Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.922
Filter
1.
AAPS PharmSciTech ; 25(6): 156, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981986

ABSTRACT

Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.


Subject(s)
Antifungal Agents , Candida albicans , Colloids , Itraconazole , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Itraconazole/pharmacology , Itraconazole/administration & dosage , Itraconazole/chemistry , Humans , Animals , Trichophyton/drug effects , Microbial Sensitivity Tests/methods , Chemistry, Pharmaceutical/methods , Particle Size , Skin/metabolism , Skin/drug effects , Skin/microbiology , Skin Absorption/drug effects , Cell Line , HaCaT Cells , Nails/drug effects , Nails/microbiology , Nails/metabolism , Arthrodermataceae
2.
AAPS PharmSciTech ; 25(6): 170, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044049

ABSTRACT

Skin carcinoma remains one of the most widespread forms of cancer, and its global impact continues to increase. Basal cell carcinoma, melanoma, and squamous cell carcinoma are three kinds of cutaneous carcinomas depending upon occurrence and severity. The invasive nature of skin cancer, the limited effectiveness of current therapy techniques, and constraints to efficient systems for drug delivery are difficulties linked with the treatment of skin carcinoma. In the present era, the delivery of drugs has found a new and exciting horizon in the realm of nanotechnology, which presents inventive solutions to the problems posed by traditional therapeutic procedures for skin cancer management. Lipid-based nanocarriers like solid lipid nanoparticles and nanostructured lipid carriers have attracted a substantial focus in recent years owing to their capability to improve the drug's site-specific delivery, enhancing systemic availability, and thus its effectiveness. Due to their distinct structural and functional characteristics, these nanocarriers can deliver a range of medications, such as peptides, nucleic acids, and chemotherapeutics, via different biological barriers, such as the skin. In this review, an effort was made to present the mechanism of lipid nanocarrier permeation via cancerous skin. In addition, recent research advances in lipid nanocarriers have also been discussed with the help of in vitro cell lines and preclinical studies. Being a nano size, their limitations and toxicity aspects in living systems have also been elaborated.


Subject(s)
Antineoplastic Agents , Drug Carriers , Lipids , Nanoparticles , Skin Neoplasms , Skin Neoplasms/drug therapy , Humans , Nanoparticles/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Skin Absorption , Skin/metabolism , Skin/drug effects , Drug Delivery Systems/methods , Administration, Cutaneous
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000538

ABSTRACT

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Subject(s)
Administration, Cutaneous , Diclofenac , Emulsions , Skin Absorption , Skin , Diclofenac/pharmacokinetics , Diclofenac/administration & dosage , Diclofenac/chemistry , Humans , Skin Absorption/drug effects , Emulsions/chemistry , Skin/metabolism , Skin/drug effects , Rheology , Gels/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Administration, Topical , Emollients/chemistry , Emollients/pharmacokinetics , Emollients/administration & dosage
4.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998948

ABSTRACT

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Subject(s)
Administration, Cutaneous , Antigens , Immunization , Ionic Liquids , Ovalbumin , Transdermal Patch , Ionic Liquids/chemistry , Animals , Mice , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigens/immunology , Antigens/administration & dosage , Antigens/chemistry , Swine , Skin/metabolism , Skin/immunology , Drug Delivery Systems , Mice, Inbred C57BL , Female , Skin Absorption
5.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
6.
Sci Data ; 11(1): 755, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987285

ABSTRACT

Whether from environmental and occupational hazards or from topical pharmaceuticals, the human skin comes into contact with various chemicals every day. In vivo experiments not only require large investments of both time and money, but in vivo experiments can also be unethical due to the need to intentionally or incidentally expose humans or animals to toxic chemicals. Comparatively, in vitro experiments offer ethical and financial advantages when combined with the opportunity to selectively choose chemicals for experimentation. With in vivo experimentation being so infeasible, many scientists have chosen to make their in vitro data available publicly. Using these data, a detailed database containing 73 chemicals was created with a robust set of descriptors to be used in connection with mathematical modeling to predict diffusion, permeability, and partition coefficients. This resulting database is tailored to be easily used in various coding languages.


Subject(s)
Skin Absorption , Skin , Humans , Skin/metabolism , Databases, Factual , Models, Biological , Models, Theoretical
7.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992299

ABSTRACT

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Subject(s)
Skin Absorption , Solubility , Tolterodine Tartrate , Animals , Rats , Humans , Skin Absorption/drug effects , Skin Absorption/physiology , Tolterodine Tartrate/administration & dosage , Tolterodine Tartrate/pharmacokinetics , Thermodynamics , Solvents/chemistry , Skin/metabolism , Hydrogen-Ion Concentration , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacokinetics , Administration, Cutaneous , Limonene/administration & dosage , Limonene/pharmacokinetics , Limonene/chemistry , Male , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/administration & dosage , Rats, Sprague-Dawley
8.
Pharm Res ; 41(7): 1507-1520, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955999

ABSTRACT

PURPOSE: To develop a toolkit of test methods for characterizing potentially critical quality attributes (CQAs) of topical semisolid products and to evaluate how CQAs influence the rate and extent of active ingredient bioavailability (BA) by monitoring cutaneous pharmacokinetics (PK) using an In Vitro Permeation Test (IVPT). METHODS: Product attributes representing the physicochemical and structural (Q3) arrangement of matter, such as attributes of particles and globules, were assessed for a set of test acyclovir creams (Aciclostad® and Acyclovir 1A Pharma) and compared to a set of reference acyclovir creams (Zovirax® US, Zovirax® UK and Zovirax® Australia). IVPT studies were performed with all these creams using heat-separated human epidermis, evaluated with both, static Franz-type diffusion cells and a flow through diffusion cell system. RESULTS: A toolkit developed to characterize quality and performance attributes of these acyclovir topical cream products identified certain differences in the Q3 attributes and the cutaneous PK of acyclovir between the test and reference sets of products. The cutaneous BA of acyclovir from the set of reference creams was substantially higher than from the set of test creams. CONCLUSIONS: This research elucidates how differences in the composition or manufacturing of product formulations can alter Q3 attributes that modulate myriad aspects of topical product performance. The results demonstrate the importance of understanding the Q3 attributes of topical semisolid drug products, and of developing appropriate product characterization tests. The toolkit developed here can be utilized to guide topical product development, and to mitigate the risk of differences in product performance, thereby supporting a demonstration of bioequivalence (BE) for prospective topical generic products and reducing the reliance on comparative clinical endpoint BE studies.


Subject(s)
Acyclovir , Antiviral Agents , Biological Availability , Skin Absorption , Skin Cream , Therapeutic Equivalency , Acyclovir/pharmacokinetics , Acyclovir/administration & dosage , Humans , Skin Cream/pharmacokinetics , Skin Cream/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Administration, Cutaneous , Skin/metabolism
9.
Expert Opin Drug Deliv ; 21(6): 965-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962819

ABSTRACT

OBJECTIVE: Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS: Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS: P4 SLNs achieved a deeper diffusion depth of 180 µm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 µm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS: This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.


Subject(s)
Administration, Cutaneous , Chitosan , Drug Delivery Systems , Hyaluronic Acid , Nanoparticles , Needles , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Chitosan/chemistry , Drug Carriers/chemistry , Solubility , Lipids/chemistry , Microinjections , Skin Absorption , Skin/metabolism , Male , Rats, Sprague-Dawley , Rats , Liposomes
10.
Eur J Pharm Sci ; 200: 106848, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38986719

ABSTRACT

Transdermal drug delivery is suitable for low-molecular-weight drugs with specific lipophilicity, like fentanyl, which is widely used for cancer-induced pain management. However, fentanyl's transdermal therapy displays high intra-individual variability. Factors like skin characteristics at application sites and ambient temperature contribute to this variation. In this study, we developed a physics-based digital twin of the human body to cope with this variability and propose better adapted setups. This twin includes an in-silico skin model for drug penetration, a pharmacokinetic model, and a pharmacodynamic model. Based on the results of our simulations, applying the patch on the flank (side abdominal area) showed a 15.3 % higher maximum fentanyl concentration in the plasma than on the chest. Additionally, the time to reach this maximum concentration when delivered through the flank was 19.8 h, which was 10.3 h earlier than via the upper arm. Finally, this variation led to an 18 % lower minimum pain intensity for delivery via the flank than the chest. Moreover, the impact of seasonal changes on ambient temperature and skin temperature by considering the activity level was investigated. Based on our result, the fentanyl uptake flux by capillaries increased by up to 11.8 % from an inactive state in winter to an active state in summer. We also evaluated the effect of controlling fentanyl delivery by adjusting the temperature of the patch to alleviate the pain to reach a mild pain intensity (rated three on the VAS scale). By implementing this strategy, the average pain intensity decreased by 1.1 points, and the standard deviation for fentanyl concentration in plasma and average pain intensity reduced by 37.5 % and 33.3 %, respectively. Therefore, our digital twin demonstrated the efficacy of controlled drug release through temperature regulation, ensuring the therapy toward the intended target outcome and reducing therapy outcome variability. This holds promise as a potentially useful tool for physicians.


Subject(s)
Administration, Cutaneous , Analgesics, Opioid , Drug Delivery Systems , Fentanyl , Skin Absorption , Fentanyl/administration & dosage , Fentanyl/pharmacokinetics , Fentanyl/blood , Humans , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/blood , Drug Delivery Systems/methods , Skin/metabolism , Temperature , Skin Temperature/drug effects , Transdermal Patch , Models, Biological , Computer Simulation
11.
Pharm Dev Technol ; 29(6): 604-617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958230

ABSTRACT

Individuals experiencing hair loss, irrespective of gender, confront significant psychological challenges. This study explores the untapped potential of rosemary oil (ROS) to stimulate hair growth, addressing its limited permeability. The focus is on innovating ROS-loaded microsponges (MS) for enhanced topical application. Utilizing Box-Behnken design (33), the study optimizes ROS-MS compositions by varying solvent volume, polymer mix, and drug concentration. The optimized ROS-MS formulation exhibits noteworthy attributes: a 94% ± 0.04 production yield, 99.6% ± 0.5 encapsulation efficiency, and 96.4% ± 1.6 cumulative ROS release within 24 h. These microsponges exhibit uniformity with a particle size of 14.1 µm ± 4.5. The OPT-ROSMS-gel showcases favorable characteristics in appearance, spreadability, pH, drug content, and extrudability. Ex-vivo skin deposition tests highlight heightened permeability of OPT-ROSMS-gel compared to pure ROS-gel, resulting in three-fold increased follicular retention. In-vivo studies underscore the superior efficacy of OPT-ROSMS-gel, revealing enhanced hair development in length, thickness, and bulb diameter, surpassing ROS-gel and minoxidil by approximately 1.2 and 1.5 times, respectively, along with nearly two-fold increase in ß-catenin levels. In conclusion, microsponges emerge as a promising ROS delivery method, effectively addressing hair loss. This research advances hair loss treatments and underscores the significance of this innovative paradigm in fostering hair growth.


Subject(s)
Hair , Oils, Volatile , Animals , Hair/growth & development , Hair/drug effects , Oils, Volatile/administration & dosage , Oils, Volatile/chemistry , Oils, Volatile/pharmacokinetics , Skin Absorption/drug effects , Administration, Topical , Administration, Cutaneous , Drug Delivery Systems/methods , Drug Liberation , Particle Size , Alopecia/drug therapy , Male , Female , Gels , Permeability , Skin/metabolism , Skin/drug effects , Mice
12.
AAPS J ; 26(4): 76, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955873

ABSTRACT

The selection of skin is crucial for the in vitro permeation test (IVPT). The purpose of this study was to investigate the influence of different freezing-thawing processes on the barrier function of skin and the transdermal permeability of granisetron and lidocaine. Rat and hairless mouse skins were thawed at three different conditions after being frozen at -20℃ for 9 days: thawed at 4℃, room temperature (RT), and 32℃. There were no significant differences in the steady-state fluxes of drugs between fresh and thawed samples, but compared with fresh skin there were significant differences in lag time for the permeation of granisetron in rat skins thawed at RT and 32℃. Histological research and scanning electron microscopy images showed no obvious structural damage on frozen/thawed skin, while immunohistochemical staining and enzyme-linked immunosorbent assay for the tight junction (TJ) protein Cldn-1 showed significantly impaired epidermal barrier. It was concluded that the freezing-thawing process increases the diffusion rate of hydrophilic drugs partly due to the functional degradation of TJs. It's recommended that hairless, inbred strains and identical animal donors should be used, and the selected thawing method of skin should be validated prior to IVPT, especially for hydrophilic drugs.


Subject(s)
Freezing , Mice, Hairless , Permeability , Skin Absorption , Skin , Animals , Skin/metabolism , Mice , Skin Absorption/drug effects , Rats , Male , Administration, Cutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacokinetics , Rats, Sprague-Dawley
13.
Int J Pharm ; 661: 124409, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38955241

ABSTRACT

Lipid-based nanocarriers have been extensively utilized for the solubilization and cutaneous delivery of water-insoluble active ingredients in skincare formulations. However, their practical application is often limited by structural instability, leading to premature release and degradation of actives. Here we present highly robust multilamellar nanovesicles, prepared by the polyionic self-assembly of unilamellar vesicles with hydrolyzed collagen peptides, to stabilize all-trans-retinol and enhance its cutaneous delivery. Our results reveal that the reinforced multilayer structure substantially enhances dispersion stability under extremely harsh conditions, like freeze-thaw cycles, and stabilizes the encapsulated retinol. Interestingly, these multilamellar vesicles exhibit significantly lower cytotoxicity to human dermal fibroblasts than their unilamellar counterparts, likely due to their smaller particle number per weight, minimizing potential disruptions to cellular membranes. In artificial skin models, retinol-loaded multilamellar vesicles effectively upregulate collagen-related gene expression while suppressing the synthesis of metalloproteinases. These findings suggest that the robust multilamellar vesicles can serve as effective nanocarriers for the efficient delivery and stabilization of bioactive compounds in cutaneous applications.


Subject(s)
Administration, Cutaneous , Collagen , Fibroblasts , Lipids , Nanoparticles , Vitamin A , Vitamin A/administration & dosage , Vitamin A/chemistry , Humans , Collagen/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Fibroblasts/drug effects , Drug Stability , Skin/metabolism , Drug Carriers/chemistry , Cell Survival/drug effects , Skin Absorption , Skin, Artificial
14.
Int J Pharm ; 661: 124434, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972523

ABSTRACT

There has been a growing interest in hydroxytyrosol (HT) due to its powerful antioxidant and free-radical scavenging properties when added to formulations such as pharmaceuticals and cosmetics. To study the stability and transdermal properties of hydrogels and creams (HT-based formulations), a high-performance liquid chromatography method was developed for determining HT. In the Franz diffusion cell system, both hydrogel and cream show a rapid and similar penetration profile through the Bama miniature pig skin. However, the Strat-M® membrane exhibits slightly lower permeability and is selective to different formulations; that is, the cream has a permeability value of 10.69%, while the hydrogel has a value of 5.27%. The dynamics parameters from the permeation assays indicate that the model using the Strat-M® membrane can be used as a screening tool to evaluate the skin uptake and permeation efficacy of different formulations. Adding 3-O-ethyl-L-ascorbic acid to HT-based formulations can effectively prevent discoloration under prolonged high-temperature storage, while combining multiple antioxidants delays degradation most effectively. This study provides novel ideas for functional formulation optimization to enhance the realism and reproducibility of cosmetic products containing HT and provides scientific evidence for the production, packaging, shelf life, storage, and transportation of products.


Subject(s)
Antioxidants , Drug Stability , Permeability , Phenylethyl Alcohol , Skin Absorption , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacokinetics , Phenylethyl Alcohol/administration & dosage , Animals , Swine , Skin Absorption/drug effects , Antioxidants/chemistry , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Skin/metabolism , Hydrogels/chemistry , Administration, Cutaneous , Swine, Miniature , Skin Cream/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid , Ascorbic Acid/chemistry
15.
Int J Pharm ; 661: 124419, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972522

ABSTRACT

This paper studies the transport of monoclonal antibodies through skin tissue and initial lymphatics, which impacts the pharmacokinetics of monoclonal antibodies. Our model integrates a macroscale representation of the entire skin tissue with a mesoscale model that focuses on the papillary dermis layer. Our results indicate that it takes hours for the drugs to disperse from the injection site to the papillary dermis before entering the initial lymphatics. Additionally, we observe an inhomogeneous drug distribution in the interstitial space of the papillary dermis, with higher drug concentrations near initial lymphatics and lower concentrations near blood capillaries. To validate our model, we compare our numerical simulation results with experimental data, finding a good alignment. Our parametric studies on the drug molecule properties and injection parameters suggest that a higher diffusion coefficient increases the transport and uptake rate while binding slows down these processes. Furthermore, shallower injection depths lead to faster lymphatic uptake, whereas the size of the injection plume has a minor effect on the uptake rate. These findings advance our understanding of drug transport and lymphatic absorption after subcutaneous injection, offering valuable insights for optimizing drug delivery strategies and the design of biotherapeutics.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Injections, Subcutaneous , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Skin Absorption , Skin/metabolism , Lymphatic System/metabolism , Biological Transport , Humans , Computer Simulation , Animals
16.
Int J Pharm ; 661: 124435, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986965

ABSTRACT

RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Skin Absorption , Humans , Animals , Drug Delivery Systems/methods , Skin/metabolism , Skin Diseases/drug therapy , RNA/administration & dosage , Oligonucleotides/administration & dosage
17.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2246-2257, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044588

ABSTRACT

The dramatic rise in the number of obese/overweight people is a global public health challenge that urgently requires novel and effective therapies. In this study, we designed a fast dissolving polymer microneedle array patch (SGN-PVP/PVA-MN) with sitagliptin as a model drug for treating obesity, focusing on the preparation process of the patch. We then characterized the morphology and dimensions of SGN-PVP/PVA-MN. Furthermore, we delved into the mechanical properties, solubility, skin-puncturing capability, and transdermal drug diffusion and release kinetics of SGN-PVP/PVA-MN. The results demonstrated that SGN-PVP/PVA-MN exhibited favorable morphology and mechanical properties, effectively penetrating the stratum corneum and creating microchannels for rapid transdermal drug diffusion. The in vitro transdermal diffusion assays revealed the release of 64.5% of the drug within 2 min and 95.7% within 10 min. With rapid dissolution and high drug diffusion efficiency, SGN-PVP/PVA-MN is poised to serve as an effective and safe treatment option for the individuals with obesity.


Subject(s)
Administration, Cutaneous , Needles , Sitagliptin Phosphate , Drug Delivery Systems , Solubility , Polymers/chemistry , Skin Absorption , Obesity , Animals , Transdermal Patch , Humans , Swine
18.
Int J Pharm ; 661: 124451, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38992735

ABSTRACT

We extended a mechanistic, physics-based framework of the dry down process, previously developed for liquids and electrolytes, to solids and coded it into the latest UB/UC/P&G skin permeation model, herein renamed DigiSkin. The framework accounts for the phase change of the permeant from dissolved in a solvent (liquid) to precipitated on the skin surface (solid). The evaporation rate for the solid is reduced due to lower vapor pressure for the solid state versus subcooled liquid. These vapor pressures may differ by two orders of magnitude. The solid may gradually redissolve and penetrate the skin. The framework was tested by simulating the in vitro human skin permeation of the 38 cosmetically relevant solid compounds reported by Hewitt et al., J. Appl. Toxicol. 2019, 1-13. The more detailed handling of the evaporation process greatly improved DigiSkin evaporation predictions (r2 = 0.89). Further, we developed a model reliability prediction score classification using diverse protein reactivity data and identified that 15 of 38 compounds are out of model scope. Dermal delivery predictions for the remaining chemicals have excellent agreement with experimental data. The analysis highlighted the sensitivity of water solubility and equilibrium vapor pressure values on the DigiSkin predictions outcomes influencing agreement with the experimental observations.


Subject(s)
Cosmetics , Keratins , Skin Absorption , Skin , Solvents , Solvents/chemistry , Humans , Hydrogen-Ion Concentration , Skin/metabolism , Keratins/chemistry , Cosmetics/chemistry , Cosmetics/pharmacokinetics , Administration, Cutaneous , Solubility , Models, Biological , Pharmaceutical Vehicles/chemistry , Phase Transition
19.
Int J Pharm ; 661: 124446, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38996825

ABSTRACT

The pharmaceutical industry has experienced a remarkable increase in the use of subcutaneous injection of monoclonal antibodies (mAbs), attributed mainly to its advantages in reducing healthcare-related costs and enhancing patient compliance. Despite this growth, there is a limited understanding of how tissue mechanics, physiological parameters, and different injection devices and techniques influence the transport and absorption of the drug. In this work, we propose a high-fidelity computational model to study drug transport and absorption during and after subcutaneous injection of mAbs. Our numerical model includes large-deformation mechanics, fluid flow, drug transport, and blood and lymphatic uptake. Through this computational framework, we analyze the tissue material responses, plume dynamics, and drug absorption. We analyze different devices, injection techniques, and physiological parameters such as BMI, flow rate, and injection depth. Finally, we compare our numerical results against the experimental data from the literature.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Injections, Subcutaneous , Humans , Biological Transport , Computer Simulation , Skin Absorption
20.
AAPS PharmSciTech ; 25(6): 142, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898170

ABSTRACT

Skin diseases pose challenges in treatment due to the skin's complex structure and protective functions. Topical drug delivery has emerged as a preferred method for treating these conditions, offering localized therapy with minimal systemic side effects. However, the skin's barrier properties frequently limit topical treatments' efficacy by preventing drug penetration into deeper skin layers. In recent years, laser-assisted drug delivery (LADD) has gained attention as a promising strategy to overcome these limitations. LADD involves using lasers to create microchannels in the skin, facilitating the deposition of drugs and enhancing their penetration into the target tissue. Several lasers, such as fractional CO2, have been tested to see how well they work at delivering drugs. Despite the promising outcomes demonstrated in preclinical and clinical studies, several challenges persist in implementing LADD, including limited penetration depth, potential tissue damage, and the cost of LADD systems. Furthermore, selecting appropriate laser parameters and drug formulations is crucial to ensuring optimal therapeutic outcomes. Nevertheless, LADD holds significant potential for improving treatment efficacy for various skin conditions, including skin cancers, scars, and dermatological disorders. Future research efforts should focus on optimizing LADD techniques, addressing safety concerns, and exploring novel drug formulations to maximize the therapeutic benefits of this innovative approach. With continued advancements in laser technology and pharmaceutical science, LADD has the potential to revolutionize the field of dermatology and enhance patient care.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Lasers , Skin Absorption , Skin Diseases , Skin , Humans , Drug Delivery Systems/methods , Skin/metabolism , Skin Absorption/physiology , Skin Absorption/drug effects , Skin Diseases/drug therapy , Animals
SELECTION OF CITATIONS
SEARCH DETAIL