Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 623
1.
Int J Immunopathol Pharmacol ; 38: 3946320241260635, 2024.
Article En | MEDLINE | ID: mdl-38831558

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder mainly affecting joints, yet the systemic inflammation can influence other organs and tissues. The objective of this study was to unravel the ameliorative capability of Ondansetron (O) or ß-sitosterol (BS) against inflammatory reactions and oxidative stress that complicates Extra-articular manifestations (EAM) in liver, kidney, lung, and heart of arthritic and arthritic irradiated rats. METHODS: This was accomplished by exposing adjuvant-induced arthritis (AIA) rats to successive weekly fractions of total body γ-irradiation (2 Gray (Gy)/fraction once per week for four weeks, up to a total dose of 8 Gy). Arthritic and/or arthritic irradiated rats were either treated with BS (40 mg/kg b.wt. /day, orally) or O (2 mg/kg) was given ip) or were kept untreated as model groups. RESULTS: Body weight changes, paw circumference, oxidative stress indices, inflammatory response biomarkers, expression of Janus kinase-2 (JAK-2), Signal transducer and activator of transcription 3 (STAT3), high mobility group box1 (HMGB1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as pro- and anti-inflammatory mediators in the target organs, besides histopathological examination of ankle joints and extra-articular tissues. Treatment of arthritic and/or arthritic irradiated rats with BS or O powerfully alleviated changes in body weight gain, paw swelling, oxidative stress, inflammatory reactions, and histopathological degenerative alterations in articular and non-articular tissues. CONCLUSION: The obtained data imply that BS or O improved the articular and EAM by regulating oxidative and inflammatory indices in arthritic and arthritic irradiated rats.


Arthritis, Experimental , Kidney , Liver , Lung , Ondansetron , Oxidative Stress , Sitosterols , Animals , Sitosterols/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/radiation effects , Oxidative Stress/drug effects , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver/radiation effects , Male , Ondansetron/pharmacology , HMGB1 Protein/metabolism , Heart/drug effects , Heart/radiation effects , Myocardium/pathology , Myocardium/metabolism , Inflammation/pathology , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Rats, Wistar
2.
Curr Pharm Biotechnol ; 25(7): 860-895, 2024.
Article En | MEDLINE | ID: mdl-38902931

Du Zhong is a valuable Chinese medicinal herb unique to China. It is a national second- class precious protected tree, known as "plant gold", which has been used to treat various diseases since ancient times. The main active ingredients are lignans, phenylprophetons, flavonoids, iridoids and steroids and terpenoids, which have pharmacological effects such as lowering blood pressure, enhancing immunity, regulating bone metabolism, protecting nerve cells, protecting liver and gallbladder and regulating blood lipids. In this paper, a comprehensive review of Eucommia ulmoides Oliv. was summarized from the processing and its compositional changes, applications, chemical components, pharmacological effects, and pharmacokinetics, and the Q-marker of Eucommia ulmoides Oliv. is preliminarily predicted from the aspects of traditional efficacy, medicinal properties and measurability of chemical composition, and the pharmacodynamic substance basis and potential Q-marker of Eucommia ulmoides Oliv. are further analyzed through network pharmacology. It is speculated that quercetin, kaempferol, ß-sitosterol, chlorogenic acid and pinoresinol diglucoside components are selected as quality markers of Eucommia ulmoides Oliv., which provide a basis for the quality control evaluation and follow-up research and development of Eucommia ulmoides Oliv.


Drugs, Chinese Herbal , Eucommiaceae , Network Pharmacology , Eucommiaceae/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Animals , Biomarkers/metabolism , Sitosterols/pharmacology , Medicine, Chinese Traditional/methods , Quality Control
3.
Blood Cells Mol Dis ; 107: 102858, 2024 Jul.
Article En | MEDLINE | ID: mdl-38796983

Immune thrombocytopenia (ITP) is an autoimmune disease caused by the loss of immune tolerance to platelet autoantigens, resulting in reduced platelet production and increased platelet destruction. Impaired megakaryocyte differentiation and maturation is a key factor in the pathogenesis and treatment of ITP. Sarcandra glabra, a plant of the Chloranthaceae family, is commonly used in clinical practice to treat ITP, and daucosterol (Dau) is one of its active ingredients. However, whether Dau can treat ITP and the key mechanism of its effect are still unclear. In this study, we found that Dau could effectively promote the differentiation and maturation of megakaryocytes and the formation of polyploidy in the megakaryocyte differentiation disorder model constructed by co-culturing Dami and HS-5 cells. In vivo experiments showed that Dau could not only increase the number of polyploidized megakaryocytes in the ITP rat model, but also promote the recovery of platelet count. In addition, through network pharmacology analysis, we speculated that the JAK2-STAT3 signaling pathway might be involved in the process of Dau promoting megakaryocyte differentiation. Western blot results showed that Dau inhibited the expression of P-JAK2 and P-STAT3. In summary, these results provide a basis for further studying the pharmacological mechanism of Dau in treating ITP.


Cell Differentiation , Janus Kinase 2 , Megakaryocytes , Purpura, Thrombocytopenic, Idiopathic , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Rats , Cell Differentiation/drug effects , Disease Models, Animal , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/drug effects , Megakaryocytes/cytology , Purpura, Thrombocytopenic, Idiopathic/metabolism , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/pathology , Signal Transduction/drug effects , Sitosterols/pharmacology , STAT3 Transcription Factor/metabolism
4.
Hum Cell ; 37(4): 1156-1169, 2024 Jul.
Article En | MEDLINE | ID: mdl-38814517

To explore the effects of ß-Sitosterol upon hepatocellular carcinoma cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT), and to investigate the underlying mechanism using network pharmacology. Human hepatocellular carcinoma cell lines (Huh-7 and HCCLM3) were expose to gradient concentrations of ß-Sitosterol (5 µg/mL, 10 µg/mL, and 20 µg/mL). Cell viability and proliferation were assessed using MTT, CCK-8, colony formation, and EdU assays.Flow cytometry was employed to evaluate cell cycle and apoptosis. Scratch and Transwell assays were performed, respectively, to detect cell migration and invasion. The levels of apoptosis-associated proteins (BAX, BCL2, and cleaved caspase3) as well as EMT-associated proteins (E-cadherin, N-cadherin, Snail, and Vimentin) were detected in Huh-7 and HCCLM3 cell lines using Western blot analysis. The drug target gene for ß-Sitosterol was screened via PubChem and subsequently evaluated for expression in the GSE112790 dataset. In addition, the expression level of glycogen synthase kinase 3 beta (GSK3B) within the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) database was analyzed, along with its correlation to the survival outcomes of patients with hepatocellular carcinoma. The diagnostic efficiency of GSK3B was assessed by analyzing the ROC curve. Subsequently, Huh-7 and HCCLM3 cell lines were transfected with the overexpression vector of GSK3B and then treated with ß-Sitosterol to further validate the association between GSK3B and ß-Sitosterol. GSK3B demonstrated a significantly elevated expression in patients with hepatocellular carcinoma, which could predict hepatocellular carcinoma patients' impaired prognosis based on GEO dataset and TCGA database. GSK3B inhibitor (CHIR-98014) notably inhibited cell proliferation and invasion, promoted cell apoptosis and cell cycle arrest at G0/G1 phase in hepatocellular carcinoma cells. ß-Sitosterol treatment further promoted the efffects of GSK3B inhibitor on hepatocellular carcinoma cells. GSK3B overexpression has been found to enhance the proliferative and invasive capabilities of hepatocellular carcinoma cells. Furthermore it has been observed that GSK3B overexpression, it has been obsear can partially reverse the inhibitory effect of ß-Sitosterol upon hepatocellular. ß-Sitosterol suppressed hepatocellular carcinoma cell proliferation and invasion, and enhanced apoptosis via inhibiting GSK3B expression.


Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta , Liver Neoplasms , Sitosterols , Humans , Sitosterols/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Cell Movement/drug effects , Cell Movement/genetics , Gene Expression/genetics , Gene Expression/drug effects , Phenotype , Neoplasm Invasiveness/genetics , Cell Survival/drug effects , Cell Survival/genetics , Network Pharmacology , Gene Expression Regulation, Neoplastic/drug effects
5.
Anim Biotechnol ; 35(1): 2339406, 2024 Nov.
Article En | MEDLINE | ID: mdl-38634284

Fat deposition affects beef quantity and quality via preadipocyte proliferation. Beta-sitosterol, a natural small molecular compound, has various functions, such as anti-inflammation, antibacterial, and anticancer properties. The mechanism of action of Beta-sitosterol on bovine preadipocytes remains unclear. This study, based on RNA-seq, reveals the impact of Beta -sitosterol on the proliferation of bovine preadipocytes. Compared to the control group, Beta-sitosterol demonstrated a more pronounced inhibitory effect on cell proliferation after 48 hours of treatment than after 24 hours, as evidenced by the results of EdU staining and flow cytometry. RNA-seq and Western Blot analyses further substantiated these findings. Our results suggest that the impact of Beta-sitosterol on the proliferation of bovine preadipocytes is not significant after a 24-hour treatment. It is only after extending the treatment time to 48 hours that Beta-sitosterol may induce cell cycle arrest at the G2/M phase by suppressing the expression of CCNB1, thereby inhibiting the proliferation of bovine preadipocytes.


Adipocytes , Cell Proliferation , Sitosterols , Animals , Cattle , Sitosterols/pharmacology , Cell Proliferation/drug effects , Adipocytes/drug effects , Adipocytes/cytology , Gene Expression Profiling , Cells, Cultured , Transcriptome/drug effects
6.
BMC Vet Res ; 20(1): 76, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413949

BACKGROUND: Newcastle Disease Virus (NDV) causes severe economic losses in the poultry industry worldwide. Hence, this study aimed to discover a novel bioactive antiviral agent for controlling NDV. Streptomyces misakiensis was isolated from Egyptian soil and its secondary metabolites were identified using infrared spectroscopy (IR), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) spectroscopy. The inhibitory activity of bioactive metabolite against NDV were examined. Three experimental groups of 10-day-old specific pathogen-free embryonated chicken eggs (SPF-ECEs), including the bioactive metabolite control group, NDV control positive group, and α-sitosterol and NDV mixture-treated group were inoculated. RESULTS: α-sitosterol (Ethyl-6-methylheptan-2-yl]-10,13-dimethyl-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol), a secondary metabolite of S. misakiensis, completely inhibited hemagglutination (HA) activity of the NDV strain. The HA activity of the NDV strain was 8 log2 and 9 log2 for 0.5 and 0.75% RBCs, respectively. The NDV HA activity for the two concentrations of RBCs was significantly (P < 0.0001) inhibited after α-sitosterol treatment. There was a significant (P < 0.0001) decrease in the log 2 of HA activity, with values of - 0.500 (75%, chicken RBCs) before inoculation in SPF-ECEs and - 1.161 (50%, RBCs) and - 1.403 (75%, RBCs) following SPF-ECE inoculation. Compared to ECEs inoculated with NDV alone, the α-sitosterol-treated group showed improvement in histological lesion ratings for chorioallantoic membranes (CAM) and hepatic tissues. The CAM of the α-sitosterol- inoculated SPF-ECEs was preserved. The epithelial and stromal layers were noticeably thicker with extensive hemorrhages, clogged vasculatures, and certain inflammatory cells in the stroma layer in the NDV group. However, mild edema and inflammatory cell infiltration were observed in the CAM of the treated group. ECEs inoculated with α-sitosterol alone showed normal histology of the hepatic acini, central veins, and portal triads. Severe degenerative alterations, including steatosis, clogged sinusoids, and central veins, were observed in ECEs inoculated with NDV. Mild hepatic degenerative alterations, with perivascular round cell infiltration, were observed in the treated group. CONCLUSION: To the best of our knowledge, this is the first study to highlight that the potentially bioactive secondary metabolite, α-sitosterol, belonging to the terpene family, has the potential to be a biological weapon against virulent NDV. It could be used for the development of innovative antiviral drugs to control NDV after further clinical investigation.


Newcastle Disease , Poultry Diseases , Streptomycetaceae , Animals , Newcastle disease virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Sitosterols/pharmacology , Sitosterols/therapeutic use , Chickens , Newcastle Disease/drug therapy , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
7.
Phytother Res ; 38(2): 592-619, 2024 Feb.
Article En | MEDLINE | ID: mdl-37929761

Sterols, including ß-sitosterol, are essential components of cellular membranes in both plant and animal cells. Despite being a major phytosterol in various plant materials, comprehensive scientific knowledge regarding the properties of ß-sitosterol and its potential applications is essential for scholarly pursuits and utilization purposes. ß-sitosterol shares similar chemical characteristics with cholesterol and exhibits several pharmacological activities without major toxicity. This study aims to bridge the gap between phytochemistry and current pharmacological evidence of ß-sitosterol, focusing on its anticancer activity and other biomedical properties. The goal is to provide a comprehensive understanding of ß-sitosterol's potential for future translational approaches. A thorough examination of the literature was conducted to gather relevant information on the biological properties of ß-sitosterol, particularly its anticancer therapeutic potential. Various databases were searched, including PubMed/MedLine, Scopus, Google Scholar, and Web of Science using appropriate keywords. Studies investigating the effects of ß-sitosterol on different types of cancer were analyzed, focusing on mechanisms of action, pharmacological screening, and chemosensitizing properties. Modern pharmacological screening studies have revealed the potential anticancer therapeutic properties of ß-sitosterol against various types of cancer, including leukemia, lung, stomach, breast, colon, ovarian, and prostate cancer. ß-sitosterol has demonstrated chemosensitizing effects on cancer cells, interfering with multiple cell signaling pathways involved in proliferation, cell cycle arrest, apoptosis, survival, metastasis invasion, angiogenesis, and inflammation. Structural derivatives of ß-sitosterol have also shown anti-cancer effects. However, research in the field of drug delivery and the detailed mode of action of ß-sitosterol-mediated anticancer activities remains limited. ß-sitosterol, as a non-toxic compound with significant pharmacological potential, exhibits promising anticancer effects against various cancer types. Despite being relatively less potent than conventional cancer chemotherapeutics, ß-sitosterol holds potential as a safe and effective nutraceutical against cancer. Further comprehensive studies are recommended to explore the biological properties of ß-sitosterol, including its mode of action, and develop novel formulations for its potential use in cancer treatment. This review provides a foundation for future investigations and highlights the need for further research on ß-sitosterol as a potent superfood in combating cancer.


Leukemia , Phytosterols , Prostatic Neoplasms , Humans , Male , Animals , Plant Extracts/pharmacology , Sitosterols/pharmacology , Sitosterols/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Ethnopharmacology
8.
Sci Rep ; 13(1): 21351, 2023 12 04.
Article En | MEDLINE | ID: mdl-38049552

The detrimental impact of reactive oxygen species on D.N.A. repair processes is one of the contributing factors to colon cancer. The idea that oxidative stress may be a significant etiological element for carcinogenesis is currently receiving more and more support. The goal of the current study is to evaluate the anti-inflammatory and anticancer activity of three powerful phytocompounds-sitosterol, amyrin, and epiafzelechin-alone and in various therapeutic combinations against colon cancer to identify the critical mechanisms that mitigate nickel's carcinogenic effect. To evaluate the ligand-protein interaction of four selected components against Vascular endothelial growth factor (VEGF), Matrix metalloproteinase-9 (MMP9) inhibitor and Interleukin-10 (IL-10) molecular docking approach was applied using PyRx bioinformatics tool. For in vivo analysis, hundred albino rats were included, divided into ten groups, each containing ten rats of weight 160-200 g. All the groups were injected with 1 ml/kg nickel intraperitoneally per week for three months, excluding the negative control group. Three of the ten groups were treated with ß-sitosterol (100 mg/kg b wt), ß-amyrin (100 mg/kg b wt), and epiafzelechin (200 mg/kg b wt), respectively, for one month. The later four groups were fed with combinatorial treatments of the three phyto compounds for one month. The last group was administered with commercial drug Nalgin (500 mg/kg b wt). The biochemical parameters Creatinine, Protein carbonyl, 8-hydroxydeoxyguanosine (8-OHdG), VEGF, MMP-9 Inhibitor, and IL-10 were estimated using ELISA kits and Glutathione (G.S.H.), Superoxide dismutase (S.O.D.), Catalase (C.A.T.) and Nitric Oxide (NO) were analyzed manually. The correlation was analyzed through Pearson's correlation matrix. All the parameters were significantly raised in the positive control group, indicating significant inflammation. At the same time, the levels of the foresaid biomarkers were decreased in the serum in all the other groups treated with the three phytocompounds in different dose patterns. However, the best recovery was observed in the group where the three active compounds were administered concomitantly. The correlation matrix indicated a significant positive correlation of IL-10 vs VEGF (r = 0.749**, p = 0.009), MMP-9 inhibitor vs SOD (r = 0.748**, p = 0.0 21). The study concluded that the three phytocompounds ß-sitosterol, ß-amyrin, and epiafzelechin are important anticancer agents which can target the cancerous biomarkers and might be used as a better therapeutic approach against colon cancer soon.


Colonic Neoplasms , Sitosterols , Rats , Animals , Sitosterols/pharmacology , Vascular Endothelial Growth Factor A , Interleukin-10 , Nickel , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Colonic Neoplasms/metabolism , Biomarkers
9.
Adv Nutr ; 14(5): 1085-1110, 2023 09.
Article En | MEDLINE | ID: mdl-37247842

Cancer is one of the primary causes of death worldwide, and its incidence continues to increase yearly. Despite significant advances in research, the search for effective and nontoxic preventive and therapeutic agents remains greatly important. Cancer is a multimodal disease, where various mechanisms play significant roles in its occurrence and progression. This highlights the need for multitargeted approaches that are not only safe and inexpensive but also provide effective alternatives for current therapeutic regimens. ß-Sitosterol (SIT), the most abundant phytosterol found in various plant foods, represents such an option. Preclinical evidence over the past few decades has overwhelmingly shown that SIT exhibits multiple anticancer activities against varied cancers, such as liver, cervical, colon, stomach, breast, lung, pancreatic, and prostate cancers, in addition to leukemia, multiple myeloma, melanoma, and fibrosarcoma. In this article, we present the latest advances and perspectives on SIT-systematically summarizing its antitumor mechanisms of action into 7 main sections and combining current challenges and prospects-for its use as a promising agent for cancer prevention and treatment. In particular, SIT plays a role in cancer prevention and treatment mainly by enhancing apoptosis, inducing cell cycle arrest, bidirectionally regulating oxidative stress, improving metabolic reprogramming, inhibiting invasion and metastasis, modulating immunity and inflammation, and combating drug resistance. Although SIT holds such great promise, the poor aqueous solubility and bioavailability coupled with low targeting efficacy limit its therapeutic efficacy and clinical application. Further research on novel drug delivery systems may improve these deficiencies. Overall, through complex and pleiotropic mechanisms, SIT has good potential for tumor chemoprevention and chemotherapy. However, no clinical trials have yet proven this potential. This review provides theoretical basis and rationality for the further design and conduct of clinical trials to confirm the anticancer activity of SIT.


Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Sitosterols/pharmacology , Sitosterols/therapeutic use , Chemoprevention
10.
Chem Biodivers ; 20(5): e202201135, 2023 May.
Article En | MEDLINE | ID: mdl-37026603

In this research article, we investigated the effect of Euphorbia bivonae extract compounds on the lethality of brine shrimp Artemia salina and on embryonic cell lines (HEK293) proliferation. Our GC/MS analysis revealed that the E. bivonae ethanolic extract contained essentially sitosterol, euphol, and lupeol. The 24-h LC50 was determined using the probit analysis method (LC50=357.11 mg l-1 ). Depending on this cytotoxicity test result, E. bivona extract induced a significant increase in Superoxide Dismutase (SOD), Catalase (CAT), Glutathione-Peroxidase (GPx) activities, and lipid peroxidation (LPO) in A. salina larvae. In addition, the cytotoxicity effect of this extract had proved against the HEK293 cell lines in vitro. We suggest that the three compounds of E. bivonae extract (sitosterol, euphol, and lupeol) are the most responsible for this cytotoxicity. The possible application of this extract as an alternative natural antiproliferative is considered.


Euphorbia , Animals , Humans , Euphorbia/chemistry , Plant Extracts/chemistry , Artemia , HEK293 Cells , Sitosterols/pharmacology , Antioxidants/toxicity , Kidney
11.
Int Immunopharmacol ; 119: 110202, 2023 Jun.
Article En | MEDLINE | ID: mdl-37075671

Phytosterols have been reported to exert anti-inflammatory activity. This study aimed to investigate the capacity of campesterol, ß-sitosterol, and stigmasterol on the mitigation of psoriasiform inflammation. We also tried to establish structure-activity and structure-permeation relationships for these plant sterols. To support this study, we first approached the in silico data of the physicochemical properties and the molecular docking of phytosterols with stratum corneum (SC) lipids. The anti-inflammatory activity of the phytosterols was explored in the activated keratinocytes and macrophages. Using the activated keratinocyte model, a significant inhibition of IL-6 and CXCL8 overexpression by phytosterols was detected. A comparable inhibition level was found for the three phytosterols tested. The macrophage-based study showed that the anti-IL-6 and anti-CXCL8 activities of campesterol were greater than those of the other compounds, which indicated that a phytosterol structure without a double bond on C22 and with methyl moiety on C24 was more effective. The conditioned medium of phytosterol-treated macrophages decreased STAT3 phosphorylation in the keratinocytes, suggesting the inhibition of keratinocyte hyperproliferation. ß-sitosterol was the penetrant with the highest pig skin absorption (0.33 nmol/mg), followed by campesterol (0.21 nmol/mg) and stigmasterol (0.16 nmol/mg). The therapeutic index (TI) is a parameter measured by multiplying the cytokine/chemokine suppression percentage with skin absorption for anticipating the anti-inflammatory activity after topical delivery. ß-sitosterol is a potential candidate for treating psoriatic inflammation due to having the greatest TI value. In this study, ß-sitosterol attenuated epidermal hyperplasia and immune cell infiltration in the psoriasis-like mouse model. The psoriasiform epidermis thickness could be reduced from 92.4 to 63.8 µm by the topical use of ß-sitosterol, with a downregulation of IL-6, TNF-α, and CXCL1. The skin tolerance study manifested that the reference drug betamethasone but not ß-sitosterol could generate barrier dysfunction. ß-sitosterol possessed anti-inflammatory activity and facile skin transport, showing the potential for development as an anti-psoriatic agent.


Phytosterols , Psoriasis , Mice , Animals , Swine , Sitosterols/pharmacology , Sitosterols/therapeutic use , Stigmasterol/pharmacology , Stigmasterol/therapeutic use , Molecular Docking Simulation , Phytosterols/therapeutic use , Psoriasis/drug therapy , Inflammation
12.
Curr Alzheimer Res ; 20(1): 29-37, 2023.
Article En | MEDLINE | ID: mdl-36892031

OBJECTIVE: The objective of this study is to investigate the neuroprotective effects of ß- sitosterol using the AlCl3 model of Alzheimer's Disease. METHODS: AlCl3 model was used to study cognition decline and behavioral impairments in C57BL/6 mice. Animals were randomly assigned into 4 groups with the following treatments: Group 1 received normal saline for 21 days, Group 2 received AlCl3 (10 mg/kg) for 14 days; Group 3 received AlCl3(10 mg/kg) for 14 days + ß-sitosterol (25mg/kg) for 21 days; while Group 4 was administered ß-sitosterol (25mg/kg) for 21 days. On day 22, we performed the behavioral studies using a Y maze, passive avoidance test, and novel object recognition test for all groups. Then the mice were sacrificed. The corticohippocampal region of the brain was isolated for acetylcholinesterase (AChE), acetylcholine (ACh), and GSH estimation. We conducted histopathological studies using Congo red staining to measure ß -amyloid deposition in the cortex and hippocampal region for all animal groups. RESULTS: AlCl3 successfully induced cognitive decline in mice following a 14-day induction period, as shown by significantly decreased (p < 0.001) in step-through latency, % alterations, and preference index values. These animals also exhibited a substantial decrease in ACh (p <0.001) and GSH (p < 0.001) and a rise in AChE (p < 0.001) compared to the control group. Mice administered with AlCl3 and ß-sitosterol showed significantly higher step-through latency time, % alteration time, and % preference index (p < 0.001) and higher levels of ACh, GSH, and lower levels of AChE in comparison to the AlCl3 model. AlCl3-administered animals also showed higher ß-amyloid deposition, which got significantly reduced in the ß-sitosterol treated group. CONCLUSION: AlCl3 was effectively employed to induce a cognitive deficit in mice, resulting in neurochemical changes and cognitive decline. ß -sitosterol treatment mitigated AlCl3-mediated cognitive impairment.


Aluminum Chloride , Alzheimer Disease , Cognitive Dysfunction , Neuroprotective Agents , Sitosterols , Animals , Mice , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Aluminum Chloride/administration & dosage , Aluminum Chloride/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/prevention & control , Avoidance Learning/drug effects , Case-Control Studies , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cognition/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Computer Simulation , Disease Models, Animal , Glutathione/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Maze Learning/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Sitosterols/pharmacology
13.
Nutrients ; 15(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36615880

Alcoholic liver disease (ALD) is caused by chronic excessive alcohol consumption, which leads to inflammation, oxidative stress, lipid accumulation, liver fibrosis/cirrhosis, and even liver cancer. However, there are currently no effective drugs for ALD. Herein, we report that a natural phytosterol Daucosterol (DAU) can effectively protect against liver injury caused by alcohol, which plays anti-inflammatory and antioxidative roles in many chronic inflammatory diseases. Our results demonstrate that DAU ameliorates liver inflammation induced by alcohol through p38/nuclear factor kappa B (NF-κB)/NOD-like receptor protein-3 (NLRP3) inflammasome pathway. Briefly, DAU decreases NF-κB nuclear translocation and inhibits NLRP3 activation by decreasing p38 phosphorylation. At the same time, DAU also protects against hepatic oxidative stress and lipid accumulation. In conclusion, our research provides a new clue about the protective effects of naturally active substances on ALD.


Inflammasomes , NF-kappa B , Humans , Inflammasomes/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Signal Transduction , Sitosterols/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Ethanol/pharmacology , Liver Cirrhosis
14.
Food Chem Toxicol ; 172: 113602, 2023 Feb.
Article En | MEDLINE | ID: mdl-36610474

The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of ß-sitosterol (ßS) on apoptosis associated with liver injury and ER stress. METHODS: Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with ßS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS: ßS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, ßS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the ß-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with ßS, which consequently attenuated hepatic apoptosis. CONCLUSION: ßS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.


Chemical and Drug Induced Liver Injury , Endoplasmic Reticulum Stress , Endoribonucleases , Hepatocytes , Sitosterols , Animals , Rats , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Hepatocytes/drug effects , Liver/pathology , Protein Serine-Threonine Kinases/metabolism , Sitosterols/pharmacology , Thioacetamide/metabolism , Thioacetamide/pharmacology , Transaminases/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism
15.
Pulm Pharmacol Ther ; 78: 102183, 2023 02.
Article En | MEDLINE | ID: mdl-36481301

INTRODUCTION: In most asthma patients, symptoms are controlled by treatment with glucocorticoid, but long-term or high-dose use can produce adverse effects. Therefore, it is crucial to find new therapeutic strategies. ß-sitosterol could suppress type Ⅱ inflammation in ovalbumin (OVA)-induced mice, but its mechanisms have remained unclear. METHODS: A binding activity of ß-sitosterol with glucocorticoid receptor (GR) was analyzed by molecular docking. Human bronchial epithelial cells (BEAS-2B) and human bronchial smooth muscle cells (HBSMC) were treated with different concentrations (0, 1, 5, 10, 20, and 50 µg/mL) of ß-sitosterol for suitable concentration selection. In transforming growth factor (TGF)-ß1 treated BEAS-2B and HBSMC, cells were treated with 20 µg/mL ß-sitosterol or dexamethasone (Dex) to analyze its possible mechanism. In OVA-induced mice, 2.5 mg/kg ß-sitosterol or Dex administration was performed to analyze the therapeutic mechanism of ß-sitosterol. A GR antagonist RU486 was used to confirm the mechanism of ß-sitosterol in the treatment of asthma. RESULTS: A good binding of ß-sitosterol to GR (score = -8.2 kcal/mol) was found, and the GR expression was upregulated with ß-sitosterol dose increase in BEAS-2B and HBSMC. Interleukin (IL)-25 and IL-33 secretion was significantly decreased by ß-sitosterol in the TGF-ß1-induced BEAS-2B, and the levels of collagen 1A and α-smooth muscle actin (SMA) were reduced in the TGF-ß1-induced HBSMC. In the OVA-challenged mice, ß-sitosterol treatment improved airway inflammation and remodeling through suppressing type Ⅱ immune response and collagen deposition. The therapeutic effects of ß-sitosterol were similar to Dex treatment in vitro and in vivo. RU486 treatment clearly hampered the therapeutic effects of ß-sitosterol in the TGF-ß1-induced cells and OVA-induced mice. CONCLUSION: This study identified that ß-sitosterol binds GR to perform its functions in asthma treatment. ß-sitosterol represent a potential therapeutic drug for allergic asthma.


Asthma , Receptors, Glucocorticoid , Sitosterols , Animals , Humans , Mice , Airway Remodeling , Asthma/drug therapy , Asthma/metabolism , Collagen/metabolism , Disease Models, Animal , Inflammation/drug therapy , Lung , Mice, Inbred BALB C , Mifepristone/pharmacology , Mifepristone/therapeutic use , Molecular Docking Simulation , Ovalbumin , Receptors, Glucocorticoid/metabolism , Transforming Growth Factor beta1/pharmacology , Sitosterols/pharmacology
16.
J Wound Care ; 31(Sup10): S41-S52, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-36240870

OBJECTIVE: Hard-to-heal wounds are a global health challenge, and effective treatments are still lacking. Moist exposed burn ointment (MEBO) and maggots are traditional treatments for promoting wound healing. This study was a preliminary exploration of combined maggot therapy and MEBO in the treatment of hard-to-heal wounds. METHOD: A coexistence experiment was conducted to determine the survival rates of maggots in MEBO. The maggots were placed in two different existence conditions: one set in MEBO (MEBO group), and another set as the control group (no MEBO) to compare survival rates. Case reports describe the use of the combined application of MEBO and maggots in the treatment of patients with hard-to-heal wounds. RESULTS: The coexistence experiment indicated that maggots in the MEBO group had a higher survival rate. From the therapeutic effect of the clinical cases (n=7), the combined application was safe and effective, with all the reported wounds eventually healing. CONCLUSION: Based on the findings of this study, we believe the combined application of MEBO and maggots is a promising way of promoting wound healing. Further studies and clinical trials are needed to elucidate the mechanism of the combined application in promoting wound healing and to more persuasively clarify the therapeutic effect.


Sitosterols , Wound Healing , Animals , Debridement , Humans , Larva , Sitosterols/pharmacology
17.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36293029

The interplay between steroids and triterpenoids, compounds sharing the same biosynthetic pathway but exerting distinctive functions, is an important part of the defense strategy of plants, and includes metabolic modifications triggered by stress hormones such as jasmonic acid. Two experimental models, Calendula officinalis hairy root cultures and greenhouse cultivated plants (pot plants), were applied for the investigation of the effects of exogenously applied jasmonic acid on the biosynthesis and accumulation of steroids and triterpenoids, characterized by targeted GC-MS (gas chromatography-mass spectroscopy) metabolomic profiling. Jasmonic acid elicitation strongly increased triterpenoid saponin production in hairy root cultures (up to 86-fold) and their release to the medium (up to 533-fold), whereas the effect observed in pot plants was less remarkable (two-fold enhancement of saponin biosynthesis after a single foliar application). In both models, the increase of triterpenoid biosynthesis was coupled with hampering the biomass formation and modifying the sterol content, involving stigmasterol-to-sitosterol ratio, and the proportions between ester and glycoside conjugates. The study revealed that various organs in the same plant can react differently to jasmonic acid elicitation; hairy root cultures are a useful in vitro model to track metabolic changes, and enhanced glycosylation (of both triterpenoids and sterols) seems to be important strategy in plant defense response.


Calendula , Saponins , Triterpenes , Triterpenes/pharmacology , Triterpenes/metabolism , Sitosterols/metabolism , Sitosterols/pharmacology , Stigmasterol/metabolism , Plant Roots/metabolism , Saponins/pharmacology , Saponins/metabolism , Glycosides/pharmacology , Steroids/metabolism , Esters/metabolism , Hormones/metabolism
18.
Chem Biol Interact ; 365: 110117, 2022 Sep 25.
Article En | MEDLINE | ID: mdl-35995256

Currently, available therapeutic medications are both costly as well as not entirely promising in terms of potency. So, new candidates from natural resources are of research interest to find new alternative therapeutics. A well-known combination is a ß-sitosterol, a plant-derived nutrient with anticancer properties against breast, prostate, colon, lung, stomach, and leukemia. Studies have shown that ß-sitosterol interferes with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis, anti-inflammatory, anticancer, hepatoprotective, antioxidant, cardioprotective, and antidiabetic effects have been discovered during pharmacological screening without significant toxicity. The pharmacokinetic profile of ß-sitosterol has also been extensively investigated. However, a comprehensive review of the pharmacology, phytochemistry and analytical methods of ß-sitosterol is desired. Because ß-sitosterol is a significant component of most plant materials, humans use it for various reasons, and numerous ß-sitosterol-containing products have been commercialized. To offset the low efficacy of ß-sitosterol, designing ß-sitosterol delivery for "cancer cell-specific" therapy holds great potential. Delivery of ß-sitosterol via liposomes is a demonstration that has shown great promise. But further research has not progressed on the drug delivery of ß-sitosterol or how it can enhance ß-sitosterol mediated anti-inflammatory activity, thus making ß-sitosterol an orphan nutraceutical. Therefore, extensive research on ß-sitosterol as an anticancer nutraceutical is recommended.


Neoplasms , Sitosterols , Apoptosis , Cell Cycle , Humans , Male , Neoplasms/drug therapy , Plant Extracts/pharmacology , Sitosterols/pharmacology , Sitosterols/therapeutic use
19.
Immunopharmacol Immunotoxicol ; 44(6): 1013-1021, 2022 Dec.
Article En | MEDLINE | ID: mdl-35850599

AIM: To investigate the effects of ß-sitosterol (B-SIT) and the underlying mechanisms of action in an ovalbumin-induced rat model of asthma. METHODS: The pathological and morphological changes in lung and tracheal tissues were observed by H&E, PAS, and Masson's staining. The levels of IgE, TNF-α, and IFN-γ in the bronchoalveolar lavage fluid (BALF) and those of IL-6, TGF-ß1, and IL-10 in serum were measured by ELISA. The relative expression levels of IL-5, IL-13, IL-21, CD11c, CD80, and CD86 mRNA in lung tissue were examined by RT-qPCR. Flow cytometry was performed to assess the levels of immune cells, including macrophages and neutrophils in spleen tissue and Th cells, Tc cells, NK cells, and DCs in peripheral blood. The protein expression levels of CD68, MPO, CD11c, CD80, and CD86 were detected by western blotting or immunohistochemistry. RESULTS: B-SIT improved the injury in OVA-induced pathology, decreased the levels of inflammatory factors of IgE, TNF-α, IL-6, TGF-ß1, IL-5, IL-13, and IL-21 and increased the levels of IFN-γ and IL-10. In addition, B-SIT decreased the number of macrophages and neutrophils and the relative expression levels of CD68 and MPO in the spleen. Moreover, B-SIT increased the number of Th cells, Tc cells, NK cells, and DCs in peripheral blood and upregulated the levels of CD11c, CD80, and CD86 in the spleen and lung. CONCLUSION: B-SIT improved symptoms in a rat model of asthma likely via the inhibition of inflammation by regulating dendritic cells.


Asthma , Dendritic Cells , Sitosterols , Animals , Rats , Dendritic Cells/immunology , Interleukin-10 , Interleukin-13 , Interleukin-5 , Interleukin-6 , Ovalbumin , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha , Asthma/drug therapy , Sitosterols/pharmacology
20.
J Food Biochem ; 46(8): e14170, 2022 08.
Article En | MEDLINE | ID: mdl-35403718

Triterpenes and phytosterols enriched herbal formulations are known for glucose regulation and lipid metabolism. In this study, triterpenes and phytosterols from Moringa oleifera stem bark have been tested for their role in adipocyte differentiation. Chromatographic analysis revealed a wide range of phenolics, highlighting the presence of flavonoids (kaempferol, quercetin, and rutin), terpenoids (lupeol), and phytosterol (stigmasterol, ß-sitosterol). Lupeol and ß-sitosterol reduced cell viability in a dose-dependent manner showcasing increased G1 phase cell accumulation while reducing other cell cycle phases (S and G2 /M) and significant lowering of intracellular lipid accumulation. Additionally, lupeol (35.37% at 32 µM) and ß-sitosterol (42.97% at 16 µM) inhibited reactive oxygen species generation and increased glucose uptake in adipocytes. Collectively, our results indicate that lupeol and ß-sitosterol efficaciously attenuated adipogenesis via a controlled cell cycle progression and enhanced glucose uptake in adipocytes. PRACTICAL APPLICATIONS: Active components of Moringa oleifera effectively regulate adipocyte differentation suggest that it can be good medicial supllement for control of obesity.


Moringa oleifera , Triterpenes , Adipocytes , Adipogenesis , Cell Cycle , Glucose , Moringa oleifera/chemistry , Pentacyclic Triterpenes , Sitosterols/pharmacology , Triterpenes/pharmacology
...