myocardial hypertrophy. Rats were subjected to echocardiography and tail arterial pressure in 12W. qPCR and western blot were used to detect the expression of Notch-related signaling. The inflammatory factors were tested by ELISA in serum, heart tissue, and cell culture supernatant.Compared with control, levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1ß were increased and anti-inflammatory cytokine IL-10 was reduced in myocardial tissues and serum of rat models. Levels of Notch1 and Hes1 were reduced in myocardial tissues. However, cox inhibitor treatment (aspirin and celecoxib), the improvement of exacerbated myocardial hypertrophy, fibrosis, dysfunction, and inflammation was parallel to the activation of Notch1/Hes1 pathway. Moreover, in vitro experiments showed that, in cardiomyocyte H9c2 cells, application of ~20% mechanical stretching activated inflammatory mediators (IL-6, TNF-α, and IL-1ß) and hypertrophic markers (ANP and BNP). Moreover, expression levels of Notch1 and Hes1 were decreased. These changes were effectively alleviated by aspirin and celecoxib.Cox inhibitors may protect heart from hypertrophy and inflammation possibly via the Notch1/Hes1 signaling pathway.


Aspirin , Celecoxib , Myocytes, Cardiac , Rats, Sprague-Dawley , Receptor, Notch1 , Signal Transduction , Transcription Factor HES-1 , Animals , Receptor, Notch1/metabolism , Rats , Transcription Factor HES-1/metabolism , Signal Transduction/drug effects , Celecoxib/pharmacology , Aspirin/pharmacology , Aspirin/therapeutic use , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Cardiomegaly/etiology , Disease Models, Animal
5.
Int Heart J ; 65(3): 506-516, 2024.
Article En | MEDLINE | ID: mdl-38825495

Hydrogen sulfide (H2S) has been identified as a novel gasotransmitter and a substantial antioxidant that can activate various cellular targets to regulate physiological and pathological processes in mammals. However, under physiological conditions, it remains unclear whether it is involved in regulating cardiomyocyte (CM) proliferation during postnatal development in mice. This study mainly aimed to evaluate the role of H2S in postnatal CM proliferation and its regulating molecular mechanisms. We found that sodium hydrosulfide (NaHS, the most widely used H2S donor, 50-200 µM) increased neonatal mouse primary CM proliferation in a dose-dependent manner in vitro. Consistently, exogenous administration of H2S also promoted CM proliferation and increased the total number of CMs at postnatal 7 and 14 days in vivo. Moreover, we observed that the protein expression of SIRT1 was significantly upregulated after NaHS treatment. Inhibition of SIRT1 with EX-527 or si-SIRT1 decreased CM proliferation, while enhancement of the activation of SIRT1 with SRT1720 promoted CM proliferation. Meanwhile, pharmacological and genetic blocking of SIRT1 repressed the effect of NaHS on CM proliferation. Taken together, these results reveal that H2S plays a promotional role in proliferation of CMs in vivo and in vitro and SIRT1 is required for H2S-mediated CM proliferation, which indicates that H2S may be a potential modulator for heart development in postnatal time window.


Cell Proliferation , Hydrogen Sulfide , Myocytes, Cardiac , Signal Transduction , Sirtuin 1 , Up-Regulation , Animals , Sirtuin 1/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Cell Proliferation/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Signal Transduction/drug effects , Animals, Newborn , Cells, Cultured , Mice, Inbred C57BL , Sulfides
6.
Chem Biol Drug Des ; 103(6): e14557, 2024 Jun.
Article En | MEDLINE | ID: mdl-38825578

Recently, natural compounds such as quercetin have gained an increasing amount of attention in treating breast cancer. However, the exact mechanisms responsible for the antiproliferative functions of quercetin are not completely understood. Therefore, we aimed to examine quercetin impacts on breast cancer cell proliferation and survival and the involvement of PI3K/Akt/mTOR pathway. Breast cancer MDA-MB-231 and MCF-7 cells were exposed to quercetin, and cell proliferation was assessed by MTT assay. ELISA was applied to evaluate cell apoptosis. The expression levels of apoptotic mediators such as caspase-3, Bcl-2, Bax and PI3K, Akt, mTOR, and PTEN were assessed via qRT-PCR and western blot. We found that quercetin suppressed dose dependently cell growth capacity in MDA-MB-231 and MCF-7 cells. In addition, quercetin treatment increase apoptosis in both cells lines via modulating the pro- and antiapoptotic markers. Quercetin upregulated PTEN and downregulated PI3K, Akt, and mTOR, hence suppressing this signaling pathway in cells. In conclusion, we showed antiproliferative and pro-apoptotic function of quercetin in breast cancer cell lines, which is mediated by targeting and suppressing PI3K/Akt/mTOR signal transduction.


Apoptosis , Breast Neoplasms , Cell Proliferation , Cell Survival , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Quercetin , Signal Transduction , TOR Serine-Threonine Kinases , Quercetin/pharmacology , Humans , TOR Serine-Threonine Kinases/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Signal Transduction/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , MCF-7 Cells , Phosphatidylinositol 3-Kinases/metabolism
7.
Pak J Pharm Sci ; 37(2(Special)): 463-473, 2024 Mar.
Article En | MEDLINE | ID: mdl-38822551

Solanum lyratum Thunb., a traditional Chinese herbal medicine, has a promising background. However, the anti-inflammatory effects of its component steroid alkaloid have not been explored. In this study, animal and cell experiments were performed to investigate the anti-inflammatory effects and mechanism of action of Solanum lyratum Thunb steroid alkaloid (SLTSA), in order to provide evidence for its potential utilization. SLTSA effectively inhibited ear swelling and acute abdominal inflammation of mice. We observed concentration-dependent inhibition of pro-inflammatory cytokines by SLTSA, as confirmed by the ELISA and RT-qPCR results. Flow cytometry, immunofluorescence and RT-qPCR analyses revealed that SLTSA suppressed TLR4 expression. Western blot results indicated that SLTSA inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway. Our study demonstrated that SLTSA possesses anti-inflammatory properties.


Alkaloids , Anti-Inflammatory Agents , Signal Transduction , Solanum , Animals , Solanum/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Alkaloids/pharmacology , Alkaloids/isolation & purification , Signal Transduction/drug effects , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , RAW 264.7 Cells , Myeloid Differentiation Factor 88/metabolism , Male
8.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
9.
J Gene Med ; 26(6): e3708, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837511

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Cell Movement , Cell Proliferation , Chemokine CCL2 , Epithelial Cells , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Lysophospholipids , Humans , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Disease Progression , Signal Transduction/drug effects , Esophagus/metabolism , Esophagus/pathology , Esophagus/drug effects , Epithelial-Mesenchymal Transition/drug effects
10.
Drug Dev Res ; 85(4): e22215, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837718

Breast cancer is the second most frequent cancer among women. Out of various subtypes, triple-negative breast cancers (TNBCs) account for 15% of breast cancers and exhibit more aggressive characteristics as well as a worse prognosis due to their proclivity for metastatic progression and limited therapeutic strategies. It has been demonstrated that AMP-activated protein kinase (AMPK) has context-specific protumorigenic implications in breast cancer cells. A set of glucosyltriazole amphiphiles, consisting of acetylated (9a-h) and unmodified sugar hydroxyl groups (10a-h), were synthesized and subjected to in vitro biological evaluation. Among them, 9h exhibited significant anticancer activity against MDA-MB-231, MCF-7, and 4T1 cell lines with IC50 values of 12.5, 15, and 12.55 µM, respectively. Further, compound 9h was evaluated for apoptosis and cell cycle analysis in in vitro models (using breast cancer cells) and antitumour activity in an in vivo model (orthotopic mouse model using 4T1 cells). Annexin-V assay results revealed that treatment with 9h caused 34% and 28% cell death at a concentration of 15 or 7.5 µM, respectively, while cell cycle analysis demonstrated that 9h arrested the cells at the G2/M or G1 phase in MCF-7, MDA-MB-231 and 4T1 cells, respectively. Further, in vivo, investigation showed that compound 9h exhibited equipotent as doxorubicin at 7.5 mg/kg, and superior efficacy than doxorubicin at 15 mg/kg. The mechanistic approach revealed that 9h showed potent anticancer activity in an in vivo orthotopic model (4T1 cells) partly by suppressing the AMPK activation. Therefore, modulating the AMPK activation could be a probable approach for targeting breast cancer and mitigating cancer progression.


AMP-Activated Protein Kinases , Antineoplastic Agents , Apoptosis , Signal Transduction , Triazoles , Humans , Female , Animals , AMP-Activated Protein Kinases/metabolism , Triazoles/pharmacology , Signal Transduction/drug effects , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Mice, Inbred BALB C , MCF-7 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays
11.
Med Oncol ; 41(7): 170, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847902

Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.


Benzofurans , Cell Movement , Cell Proliferation , Lung Neoplasms , Oxidative Stress , PTEN Phosphohydrolase , Signal Transduction , Humans , PTEN Phosphohydrolase/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Oxidative Stress/drug effects , A549 Cells , Animals , Cell Proliferation/drug effects , Benzofurans/pharmacology , Cell Movement/drug effects , Signal Transduction/drug effects , Mice , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Mice, Nude , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Depsides
12.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847916

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Diabetic Foot , Drugs, Chinese Herbal , Glycation End Products, Advanced , Smad2 Protein , Smad3 Protein , Wound Healing , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Diabetic Foot/pathology , Animals , Wound Healing/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , Smad2 Protein/metabolism , Humans , Smad3 Protein/metabolism , Glycation End Products, Advanced/metabolism , Male , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Apoptosis/drug effects , Disease Models, Animal , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Survival/drug effects
13.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Article En | MEDLINE | ID: mdl-38842132

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Cyclin-Dependent Kinase 5 , Parkinson Disease , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Animals , Calpain/metabolism , Calpain/antagonists & inhibitors , Signal Transduction/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
14.
J Cell Mol Med ; 28(11): e18442, 2024 Jun.
Article En | MEDLINE | ID: mdl-38842135

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.


Apoptosis , Biflavonoids , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Signal Transduction , Tumor Suppressor Protein p53 , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Epithelial-Mesenchymal Transition/drug effects , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Biflavonoids/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Signal Transduction/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Molecular Docking Simulation , Computational Biology/methods
15.
Crit Rev Immunol ; 44(6): 27-36, 2024.
Article En | MEDLINE | ID: mdl-38848291

BACKGROUND: Thyroidectomy causes impaired blood supply to the parathyroid glands, which leads to hypoparathyroidism. Tanshinone IIA (Tan IIA) is helpful in blood activation and cardiovascular protection. Therefore, the efficacy of Tan IIA in improving hypoparathyroidism was explored in this study. METHODS: New Zealand white rabbits were utilized to establish a unilateral parathyroid gland ischemia injury model. The model was created by selectively ligating the main blood supply vessel of one parathyroid gland, and the rabbits were then divided into three groups receiving 1, 5, and 10 mg/kg of Tan IIA. Serum calcium and parathyroid hormone (PTH) levels were measured using specialized assay kits. Immunohistochemistry was used to assess the microvessel density (MVD) in parathyroid glands. Western blotting (WB) was used to analyze protein expression related to the PI3K/AKT signaling pathway and the pathway-associated HIF-1α and VEGF. Moreover, MMP-2 and MMP-9 involved in angiogenesis were detected by WB. RESULTS: Tan IIA treatment effectively restored serum calcium and PTH levels in a dose-dependent manner. Notably, MVD in the parathyroid glands increased significantly, especially at higher doses. The Tan IIA treatment also elevated the p-PI3K/PI3K and p-AKT/AKT ratios, indicating that the PI3K/AKT pathway was reactivated. Moreover, Tan IIA significantly restored the decreased expression levels of VEGF and HIF-1α caused by parathyroid surgery. Additionally, Tan IIA increased MMP-2 and MMP-9 levels. CONCLUSION: Tan IIA activates the PI3K/AKT pathway, promotes angiogenesis by modulating VEGF, HIF-1α, MMP-2, and MMP-9, thereby further enhancing MVD within the parathyroid glands. This study demonstrates that Tan IIA improved post-thyroidectomy hypoparathyroidism.


Abietanes , Disease Models, Animal , Hypoparathyroidism , Parathyroid Glands , Thyroidectomy , Animals , Hypoparathyroidism/drug therapy , Hypoparathyroidism/etiology , Hypoparathyroidism/metabolism , Abietanes/pharmacology , Abietanes/therapeutic use , Thyroidectomy/adverse effects , Rabbits , Parathyroid Glands/metabolism , Parathyroid Glands/drug effects , Parathyroid Glands/surgery , Signal Transduction/drug effects , Humans , Calcium/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Parathyroid Hormone/metabolism , Parathyroid Hormone/blood
16.
Crit Rev Immunol ; 44(6): 87-98, 2024.
Article En | MEDLINE | ID: mdl-38848296

In this study, network pharmacology combined with biological experimental verification was utilized to screen the targets of isoforskolin (ISOF) and investigate the potential underlying mechanism of ISOF against asthma. Asthma-related targets were screened from the Genecards and DisGeNET databases. SEA and Super-PRED databases were used to obtain the targets of ISOF. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to identify enriched regulatory pathways of key targets in ISOF acting on asthma. Then, a protein-protein interaction (PPI) network was constructed via STRING database and hub genes of ISOF against asthma were further screened using molecular docking. Finally, CCK-8, qPCR, and Western blotting were performed to confirm the targets of ISOF in treating asthma. A total of 96 drug potential therapeutic targets from the relevant databases were screened out. KEGG pathway enrichment analysis predicted that the target genes might be involved in the PI3K-Akt pathway. The core targets of ISOF in treating asthma were identified by the PPI network and molecular docking, including MAPK1, mTOR, and NFKB1. Consistently, in vitro experiments showed that ISOF acting on asthma was involved in inflammatory response by reducing the expression of MAPK1, mTOR, and NFKB1. The present study reveals that MAPK1, mTOR, and NFKB1 might be key targets of ISOF in asthma treatment and the anti-asthma effect might be related to the PI3K-AKT signaling pathway.


Asthma , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Asthma/drug therapy , Asthma/metabolism , Humans , Animals , Mice , Signal Transduction/drug effects , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
17.
Adv Rheumatol ; 64(1): 46, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849923

BACKGROUND: Fibroblast-like synoviocytes (FLSs) are involved in osteoarthritis (OA) pathogenesis through pro-inflammatory cytokine production. TAK-242, a TLR4 blocker, has been found to have a significant impact on the gene expression profile of pro-inflammatory cytokines such as IL1-ß, IL-6, TNF-α, and TLR4, as well as the phosphorylation of Ikßα, a regulator of the NF-κB signaling pathway, in OA-FLSs. This study aims to investigate this effect because TLR4 plays a crucial role in inflammatory responses. MATERIALS AND METHODS: Ten OA patients' synovial tissues were acquired, and isolated FLSs were cultured in DMEM in order to assess the effectiveness of TAK-242. The treated FLSs with TAK-242 and Lipopolysaccharides (LPS) were analyzed for the mRNA expression level of IL1-ß, IL-6, TNF-α, and TLR4 levels by Real-Time PCR. Besides, we used western blot to assess the protein levels of Ikßα and pIkßα. RESULTS: The results represented that TAK-242 effectively suppressed the gene expression of inflammatory cytokines IL1-ß, IL-6, TNF-α, and TLR4 which were overexpressed upon LPS treatment. Additionally, TAK-242 inhibited the phosphorylation of Ikßα which was increased by LPS treatment. CONCLUSION: According to our results, TAK-242 shows promising inhibitory effects on TLR4-mediated inflammatory responses in OA-FLSs by targeting the NF-κB pathway. TLR4 inhibitors, such as TAK-242, may be useful therapeutic agents to reduce inflammation and its associated complications in OA patients, since traditional and biological treatments may not be adequate for all of them.


Cytokines , Interleukin-1beta , Interleukin-6 , Lipopolysaccharides , NF-kappa B , Signal Transduction , Sulfonamides , Synoviocytes , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Humans , Signal Transduction/drug effects , Synoviocytes/drug effects , Synoviocytes/metabolism , NF-kappa B/metabolism , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Fibroblasts/metabolism , Fibroblasts/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy , Cells, Cultured , Phosphorylation , RNA, Messenger/metabolism , Male , Female , Middle Aged
18.
Integr Cancer Ther ; 23: 15347354241259182, 2024.
Article En | MEDLINE | ID: mdl-38845538

BACKGROUND: The prescription of Chinese herbal medicine (CHM) consists of multiple herbs that exhibit synergistic effects due to the presence of multiple components targeting various pathways. In clinical practice, the combination of Erchen decoction and Huiyanzhuyu decoction (EHD) has shown promising outcomes in treating patients with laryngeal squamous cell carcinoma (LSCC). However, the underlying mechanism by which EHD exerts its therapeutic effects in LSCC remains unknown. METHODS: Online databases were utilized for the analysis and prediction of the active constituents, targets, and key pathways associated with EHD in the treatment of LSCC. The protein-protein interaction (PPI) network of common targets was constructed and visualized using Cytoscape 3.8.1 software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functional roles of core targets within the PPI network. Protein clustering was conducted utilizing the MCODE plug-in. The obtained results highlight the principal targets and pathways involved. Subsequently, clinical samples were collected to validate alterations in the levels of these main targets through Western blotting (WB) and immunohistochemistry (IHC). Furthermore, both in vivo and in vitro experiments were conducted to investigate the therapeutic effects of EHD on healing LSCC and elucidate its underlying mechanism. Additionally, to ensure experimental reliability and reproducibility, quality control measures utilizing HPLC were implemented for EHD herbal medicine. RESULTS: The retrieval and analysis of databases in EHD medicine and LSCC disease yielded a total of 116 overlapping targets. The MCODE plug-in methods were utilized to acquire 8 distinct protein clusters through protein clustering. The findings indicated that both the first and second clusters exhibited a size greater than 6 scores, with key genes PI3K and ErbB occupying central positions, while the third and fourth clusters were associated with proteins in the PI3K, STAT3, and Foxo pathways. GO functional analysis reported that these targets had associations mainly with the pathway of p53 mediated DNA damage and negative regulation of cell cycle in terms of biological function; the death-induced signaling complex in terms of cell function; transcription factor binding and protein kinase activity in terms of molecular function. The KEGG enrichment analysis demonstrated that these targets were correlated with several signaling pathways, including PI3K-Akt, FoxO, and ErbB2 signaling pathway. On one hand, we observed higher levels of key genes such as P-STAT3, P-PDK1, P-Akt, PI3K, and ErbB2 in LSCC tumor tissues compared to adjacent tissues. Conversely, FOXO3a expression was lower in LSCC tumor tissues. On the other hand, the key genes mentioned above were also highly expressed in both LSCC xenograft nude mice tumors and LSCC cell lines, while FOXO3a was underexpressed. In LSCC xenograft nude mice models, EHD treatment resulted in downregulation of P-STAT3, P-PDK1, PI3K, P-AKT, and ErbB2 protein levels but upregulated FOXO3a protein level. EHD also affected the levels of P-STAT3, P-PDK1, PI3K, P-AKT, FOXO3a, and ErbB2 proteins in vitro: it inhibited P-STAT3, P-AKT, and ErbB2, while promoting FOXO3a; however, it had no effect on PDK1 protein. In addition, HPLC identified twelve compounds accounting for more than 30% within EHD. The findings from this study can serve as valuable guidance for future experimental investigations. CONCLUSION: The possible mechanism of EHD medicine action on LSCC disease is speculated to be closely associated with the ErbB2/PI3K/AKT/FOXO3a signaling pathway.


Drugs, Chinese Herbal , Laryngeal Neoplasms , Network Pharmacology , Protein Interaction Maps , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Network Pharmacology/methods , Animals , Laryngeal Neoplasms/drug therapy , Mice , Carcinoma, Squamous Cell/drug therapy , Signal Transduction/drug effects , Male , Cell Line, Tumor , Mice, Nude , Female , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays
19.
Clin Transl Sci ; 17(6): e13760, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847320

Metabolic dysfunction-associated steatohepatitis (MASH) is the severe form of non-alcoholic fatty liver disease which has a high potential to progress to cirrhosis and hepatocellular carcinoma, yet adequate effective therapies are lacking. Hypoadiponectinemia is causally involved in the pathogenesis of MASH. This study investigated the pharmacological effects of adiponectin replacement therapy with the adiponectin-derived peptide ALY688 (ALY688-SR) in a mouse model of MASH. Human induced pluripotent stem (iPS) cell-derived hepatocytes were used to test cytotoxicity and signaling of unmodified ALY688 in vitro. High-fat diet with low methionine and no added choline (CDAHF) was used to induce MASH and test the effects of ALY688-SR in vivo. Histological MASH activity score (NAS) and fibrosis score were determined to assess the effect of ALY688-SR. Transcriptional characterization of mice through RNA sequencing was performed to indicate potential molecular mechanisms involved. In cultured hepatocytes, ALY688 efficiently induced adiponectin-like signaling, including the AMP-activated protein kinase and p38 mitogen-activated protein kinase pathways, and did not elicit cytotoxicity. Administration of ALY688-SR in mice did not influence body weight but significantly ameliorated CDAHF-induced hepatic steatosis, inflammation, and fibrosis, therefore effectively preventing the development and progression of MASH. Mechanistically, ALY688-SR treatment markedly induced hepatic expression of genes involved in fatty acid oxidation, whereas it significantly suppressed the expression of pro-inflammatory and pro-fibrotic genes as demonstrated by transcriptomic analysis. ALY688-SR may represent an effective approach in MASH treatment. Its mode of action involves inhibition of hepatic steatosis, inflammation, and fibrosis, possibly via canonical adiponectin-mediated signaling.


Adiponectin , Disease Models, Animal , Hepatocytes , Non-alcoholic Fatty Liver Disease , Animals , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/deficiency , Mice , Humans , Hepatocytes/metabolism , Hepatocytes/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Diet, High-Fat/adverse effects , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/pathology , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/prevention & control , Metabolic Diseases/etiology , Liver/metabolism , Liver/drug effects , Liver/pathology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/drug therapy , Fatty Liver/pathology
20.
J Cell Mol Med ; 28(11): e18466, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847482

Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by pulmonary and systemic congestion resulting from left ventricular diastolic dysfunction and increased filling pressure. Currently, however, there is no evidence on effective pharmacotherapy for HFpEF. In this study, we aimed to investigate the therapeutic effect of total xanthones extracted from Gentianella acuta (TXG) on HFpEF by establishing an high-fat diet (HFD) + L-NAME-induced mouse model. Echocardiography was employed to assess the impact of TXG on the cardiac function in HFpEF mice. Haematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichrome staining were utilized to observe the histopathological changes following TXG treatment. The results demonstrated that TXG alleviated HFpEF by reducing the expressions of genes associated with myocardial hypertrophy, fibrosis and apoptosis. Furthermore, TXG improved cardiomyocyte apoptosis by inhibiting the expression of apoptosis-related proteins. Mechanistic investigations revealed that TXG could activate the inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (Xbp1s) signalling pathway, but the knockdown of IRE1α using the IRE1α inhibitor STF083010 or siRNA-IRE1α impaired the ability of TXG to ameliorate cardiac remodelling in HFpEF models. In conclusion, TXG alleviates myocardial hypertrophy, fibrosis and apoptosis through the activation of the IRE1α/Xbp1s signalling pathway, suggesting its potential beneficial effects on HFpEF patients.


Apoptosis , Endoribonucleases , Heart Failure , Protein Serine-Threonine Kinases , Signal Transduction , X-Box Binding Protein 1 , Xanthones , Animals , Endoribonucleases/metabolism , Endoribonucleases/genetics , Heart Failure/drug therapy , Heart Failure/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Mice , Male , Xanthones/pharmacology , Xanthones/isolation & purification , Apoptosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Diet, High-Fat/adverse effects , Fibrosis , Stroke Volume/drug effects
...