Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters











Publication year range
1.
Biomed Mater ; 19(5)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38953496

ABSTRACT

Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.


Subject(s)
Apoptosis , Colonic Neoplasms , Methotrexate , Silybin , Methotrexate/chemistry , Methotrexate/pharmacology , Silybin/pharmacology , Silybin/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Line, Tumor , Apoptosis/drug effects , Nickel/chemistry , Liposomes/chemistry , Humans , Animals , Nanoparticles/chemistry , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Drug Carriers/chemistry
2.
Asian Pac J Cancer Prev ; 25(7): 2539-2550, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39068589

ABSTRACT

OBJECTIVE: Colorectal cancer is a significant global health concern with high mortality rates. Silibinin is a compound derived from milk thistle with anticancer properties and may be a potential treatment option for colorectal cancer. Its poor solubility limits its clinical application, but various strategies, such as nanoparticle encapsulation, have shown promise. In this study, a PEGylated niosomal drug delivery system was used to enhance the solubility of silibinin, and its anti-proliferative effects were evaluated against human colorectal cancer cell lines. METHODS: The silibinin-loaded PEGylated niosomal nanoparticles (NIO-SIL) were fabricated using the thin-film hydration method and characterized with dialysis bag, AFM, SEM, DLS, and FTIR systems. Finally, the cancerous cells and human normal cells were treated with NIO-SIL and pure silibinin. The proliferation, apoptosis, and cell cycle of these cells were evaluated. Subsequently, the expression of Bax, Bcl-2, p53, and cyclin D1 genes was measured using real-time PCR. RESULT: The drug release profile, size, morphology, and chemical interactions of the synthesized PEGylated niosomal nanoparticles were suitable for use as a drug delivery system. Both pure silibinin and NIO-SIL could reduce the proliferation of cancerous cells, induce apoptosis, and cause cell cycle arrest, with no significant negative effects reported on human normal cells. Both pure silibinin and NIO-SIL reduced the expression of the Bcl-2 and cyclin D1 genes while increasing the expression of Bax and p53. (p-value < 0.05 *). CONCLUSION: The outcomes of this study indicate the high potential of PEGylated niosomal nanoparticles for encapsulation and delivery of silibinin to cancer cells, with no negative effects on normal cells.


Subject(s)
Apoptosis , Cell Proliferation , Nanoparticles , Polyethylene Glycols , Silybin , Humans , Silybin/pharmacology , Silybin/chemistry , Apoptosis/drug effects , Nanoparticles/chemistry , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Liposomes/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Cell Cycle/drug effects , Drug Delivery Systems/methods , Tumor Cells, Cultured , Cell Line, Tumor
3.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998902

ABSTRACT

Milk thistle is one of the most popular ingredients in the liver protection products market. Silymarin is the main component of milk thistle and contains multiple isomers. There have been few studies focusing on the compositional ratios of silymarin isomers. In this study, we developed an HPLC method for the separation and quantification of silymarin isomers, thereby elucidating their compositional ratios. Through the analysis of more than 40 milk thistle extract products on the market, we found that the ratios, specifically Ratio 1 (the silybin B content to the silybin A content, SBNB/SBNA) and Ratio 2 (the sum of the contents of silybin B and isosilybin B to the sum of the contents of silybin A and isosilybin A, (SBNB + IBNB)/(SBNA + IBNA)), are highly consistent across milk thistle extracts, averaging approximately 1.58 and 1.28, respectively. Furthermore, such ratios were verified in milk thistle seed samples. This study introduces significant findings concerning the stable ratios among silymarin isomers in milk thistle extracts and seeds, thereby offering an innovative approach for quality assurance of milk thistle extracts.


Subject(s)
Flavonolignans , Plant Extracts , Silybin , Silybum marianum , Silymarin , Silybum marianum/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/analysis , Silymarin/analysis , Silymarin/chemistry , Flavonolignans/analysis , Flavonolignans/chemistry , Silybin/analysis , Silybin/chemistry , Isomerism , Seeds/chemistry
4.
Chem Pharm Bull (Tokyo) ; 72(6): 570-573, 2024.
Article in English | MEDLINE | ID: mdl-38910121

ABSTRACT

We report the first total synthesis of silybin A (1). Key synthetic steps include the construction of the 1,4-benzodioxane neolignan skeleton, a modified Julia-Kocienski olefination reaction between m-nitrophenyltetrazole sulfone (m-NPT sulfone) 10 and aldehyde 21, the formation of the flavanol lignan skeleton 28 via a quinomethide intermediate under acidic conditions, and stepwise oxidation of the benzylic position of flavanol 29.


Subject(s)
Silybin , Silybin/chemical synthesis , Silybin/chemistry , Stereoisomerism , Molecular Structure , Silymarin/chemical synthesis , Silymarin/chemistry , Oxidation-Reduction
5.
Sci Rep ; 14(1): 14769, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926533

ABSTRACT

Entrapping phytochemical bioactive compounds into nano-structured biocompatible polymers has been successfully utilized for improving cancer treatment efficiency. Silibinin is a potent compound that shows promising anticancer properties. In the present study, the Zein-ß-cyclodextrin complex was used to encapsulate silibinin and evaluate the induced cell death type and cytotoxic impacts on human cancer cells. The silibinin-loaded Zein-ß cyclodextrin nano-carriers (SZBC-NCs) were synthesized utilizing a gradual ultrasound-mediated homogenization technique and characterized by Zeta potential, DLS, FESEM, and FTIR analysis. The SZBC-NCs' antioxidant activity was studied by conducting ABTS and DPPH radical scavenging assays. Finally, the SZBC-NCs selective toxicity and cellular death induction mechanism were studied on the HT-29 and AGS cancer cells by measuring the cell survival and apoptotic gene (Caspase 3, 9), respectively, which were verified by conducting the DAPI staining analysis. The negatively charged (- 27.47 mV) nanoparticles (286.55 nm) showed significant ABTS and DPPH radical scavenging activity. Moreover, the remarkable decrease in the IC50 concentrations of the SZBC-NCs among the HT-29 and AGS cancer cell lines exhibited their selective cytotoxic potential. Also, the overexpressed apoptotic (Caspases 3 and 9) and down-regulated necrotic (NFKB) gene expressions following the SZBC-NCs treatment doses indicated the apoptotic activity of SZBC-NCs, which were verified by the increased apoptotic morphology of the DAPI-stained HT-29 cancer cells. The antioxidant and colon cancer cell-related apoptotic activity of the SZBC-NCs make it an appropriate anti-colon cancer nano delivery system. Therefore, they can potentially be used as a safe efficient colon cancer treatment strategy. However, further in vivo experiments including animal cancer models have to be studied.


Subject(s)
Antioxidants , Silybin , Zein , beta-Cyclodextrins , Humans , Zein/chemistry , Silybin/pharmacology , Silybin/chemistry , HT29 Cells , beta-Cyclodextrins/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Apoptosis/drug effects , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
6.
AAPS PharmSciTech ; 25(6): 141, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898204

ABSTRACT

Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.


Subject(s)
Colorectal Neoplasms , Drug Delivery Systems , Lactic Acid , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Silybin , Humans , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Silybin/administration & dosage , Silybin/pharmacology , Silybin/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Nanoparticles/chemistry , Lactic Acid/chemistry , Drug Delivery Systems/methods , Silymarin/chemistry , Silymarin/administration & dosage , Silymarin/pharmacology , Drug Carriers/chemistry , Cell Line, Tumor , Polyglycolic Acid/chemistry , Particle Size , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/administration & dosage , Cell Survival/drug effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Solubility , HT29 Cells , Drug Liberation , Calorimetry, Differential Scanning/methods
7.
J Pharm Pharmacol ; 76(8): 995-1005, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38762907

ABSTRACT

OBJECTIVES: Milk thistle has long been used in the treatment of liver and biliary disorders. In the present study, to make a long-acting delivery system for silibinin (SBN, a major active constituent of milk thistle seeds with antioxidant and hepatoprotective function), mesoporous silica composite nanoparticles (NC) were synthesized and coated with RBC membrane. METHODS: A modified Stöber method was used for NC synthesis, which was then characterized using FE-SEM, DLS, TEM, FTIR, and EDAX techniques. A suitable lysis buffer was used to prepare RBC-ghost, and sonication was used to coat SBN-loaded NC (SBN-NC). The RBC-ghost coated SBN-NC (SBN-NC-RBCG) was evaluated by SDS-PAGE, Bradford, TEM, EDAX, and DLS methods. SBN release was then compared for the SBN-NC and SBN-NC-RBCG samples. KEY FINDINGS: the RBC membrane proteins were recovered from the coating of SBN-NC-RBCG, and SBN release was sustained over 24 h when compared with the SBN-NC. CONCLUSIONS: Overall, through prolonging circulation in the bloodstream and evading the immune system, the developed system can improve SBN bioavailability in liver inflammation and fibrosis conditions that need further research.


Subject(s)
Delayed-Action Preparations , Erythrocyte Membrane , Nanoparticles , Silicon Dioxide , Silybin , Silybin/pharmacology , Silybin/administration & dosage , Silybin/chemistry , Silicon Dioxide/chemistry , Erythrocyte Membrane/drug effects , Protective Agents/pharmacology , Protective Agents/administration & dosage , Drug Liberation , Antioxidants/administration & dosage , Antioxidants/pharmacology , Drug Carriers/chemistry , Silymarin/administration & dosage , Silymarin/pharmacology , Silymarin/chemistry , Silymarin/pharmacokinetics , Porosity , Liver/metabolism , Liver/drug effects , Silybum marianum/chemistry , Humans
8.
J Biomater Sci Polym Ed ; 35(11): 1771-1793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38787751

ABSTRACT

Nanoparticles capped with natural products can be a cost-effective alternative to treat drug-resistant nosocomial infections. Therefore, silibinin-loaded chitosan-capped silver nanoparticles (S-C@AgNPs) were synthesized to evaluate their antimicrobial and anti-inflammatory potential. The S-C@AgNPs plasmon peak was found at 430 nm and had a particle size distribution of about 130 nm with an average hydrodynamic diameter of 101.37 nm. The Scanning Electron Microscopy images showed the presence of sphere-shaped homogeneous nanoparticles. The Fourier Transform Infrared Spectroscopy analysis confirmed the loading of silibinin and chitosan on the AgNPs surface. The minimum inhibitory concentration of the S-C@AgNPs was reported between 3.12 µg/ml to 12.5 µg/ml and a minimum bactericidal concentration between 6.25 µg/ml to 25 µg/ml against drug-resistant nosocomial pathogens. Moreover, concentration-dependent significant inhibition of the biofilm formation was reported against P. aeruginosa (70.21%) and K. pneumoniae (71.02%) at 30 µg/ml, and the highest destruction of preformed biofilm was observed at 100 µg/ml against P. aeruginosa (89.74%) and K. pneumoniae (77.65%) as compared to individual bacterial control. Additionally, the fluorescence live/dead assay for bacterial biofilm confirmed that 100 µg/ml effectively inhibits the biofilm formed by these pathogens. S-C@AgNPs also showed anti-inflammatory activity, which is evident by the significant decrease in the proinflammatory cytokines and chemokines level in THP1 cells treated with LPS. This study concluded that S-C@AgNPs have potent antimicrobial, antibiofilm, and anti-inflammatory properties and could be a potential option for treating drug resistant nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Biofilms , Chitosan , Cross Infection , Metal Nanoparticles , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Silver , Silybin , Silver/chemistry , Silver/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Biofilms/drug effects , Metal Nanoparticles/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silybin/pharmacology , Silybin/chemistry , Cross Infection/drug therapy , Klebsiella pneumoniae/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Drug Resistance, Bacterial/drug effects , Particle Size
9.
J Biomater Sci Polym Ed ; 35(12): 1845-1862, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38809850

ABSTRACT

In the current study, we aimed to design an individual hybrid silibinin nano-delivery system consisting of ZnO and BSA components to study its antioxidant activity and apoptotic potential on human pancreatic, breast, lung, and colon cancer cell lines. The folate-linked ZnO-decorated bovine serum albumin/silibinin nanoparticles (FZBS-NP) were synthesized and characterized by FTIR, FESEM, DLS, and zeta potential analysis. The FZBS-NP's cytotoxicity was evaluated by measuring the cancer cells' (MCF-7, A549, HT-29, and Panc) viability. Moreover, the apoptotic potential of the nanoparticles was studied by conducting several analyses including AO/PI and DAPI cell staining analysis, apoptotic gene expression profile (BAX, BCL2, and Caspase-8) preparation, and FITC Annexin V/PI flow cytometry. Finally, both antioxidant assays (ABTS and DPPH) were utilized to analyze the FZBS-NPs' antioxidant activities. The 152-nm FZBS-NP significantly induced the selective apoptotic death on the MCF-7, A549, HT-29, Panc, and Huvec cancer cells by increasing the SubG1 cell population following the increased treatment concentrations of FZBS-NP. Moreover, the FZBS-NPs exhibited powerful antioxidant activity. The BSA component of the FZBS-NPs delivery system improves the ability of the nanoparticles to gradually release silibinin and ZnO near the cancer cells. On the other hand, considering the powerful antioxidant activity of FZBS-NP, they have the potential to selectively induce apoptosis in human colon and breast cancer cells and protect normal types, which makes it an efficient safe anticancer compound. However, to verify the FZBS-NP anti-cancer efficiency further cancer and normal cell lines are required to measure several types of apoptotic gene expression.


Subject(s)
Antineoplastic Agents , Apoptosis , Folic Acid , Nanoparticles , Serum Albumin, Bovine , Silybin , Zinc Oxide , Humans , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Serum Albumin, Bovine/chemistry , Nanoparticles/chemistry , Folic Acid/chemistry , Folic Acid/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Silybin/pharmacology , Silybin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Drug Carriers/chemistry , Cell Survival/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Cell Line, Tumor , Cattle
10.
Drug Dev Ind Pharm ; 50(5): 470-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38625641

ABSTRACT

OBJECTIVE: Belonging to the class II drugs according to the biopharmaceutics classification system, silibinin (SLB) benefits from high permeability but suffers poor solubility that negatively affects the development of any delivery system. This research aimed to improve SLB solubility by combined use of co-solvency and complexation phenomena. METHODS: Solubility studies were performed using the phase solubility analysis according to the shake-flask method in the presence of ethanol and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as a co-solvent and inclusion complexing agent, respectively. SLB release studies from chitosan nanoparticles were carried out in double-wall, diffusion cells using the optimized drug release medium. RESULTS: SLB solubility was mathematically optimized constraining to using the lowest concentrations of ethanol and HP-ß-CD. SLB solubility increased linearly with the increase of HP-ß-CD concentration. The solubility in PBS-ethanol mixtures followed a log-linear model. SLB solubility in the presence of the ethanol co-solvent and HP-ß-CD complexing agent was optimized by adopting a genetic algorithm suggesting the phosphate buffer saline solution supplemented by 6%v/v ethanol and 8 mM HP-ß-CD as an optimized medium. The optimized solution was examined to study SLB release from chitosan nanoparticles (4.5 ± 0.2% drug loading) at 37 °C under static conditions. The sigmoidal release profile of SLB from the particles indicated a combination of erosion and diffusion mechanisms governing drug release from the nanoparticles. CONCLUSION: SLB solubility in a buffered solution supplemented by ethanol co-solvent and HP-ß-CD complexing agent is a function of free drug present in the semi-aqueous media, the drug-ligand binary complex, and the drug/ligand/co-solvent ternary complex.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Chitosan , Drug Liberation , Nanoparticles , Silybin , Solubility , Solvents , Silybin/chemistry , Silybin/administration & dosage , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Chitosan/chemistry , Nanoparticles/chemistry , Solvents/chemistry , Ethanol/chemistry , Silymarin/chemistry , Silymarin/administration & dosage , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry
11.
J Cosmet Dermatol ; 23(5): 1816-1827, 2024 May.
Article in English | MEDLINE | ID: mdl-38193246

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the protective effect of Silibinin-loaded polymeric micelles from human hair against UV-B radiation. METHODS: Eight formulations with different concentrations of Silibinin, Pluronic F-127, and Labrasol-Labrafil were made by a solvent evaporation method, and the selected formulation was chosen by examining their properties like particle size and loading efficiency. Six groups of human hair, including a group that received the selected formulation, were exposed to UV-B radiation and by calculating its factors such as peak-to-valley roughness, RMS roughness, FTIR, and the amount of protein loss, the protective effect of the selected formulation was judged. RESULTS: According to the results, the loading efficiency and particle size of the selected formulation were 45.34% and 43.19 nm. The Silibinin release profile had two parts, fast and slow, which were suitable for creating a drug depot on hair. Its zeta potential also confirmed the minimum electrostatic interference between the formulation and hair surface. The zeta potential of selected formulation was -5.9 mv. Examination of AFM images showed that the selected formulation was able to prevent the increase in peak-to-valley roughness and RMS roughness caused by UV-B radiation. RMS roughness after 600 h of UV radiation in Groups 5 and 6 was significantly lower than the negative control group and the amount of this factor did not differ significantly between 0 and 600, so it can be concluded that the selected formulation containing Silibinin and the positive control group was able to prevent the increase of RMS roughness and hair destruction. In other hands, the two positive control groups and the selected formulation containing Silibinin were able to effectively reduce hair protein loss. CONCLUSION: Silibinin-loaded polymeric micelles were able to effectively protect hair from structural and chemical changes caused by UV-B radiation.


Subject(s)
Hair , Micelles , Particle Size , Silybin , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Silybin/pharmacology , Silybin/administration & dosage , Silybin/chemistry , Hair/drug effects , Hair/radiation effects , Silymarin/pharmacology , Silymarin/administration & dosage , Silymarin/chemistry , Polymers/chemistry , Drug Liberation/radiation effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Drug Carriers/chemistry , Drug Carriers/radiation effects
12.
J Ethnopharmacol ; 288: 114938, 2022 Apr 24.
Article in English | MEDLINE | ID: mdl-34999144

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Silybum marianum is a traditional Chinese medicine that has been used for treating liver disease. Silybin consisting of silybin A and silybin B, is a member of Silybum marianum, and exerts a therapeutic effect on many diseases. However, the protective effect of silybin on cisplatin-induced neurotoxicity and the stereoisomer contributing to the effect remain unknown. AIM OF THE STUDY: The present study aimed to study the effect of silybin on cisplatin-induced neuronal injury, compare the difference of protective effect between silybin A and silybin B, and the potential mechanism. MATERIALS AND METHODS: High performance liquid chromatography (HPLC) was used to separate silybin A and silybin B. X-ray crystallographic analysis in combination with experimental and calculated ECD were performed to identify the structure of silybin A and silybin B. The toxicity of the silybin or cisplatin against murine hippocampal neuronal HT22 cells was determined through MTT assay. The cell cycle and cell apoptosis were measured by PI staining and Annexin V-FITC/PI staining, respectively, and then subjected to flow cytometry. Western blot analysis was conducted to quantify the expression of proteins related to apoptosis and DNA damage. Immunofluorescence was used to evaluate the expression of DNA damage marker. In vivo experiment, the behavioral analysis was determined through pole test, swimming test and Morris water maze test. The index of superoxide dismutase (SOD), reduced glutathione (GSH), total antioxidant capacity (T-AOC) and lipid peroxidation (LPO) were examined to evaluate the antioxidant capacity in mice brain. Nissl staining and Tunel assay were used to detect the neuronal viability and apoptosis in hippocampus. RESULTS: We successfully separated and identified silybin A and silybin B. We found both silybin A and silybin B alleviated cisplatin-induced apoptosis and cell cycle arrest in HT22 cells, and silybin B was more effective. We chose silybin B for further mechanism investigation, and found silybin B alleviated DNA damage by enhancing phosphorylation of ATR and decreasing expression of γ-H2AX. In the in vivo experiment, we observed that silybin B markedly improved the behavioral abnormalities in cisplatin-treated mice, reduced LPO level while increased SOD, GSH and T-AOC in mice brain tissue. Nissl staining and Tunel assay showed that silybin B alleviated cisplatin-induced hippocampal damage. CONCLUSIONS: These results suggest that silybin B might serve as a promising drug candidate in mitigating cisplatin-induced neural injury in the brain and thereby improving the chemotherapeutic outcomes.


Subject(s)
Cisplatin/toxicity , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Silybin/pharmacology , Animals , Antineoplastic Agents/toxicity , Antioxidants/metabolism , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Chromatography, High Pressure Liquid , DNA Damage/drug effects , Male , Mice , Mice, Inbred BALB C , Silybum marianum/chemistry , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Neurotoxicity Syndromes/etiology , Silybin/chemistry , Silybin/isolation & purification
13.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 45-49, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817369

ABSTRACT

The hunt for potential lead/drug molecules from different resources, especially from natural resources, for possible treatment of COVID-19 is ongoing. Several compounds have already been identified, but only a few are good enough to show potential against the virus. Among the identified druggable target proteins of SARS-CoV-2, this study focuses on non-structural RNA-dependent RNA polymerase protein (RdRp), a well-known enzyme for both viral genome replication and viral mRNA synthesis, and is therefore considered to be the primary target. In this study, the virtual screening followed by an in-depth docking study of the Compounds Library found that natural compound Cyclocurcumin and Silybin B have strong interaction with RdRp and much better than the remdesivir with free binding energy and inhibition constant value as êzŒ-6.29 kcal/mol and 58.39 µMêzŒ, and êzŒ-7.93kcal/mol and 45.3 µMêzŒ, respectively. The finding indicated that the selected hits (Cyclocurcumin and Silybin B) could act as non-nucleotide anti-polymerase agents, and can be further optimized as a potential inhibitor of RdRp by benchwork experiments.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Biological Products/metabolism , COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Discovery/methods , Molecular Docking Simulation/methods , Phytochemicals/metabolism , SARS-CoV-2/enzymology , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19/virology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcumin/metabolism , Databases, Protein , Drug Evaluation, Preclinical/methods , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Phytochemicals/chemistry , Protein Binding , Silybin/chemistry , Silybin/metabolism
14.
Bioorg Med Chem ; 50: 116478, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34695708

ABSTRACT

Prodrugs are ingenious derivatives of therapeutic agents designed to improve the pharmacokinetic profile of the drug. Here, we report an efficient and regioselective solid phase approach for obtaining new prodrugs of 9″-silybins conjugated with 3'-ribonucleotide units (uridine and adenosine) as pro-moieties. Uridine and adenosine conjugates were obtained in good yields (41-50%), beginning with silibinin and its diastereomers (silybin A and silybin B), using a NovaSyn® support functionalized with an ad hoc linker, which allowed selective detachment of only the desired products. As expected, the solubility of both uridine and adenosine conjugates was higher than that of the parental natural product (5 mg/mL and 3 mg/mL for uridine and adenosine, respectively). Our investigations revealed that uridine conjugates were quickly cleaved by RNase A, releasing silybin drugs, even at low enzyme concentrations. No toxic effects were found for any ribonucleotide conjugate on differentiated neuroblastoma SH-SY5Y cells when tested at increasing concentrations. All results strongly encourage further investigations of uridine-silybin prodrugs as potential therapeutic agents for both oral and intravenous administration. The present synthetic approach represents a valuable strategy to the future design of new prodrugs with modified nucleoside pro-moieties to modulate the pharmacokinetics of silybins or different natural products with strong pharmacological activities but poor bioavailability.


Subject(s)
Adenosine/chemistry , Prodrugs/chemical synthesis , Silybin/chemical synthesis , Solid-Phase Synthesis Techniques , Uridine/chemistry , Humans , Molecular Structure , Prodrugs/chemistry , Silybin/chemistry , Solubility , Time Factors , Tumor Cells, Cultured
15.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360650

ABSTRACT

This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Silybin/chemistry , Silybin/pharmacology , Animals , Anti-Infective Agents/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antioxidants/chemistry , Humans , Stereoisomerism
16.
Biomed Pharmacother ; 140: 111763, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34044273

ABSTRACT

Silibinin is effective in significantly inhibiting the growth of cancer cells which shown significant anti-neoplastic effects in a variety of in vitro and in vivo cancer models, including skin, breast, lung, colon, bladder, prostate and kidney carcinomas. So, development of a new method to its biomedical analysis in clinical samples in highly demanded. In this study, an innovative electroanalysis method for the accurate, sensitive and rapid recognition of silibinin in human plasma samples was proposed and validated. The sensing platform was designed using silver nanoparticles (AgNPs) dispersed on the polymeric layer of ß-cyclodextrin (ß-CD). AgNPs with cubic shape providing a large effective surface area for ß-CD electropolymerization. So, a layer with high electron conductivity boosting the detection electrochemical signals. Also, poly(ß-CD) providing an efficient substrate with cavities to interact with silibinin and its oxidation. Differential pulse voltammetry technique was conducted to measure silibinin concentration in human real samples. Under optimized conditions, proposed sensor indicated linear relationship between the anodic peak current and concentration of silibinin in the range of 0.0103-10.3 µM on the standard and human plasma samples. Based on obtained results, proposed sensor is an efficient platform to efficient therapy of cancer based on recognition of silibinin in clinical samples.


Subject(s)
Antineoplastic Agents/blood , Biosensing Techniques , Metal Nanoparticles/chemistry , Polymers/chemistry , Silver/chemistry , Silybin/blood , beta-Cyclodextrins/chemistry , Electrochemical Techniques , Humans , Silybin/chemistry
17.
J Pharm Pharmacol ; 73(9): 1274-1284, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-33847359

ABSTRACT

OBJECTIVES: We investigated the positive effect of silibinin after IV administration as silibinin-hydroxypropyl-ß-cyclodextrin lyophilized product, by measuring gene expression and liver tissue protein levels of tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, matrix metalloproteinases matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases-2. METHODS: 63 Wistar rats of age 13.24±4.40 weeks underwent ischemia/reperfusion (I/R) injury of the liver. The animals were randomized into three groups: Sham (S; n = 7); Control (C; n-28); silibinin (Si; n-28). The C and Si groups underwent 45 min ischemia. Si received silibinin-hydroxypropyl-ß-cyclodextrin intravenously immediately before reperfusion at a dose of 5 mg/kg. Both groups were further divided into 4 subgroups, based on euthanasia time (i.e., 60, 120, 180 and 240 min). KEY FINDINGS: qRT-PCR results confirmed the statistically significant reduction of the expression of the pro-inflammatory factors at 240 min after I/R injury (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases (matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) and the increase of tissue inhibitor of matrix metalloproteinases-2 in liver tissue in the Si group. Moreover, results of immunohistochemistry levels confirmed that at 240 min pro-inflammatory factors (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases ( matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) had a statistically significantly lower expression in the Si group while tissue inhibitor of matrix metalloproteinases-2 had a higher expression. CONCLUSIONS: Silibinin may have a beneficial effect on the protection of the liver.


Subject(s)
Ischemia/metabolism , Liver Diseases/metabolism , Liver/drug effects , Plant Extracts/pharmacology , Reperfusion Injury/metabolism , Silybin/chemistry , Silymarin/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chemokine CCL2/metabolism , Freeze Drying , Inflammation/metabolism , Ischemia/drug therapy , Ischemia/pathology , Liver/metabolism , Liver/pathology , Liver Diseases/drug therapy , Liver Diseases/pathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/metabolism , Phytotherapy , Plant Extracts/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Random Allocation , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reverse Transcriptase Polymerase Chain Reaction , Silybin/administration & dosage , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Carbohydr Polym ; 263: 117964, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33858569

ABSTRACT

Components of the extracellular matrix (ECM) are overexpressed in fibrotic liver. Collagen is the main component of the liver fibrosis stroma. Here we demonstrate that chondroitin sulfate coated multilayered 50-nm nanoparticles encapsulating collagenase and silibinin (COL + SLB-MLPs) break down the dense collagen stroma, while silibinin inhibits activated hepatic stellate cells. The nanoparticles were taken up to a much greater extent by hepatic stellate cells than by normal hepatocytes, and they down-regulated production of type I collagen. In addition, chondroitin sulfate protected the collagenase from premature deactivation. COL + SLB-MLPs were delivered to the cirrhotic liver, and the collagenase and silibinin synergistically inhibited fibrosis in mice. Immunofluorescence staining of liver tissues revealed that CD44, mediated by chondroitin sulfate, delivered the nanoparticles to hepatic stellate cells. This strategy holds promise for degrading extracellular stroma and thereby facilitating drug penetration into fibrotic liver and related diseases such as liver cirrhosis and liver cancer.


Subject(s)
Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Collagenases/chemistry , Collagenases/pharmacology , Liver Cirrhosis/drug therapy , Nanoparticles/chemistry , Silybin/chemistry , Silybin/pharmacology , Animals , Capsules/chemistry , Cell Line , Chondroitin Sulfates/administration & dosage , Collagenases/administration & dosage , Disease Models, Animal , Hepatic Stellate Cells/drug effects , Humans , Hyaluronan Receptors/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/pathology , Mice , Nanoparticles/therapeutic use , Silybin/administration & dosage
19.
J Photochem Photobiol B ; 216: 112147, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33561689

ABSTRACT

Ultraviolet B (UVB) from the sunlight is a major environmental cause for human skin damages, inducing cell death, inflammation, senescence and even carcinogenesis. The natural flavonoid silibinin, clinically used as liver protectant, has protective effects against UVB-caused skin injury in vivo and in vitro. Silibinin is often classified as a phytoestrogen, because it modulates the activation of estrogen receptors (ERs). However, whether silibinin's estrogenic effect contributes to the skin protection against UVB injury remains to be elucidated. The issue was explored in this study by using the human foreskin dermal fibroblasts (HFF) and human non-malignant immortalized keratinocytes (HaCaT). In HFF, pre-treatment with silibinin rescued UVB-irradiated cells from apoptosis. Interestingly, silibinin increased the whole cellular and nuclear levels of ERα and ERß in UVB-irradiated cells. Activation of ERs by treatment with estradiol elevated the cell survival and reduced apoptosis in UVB-treated cells. ERα agonist increased cell survival, while its antagonist decreased it. ERß agonist also increased cell survival, but the antagonist had no effect on cell survival. Transfection of the cells with the small interfering RNAs (si-RNAs) to ERα or ERß diminished the protective effect of silibinin on UVB-irradiated cells. In UVB-treated HaCaT cells, both ERα and ERß were increased by silibinin treatment. Inhibition of activation and expression of ERα or ERß by specific antagonists and si-RNAs, respectively, reduced cell survival in UVB-treated HaCaT cells regardless of silibinin treatment. Taken together, it is summarized that silibinin up-regulates both ERα and ERß pathways in UVB-treated dermal HFF cells and epidermal HaCaT cells, leading to protection of skin from UVB-damage.


Subject(s)
Fibroblasts/radiation effects , Protective Agents/chemistry , Receptors, Estrogen/antagonists & inhibitors , Silybin/chemistry , Apoptosis/radiation effects , Fibroblasts/cytology , HaCaT Cells , Humans , Protective Agents/pharmacology , RNA, Small Interfering/metabolism , RNA, Small Interfering/radiation effects , Receptors, Estrogen/radiation effects , Signal Transduction , Silybin/pharmacology , Skin , Ultraviolet Rays , Up-Regulation/radiation effects
20.
Parasitol Res ; 120(4): 1511-1517, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33236174

ABSTRACT

Chagas disease (CD) is endemic in Latin America. Drugs available for its treatment are benznidazole (BZ)/nifurtimox (NF), both with low efficacy in the late infection and responsible for several side effects. Studies of new drugs for CD among natural products, and using drug combinations with BZ/NF are recommended. Silibinin (SLB) is a natural compound that inhibits the efflux pump (Pgp) of drugs in host cell membranes, causes death of trypanosomatids, has anti-inflammatory activity, and was never assayed against T. cruzi. Here, in vitro and in vivo activities of SLB, SLB+BZ, and BZ against T. cruzi Y strain were evaluated. Cytotoxicity of SLB in VERO cells by the MTT method revealed IC50 of 250.22 µM. The trypanocidal activity evaluated by resazurin method in epimastigotes showed that SLB 25 µM inhibited parasite growth. SLB IC50 and selectivity index (SI) for amastigote were 79.81 µM and 3.13, respectively. SLB100+BZ10 showed higher parasite inhibition (91.44%) than SLB or BZ. Swiss mice infected with Y strain were treated with SLB, SLB+BZ, and BZ. Parasitemia was evaluated daily and 90, 180, and 240 days after treatment in surviving animals by hemoculture, blood qPCR, and after euthanasia, by qPCR in heart tissue. SLB monotherapy was not able to control the parasitemia/mortality of the animals. Parasitological negativation of 85.7-100% was observed in the experimental groups treated with SLB+BZ. Although SLB had shown activity against T. cruzi in vitro, it was not active in mice. Thus, the results of the therapeutic effect observed with SLB+BZ may be interpreted as a result from BZ action.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/pharmacology , Silybin/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/parasitology , Chlorocebus aethiops , Female , Heart/parasitology , Inhibitory Concentration 50 , Mice , Nitroimidazoles/therapeutic use , Parasitemia/drug therapy , Parasitemia/parasitology , Real-Time Polymerase Chain Reaction , Silybin/chemistry , Silybin/therapeutic use , Trypanocidal Agents/therapeutic use , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL