Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.716
1.
Front Immunol ; 15: 1354710, 2024.
Article En | MEDLINE | ID: mdl-38726010

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Cancer Vaccines , Melanoma , Programmed Cell Death 1 Receptor , Skin Neoplasms , Humans , Melanoma/immunology , Melanoma/therapy , Melanoma/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cancer Vaccines/administration & dosage , Male , Female , Middle Aged , Aged , Immune Checkpoint Inhibitors/therapeutic use , Antibodies, Monoclonal/therapeutic use , Melanoma, Cutaneous Malignant , Treatment Outcome , Adjuvants, Immunologic/therapeutic use , Adjuvants, Immunologic/administration & dosage
2.
Nat Commun ; 15(1): 3664, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38693123

The application of mammalian target of rapamycin inhibition (mTORi) as primary prophylactic therapy to optimize T cell effector function while preserving allograft tolerance remains challenging. Here, we present a comprehensive two-step therapeutic approach in a male patient with metastatic cutaneous squamous cell carcinoma and heart transplantation followed with concomitant longitudinal analysis of systemic immunologic changes. In the first step, calcineurin inhibitor/ mycophenolic acid is replaced by the mTORi everolimus to achieve an improved effector T cell status with increased cytotoxic activity (perforin, granzyme), enhanced proliferation (Ki67) and upregulated activation markers (CD38, CD69). In the second step, talimogene laherparepvec (T-VEC) injection further enhances effector function by switching CD4 and CD8 cells from central memory to effector memory profiles, enhancing Th1 responses, and boosting cytotoxic and proliferative activities. In addition, cytokine release (IL-6, IL-18, sCD25, CCL-2, CCL-4) is enhanced and the frequency of circulating regulatory T cells is increased. Notably, no histologic signs of allograft rejection are observed in consecutive end-myocardial biopsies. These findings provide valuable insights into the dynamics of T cell activation and differentiation and suggest that timely initiation of mTORi-based primary prophylaxis may provide a dual benefit of revitalizing T cell function while maintaining allograft tolerance.


Carcinoma, Squamous Cell , Graft Rejection , Heart Transplantation , Herpesvirus 1, Human , MTOR Inhibitors , Heart Transplantation/adverse effects , Humans , Male , Graft Rejection/prevention & control , Graft Rejection/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/drug therapy , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Middle Aged , Everolimus/pharmacology , Everolimus/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors
4.
Curr Oncol ; 31(5): 2481-2487, 2024 04 28.
Article En | MEDLINE | ID: mdl-38785466

In recent years, there has been an observed increase in the frequency of cutaneous carcinoma, which correlates with sun exposure. This study aims to explore the variances of tumor characteristics and immune response markers among patients diagnosed with cutaneous squamous-cell carcinoma (SCC) and basosquamous-cell carcinoma (BSC) with varying levels of sun exposure. The objective is to elucidate the potential influence of sun exposure on tumor progression and immune response in these types of carcinomas. We conducted a retrospective observational study that included 132 patients diagnosed with SCC and BSC. Participants were separated into high- and low-sun exposure groups. Tumor characteristics and immune response markers, including lymphocyte percentage (LY%), neutrophil-to-lymphocyte ratio (NLR), and lymphocyte-to-monocyte ratio (LMR), were assessed using the Mann-Whitney U test. Our findings revealed the interplay between sun exposure, inflammation, aging, and immune response. In 80% of cases, it was found that individuals had high sun exposure throughout their lifetime. Patients in the high sun exposure category had a significantly higher LY% than those with low sun exposure (24.22 ± 7.64 vs. 20.71 ± 8.10, p = 0.041). Also, the NLR was lower in patients with high sun exposure (3.08 ± 1.47 vs. 3.94 ± 2.43, p = 0.023). Regarding inflammatory markers, the erythrocyte sedimentation rate (ESR), LY%, NLR, and LMR showed significant differences between the two groups. Patients who were diagnosed with SCC had higher ESR values (p = 0.041), higher LY% (p = 0.037), higher NLR (p = 0.041), and lower LMR (p = 0.025). This study provides evidence supporting distinct tumor characteristics and immune response patterns in patients diagnosed with SCC and BSC with a high sun exposure history. These findings imply that sun exposure may contribute to tumor progression and influence the immune response in individuals with SCC and BSC.


Carcinoma, Squamous Cell , Skin Neoplasms , Sunlight , Humans , Male , Female , Skin Neoplasms/immunology , Carcinoma, Squamous Cell/immunology , Middle Aged , Aged , Retrospective Studies , Carcinoma, Basosquamous/immunology , Adult
5.
Arch Dermatol Res ; 316(6): 219, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787413

Skin cutaneous melanoma (SKCM) is malignant cancer known for its high aggressiveness and unfavorable prognosis, particularly in advanced tumors. Anoikis is a specific pattern of programmed cell death associated with tumor regeneration, migration, and metastasis. Nevertheless, limited research has been conducted to investigate the function of anoikis in SKCM. Anoikis-related genes (ARGs) were extracted from Genecards to identify SKCM subtypes and to explore the immune microenvironment between the different subtypes. Prognostic models of SKCM were developed by LASSO COX regression analysis. Subsequently, the predictive value of risk scores in SKCM and the association with immunotherapy were further explored. Finally, the expression of 6 ARGs involved in the model construction was detected by immunohistochemistry and PCR. This study identified 20 ARGs significantly associated with SKCM prognosis and performed disease subtype analysis of samples based on these genes, different subtypes exhibited significantly different clinical features and tumor immune microenvironment (TIME) landscapes. The risk score prognostic model was generated by further screening and identification of the six ARGs. The model exhibited a high degree of sensitivity and specificity to predict the prognosis of individuals with SKCM. These high- and low-risk populations showed different immune statuses and drug sensitivity. Further immunohistochemical and PCR experiments identified significant differential expression of the six ARGs in tumor and normal samples. Anoikis-based features may serve as novel prognostic biomarkers for SKCM and may provide important new insights for survival prediction and individualized treatment development.


Anoikis , Biomarkers, Tumor , Immunotherapy , Melanoma , Skin Neoplasms , Tumor Microenvironment , Humans , Melanoma/immunology , Melanoma/diagnosis , Melanoma/mortality , Melanoma/therapy , Melanoma/genetics , Skin Neoplasms/immunology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Skin Neoplasms/mortality , Skin Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Tumor Microenvironment/immunology , Prognosis , Immunotherapy/methods , Female , Male , Melanoma, Cutaneous Malignant , Middle Aged , Gene Expression Regulation, Neoplastic
7.
Sci Rep ; 14(1): 12516, 2024 05 31.
Article En | MEDLINE | ID: mdl-38822058

Pleomorphic dermal sarcomas are infrequent neoplastic skin tumors, manifesting in regions of the skin exposed to ultraviolet radiation. Diagnosing the entity can be challenging and therapeutic options are limited. We analyzed 20 samples of normal healthy skin tissue (SNT), 27 malignant melanomas (MM), 20 cutaneous squamous cell carcinomas (cSCC), and 24 pleomorphic dermal sarcomas (PDS) using mass spectrometry. We explored a potential cell of origin in PDS and validated our findings using publicly available single-cell sequencing data. By correlating tumor purity (TP), inferred by both RNA- and DNA-sequencing, to protein abundance, we found that fibroblasts shared most of the proteins correlating to TP. This observation could also be made using publicly available SNT single cell sequencing data. Moreover, we studied relevant pathways of receptor/ligand (R/L) interactions. Analysis of R/L interactions revealed distinct pathways in cSCC, MM and PDS, with a prominent role of PDGFRB-PDGFD R/L interactions and upregulation of PI3K/AKT signaling pathway. By studying differentially expressed proteins between cSCC and PDS, markers such as MAP1B could differentiate between these two entities. To this end, we studied proteins associated with immunosuppression in PDS, uncovering that immunologically cold PDS cases shared a "negative regulation of interferon-gamma signaling" according to overrepresentation analysis.


Melanoma , Proteomics , Skin Neoplasms , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/immunology , Proteomics/methods , Melanoma/metabolism , Melanoma/pathology , Melanoma/immunology , Fibroblasts/metabolism , Sarcoma/metabolism , Sarcoma/pathology , Sarcoma/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/immunology , Female , Male , Melanoma, Cutaneous Malignant , Immune Evasion , Middle Aged , Signal Transduction , Aged
8.
Hum Immunol ; 85(3): 110805, 2024 May.
Article En | MEDLINE | ID: mdl-38703415

Epidermolysis bullosa (EB) is an umbrella term for a group of rare inherited skin disorders characterised by mucocutaneous fragility. Patients suffer from blisters and chronic wounds that arise spontaneously or following minor mechanical trauma, often resulting in inflammation, scarring and fibrosis due to poor healing. The recessive form of dystrophic EB (RDEB) has a particularly severe phenotype and is caused by mutations in the COL7A1 gene, encoding the collagen VII protein, which is responsible for adhering the epidermis and dermis together. One of the most feared and devastating complications of RDEB is the development of an aggressive form of cutaneous squamous cell carcinoma (cSCC), which is the main cause of mortality in this patient group. However, pathological drivers behind the development and progression of RDEB-associated cSCC (RDEB-cSCC) remain somewhat of an enigma, and the evidence to date points towards a complex process. Currently, there is no cure for RDEB-cSCC, and treatments primarily focus on prevention, symptom management and support. Therefore, there is an urgent need for a comprehensive understanding of this cancer's pathogenesis, with the aim of facilitating the discovery of drug targets. This review explores the current knowledge of RDEB-cSCC, emphasising the important role of the immune system, genetics, fibrosis, and the tumour-promoting microenvironment, all ultimately intricately interconnected.


Carcinoma, Squamous Cell , Collagen Type VII , Epidermolysis Bullosa Dystrophica , Skin Neoplasms , Humans , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/etiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/immunology , Collagen Type VII/genetics , Mutation , Animals , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Fibrosis , Genes, Recessive
9.
Arch Dermatol Res ; 316(6): 262, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795156

Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.


Immunotherapy , Melanoma , RNA-Seq , Skin Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Melanoma/genetics , Melanoma/immunology , Melanoma/therapy , Melanoma/drug therapy , Immunotherapy/methods , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Prognosis , Melanoma, Cutaneous Malignant , Male , Transcriptome , Female , Treatment Outcome , Single-Cell Gene Expression Analysis
10.
Front Immunol ; 15: 1369531, 2024.
Article En | MEDLINE | ID: mdl-38799429

Background: Desmoplastic melanoma (DM) is a rare subtype of melanoma characterized by high immunogenicity which makes it particularly suitable for immune checkpoint inhibitors (ICIs) treatment. Case presentation: We report the case of a 53-year-old man with metastatic DM successfully treated with the combination of anti-CTLA-4 and anti-PD-1 antibodies, who developed serious immune-related adverse events (irAEs). The primary tumor was characterized by absent PD-L1 expression and no-brisk lymphocytes infiltration. NGS showed absence of BRAF mutation, a high tumor mutational burden, and an UV-induced DNA damage signature. Metastatic lesions regressed rapidly after few cycles of ICIs until complete response, however the patient developed serious irAEs including hypothyroidism, adrenal deficiency, and acute interstitial nephritis which led to the definitive suspension of treatment. Currently, the patient has normal renal functionality and no disease relapse after 26 months from starting immunotherapy, and after 9 months from its definitive suspension. Conclusion: Efficacy and toxicity are two sides of the same coin of high sensitivity to ICIs in DM. For this reason, these patients should be closely monitored during ICIs therapy to promptly identify serious side effects and to correctly manage them.


Immune Checkpoint Inhibitors , Melanoma , Humans , Male , Melanoma/drug therapy , Melanoma/immunology , Middle Aged , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Immunotherapy/methods , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , CTLA-4 Antigen/antagonists & inhibitors , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors
11.
Acta Oncol ; 63: 398-410, 2024 May 28.
Article En | MEDLINE | ID: mdl-38804839

BACKGROUND AND PURPOSE: Calcium electroporation (CaEP) involves injecting calcium into tumour tissues and using electrical pulses to create membrane pores that induce cell death. This study assesses resultant immune responses and histopathological changes in patients with cutaneous metastases. PATIENTS/MATERIALS AND METHODS: The aimed cohort comprised 24 patients with metastases exceeding 5 mm. Tumours were treated once with CaEP (day 0) or twice (day 28). Biopsies were performed on days 0 and 2, with additional samples on days 7, 28, 30, 35, 60, and 90 if multiple tumours were treated. The primary endpoint was the change in tumour-infiltrating lymphocytes (TILs) two days post-treatment, with secondary endpoints evaluating local and systemic immune responses via histopathological analysis of immune markers, necrosis, and inflammation. RESULTS: Seventeen patients, with metastases primarily from breast cancer (14 patients), but also lung cancer (1), melanoma (1), and urothelial cancer (1), completed the study. Of the 49 lesions treated, no significant changes in TIL count or PD-L1 expression were observed. However, there was substantial necrosis and a decrease in FOXP3-expression (p = 0.0025) noted, with a slight increase in CD4+ cells but no changes in CD3, CD8, or CD20 expressions. Notably, four patients showed reduced tumour invasiveness, including one case of an abscopal response. INTERPRETATION: This exploratory study indicates that CaEP can be an effective anti-tumour therapy potentially enhancing immunity. Significant necrosis and decreased regulatory lymphocytes were observed, although TIL count remained unchanged. Several patients exhibited clinical signs of immune response following treatment.


Lymphocytes, Tumor-Infiltrating , Skin Neoplasms , Tumor Microenvironment , Humans , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Female , Lymphocytes, Tumor-Infiltrating/immunology , Male , Aged , Middle Aged , Tumor Microenvironment/immunology , Calcium/metabolism , Aged, 80 and over , Electroporation/methods , Adult , Necrosis/immunology , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Electrochemotherapy/methods
15.
J Cancer Res Clin Oncol ; 150(5): 275, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796605

PURPOSE: Adjuvant immunotherapy with immune checkpoint blockade(ICB) has greatly reduced the risk of recurrence and metastatic spread in early and advanced melanoma. However, not all patients benefit from adjuvant treatment: many patients show disease recurrence despite therapy, while those without recurrence harbor the risk for potentially irreversible adverse events. Biomarkers to select patients benefitting most from adjuvant therapy are currently lacking. As body composition assessment using CT images has shown promising results as a prognostic biomarker in stage IV melanoma, we aim to study the applicability of body composition parameters also in adjuvant melanoma treatment. METHODS: We analyze body composition features via CT scans in a retrospective cohort of 109 patients with resected stage IIB-IV melanoma receiving an adjuvant first-line treatment with ICB in our department. In this analysis, we focus on the impact of body composition, especially the presence of low skeletal muscle mass (LSMM), on patients' survival and occurrence of adverse events (AEs). RESULTS: In uni- and multivariate analyses, we identify an association between CT-measured LSMM and melanoma-specific survival in patients treated with adjuvant ICB. Furthermore, LSMM is associated with a lower risk for therapy-related AEs, especially hypothyroidism, fatigue, and xerostomia. Conventional serological biomarkers e.g. S100 and LDH and measures of adipose tissue compartments did not show a correlation with survival or the occurrence of AEs. CONCLUSIONS: LSMM constitutes a novel biomarker for melanoma-specific survival in patients treated with adjuvant ICB.


Immune Checkpoint Inhibitors , Melanoma , Muscle, Skeletal , Humans , Melanoma/mortality , Melanoma/drug therapy , Melanoma/pathology , Melanoma/therapy , Male , Female , Retrospective Studies , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Aged , Muscle, Skeletal/pathology , Muscle, Skeletal/diagnostic imaging , Adult , Body Composition , Chemotherapy, Adjuvant/methods , Prognosis , Aged, 80 and over , Skin Neoplasms/pathology , Skin Neoplasms/mortality , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Tomography, X-Ray Computed
16.
Front Immunol ; 15: 1255859, 2024.
Article En | MEDLINE | ID: mdl-38646524

Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.


Lymphoma, T-Cell, Cutaneous , Mice, Inbred C57BL , Microbiota , Skin Neoplasms , Skin , Animals , Microbiota/drug effects , Mice , Skin/microbiology , Skin/pathology , Skin/immunology , Skin/drug effects , Skin Neoplasms/microbiology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Lymphoma, T-Cell, Cutaneous/microbiology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/therapy , Disease Models, Animal , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Cell Line, Tumor , Female , Humans
17.
Front Immunol ; 15: 1387316, 2024.
Article En | MEDLINE | ID: mdl-38660305

Background: Skin Cutaneous Melanoma (SKCM) incidence is continually increasing, with chemotherapy and immunotherapy being among the most common cancer treatment modalities. This study aims to identify novel biomarkers for chemotherapy and immunotherapy response in SKCM and explore their association with oxidative stress. Methods: Utilizing TCGA-SKCM RNA-seq data, we employed Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) networks to identify six core genes. Gene co-expression analysis and immune-related analysis were conducted, and specific markers associated with oxidative stress were identified using Gene Set Variation Analysis (GSVA). Single-cell analysis revealed the expression patterns of Oxidative Stress-Associated Genes (OSAG) in the tumor microenvironment. TIDE analysis was employed to explore the association between immune therapy response and OSAG, while CIBERSORT was used to analyze the tumor immune microenvironment. The BEST database demonstrated the impact of the Oxidative Stress signaling pathway on chemotherapy drug resistance. Immunohistochemical staining and ROC curve evaluation were performed to assess the protein expression levels of core genes in SKCM and normal samples, with survival analysis utilized to determine their diagnostic value. Results: We identified six central genes associated with SKCM metastasis, among which the expression of DSC2 and DSC3 involved in the oxidative stress pathway was closely related to immune cell infiltration. DSC2 influenced drug resistance in SKMC patients. Furthermore, downregulation of DSC2 and DSC3 expression enhanced the response of SKCM patients to immunotherapy. Conclusion: This study identified two Oxidative Stress-Associated genes as novel biomarkers for SKCM. Additionally, targeting the oxidative stress pathway may serve as a new strategy in clinical practice to enhance SKCM chemotherapy and sensitivity.


Biomarkers, Tumor , Melanoma , Oxidative Stress , Skin Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Melanoma/immunology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Prognosis , Melanoma, Cutaneous Malignant , Gene Expression Regulation, Neoplastic , Protein Interaction Maps , Female , Male , Gene Expression Profiling , Transcriptome , Drug Resistance, Neoplasm/genetics , Immunotherapy/methods , Middle Aged , Gene Regulatory Networks
18.
Medicine (Baltimore) ; 103(17): e37966, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669390

Immune checkpoint inhibitors (ICIs) significantly improve the survival outcomes of patients with advanced melanoma. However, response varies among from patient to patient and predictive biomarkers are urgently needed. We integrated mutational profiles from next-generation sequencing (NGS) data and clinicopathologic characteristics of melanoma patients to investigate whether tumor genomic profiling contribute to clinical benefit of ICIs treatment. The majority of genes identified with high mutation frequency have all been reported as well-known immunotherapy-related genes. Thirty-five patients (43.2%) had at least 1 BRAF/RAS/NF1 mutation. The other 46 (56.8%) melanomas without BRAF/RAS/NF1 mutation were classified as Triple-WT. We identified mutational signature 6 (known as associated with defective DNA mismatch repair) among cases in this cohort. Compared to patients with PD-L1 expression (TPS < 1%), patients with PD-L1 expression (TPS ≥ 1%) had significantly higher median progression-free survival (mPFS), but no significantly higher durable clinical benefit (DCB) rate. In contrast, FAT1, ATM, BRCA2, LRP1B, and PBRM1 mutations only occurred frequently in patients with DCB, irrespective of PD-L1 expression status. Our study explored molecular signatures of melanoma patients who respond to ICIs treatment and identified a series of mutated genes that might serve as predictive biomarker for ICIs responses in melanoma.


Cadherins , Immune Checkpoint Inhibitors , Melanoma , Mutation , Neurofibromin 1 , Proto-Oncogene Proteins B-raf , Receptors, LDL , Humans , Melanoma/genetics , Melanoma/drug therapy , Melanoma/immunology , Melanoma/mortality , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Aged , Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing , B7-H1 Antigen/genetics , Adult , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Progression-Free Survival , Proto-Oncogene Proteins p21(ras)/genetics
19.
Medicine (Baltimore) ; 103(17): e37900, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669429

Anoikis is considered strongly associated with a biological procession of tumors. Herein, we utilized anoikis-related genes (ARGs) to predict the prognosis and immunotherapeutic efficacy for skin cutaneous melanoma (SKCM). RNA-seq data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. After dividing patients into novel subtypes based on the expression of prognostic ARGs, K-M survival was conducted to compare the survival status. Subsequently, differentially expressed ARGs were identified and the predictive model was established. The predictive effects were validated using the areas under the curve about the receiver operating characteristic. Moreover, tumor mutation burden, the enriched functional pathway, immune cells and functions, and the immunotherapeutic response were also analyzed and compared. The distribution of model genes at cell level was visualized by the single-cell seq with tumor immune single-cell hub database. Patients of The Cancer Genome Atlas-SKCM cohort were divided into 2 clusters, the cluster 1 performed a better prognosis. Cluster 2 was more enriched in metabolism-related pathways whereas cluster 1 was more associated with immune pathways. A predictive risk model was established with 6 ARGs, showing the areas under the curves of 1-year, 3-year, and 5-year ROC were 0.715, 0,720, and 0.731, respectively. Moreover, risk score was negatively associated with tumor mutation burden and immune-related pathways enrichment. In addition, patients with high-risk scores performed immunosuppressive status but the decreasing scores enhanced immune cell infiltration, immune function activation, and immunotherapeutic response. In this study, we established a novel signature in predicting prognosis and immunotherapy. It can be considered reliable to formulate the complex treatment for SKCM patients.


Anoikis , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/mortality , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Anoikis/genetics , Prognosis , Melanoma, Cutaneous Malignant , Male , Female , Immunotherapy/methods , Middle Aged , ROC Curve , Gene Expression Regulation, Neoplastic
20.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673829

Melanoma is the leading cause of global skin cancer-related death and currently ranks as the third most commonly diagnosed cancer in Australia. Melanoma patients with in-transit metastases (ITM), a type of locoregional metastasis located close to the primary tumor site, exhibit a high likelihood of further disease progression and poor survival outcomes. Immunotherapies, particularly immune checkpoint inhibitors (ICI), have demonstrated remarkable efficacy in ITM patients with reduced occurrence of further metastases and prolonged survival. The major challenge of immunotherapeutic efficacy lies in the limited understanding of melanoma and ITM biology, hindering our ability to identify patients who likely respond to ICIs effectively. In this review, we provided an overview of melanoma and ITM disease. We outlined the key ICI therapies and the critical immune features associated with therapy response or resistance. Lastly, we dissected the underlying biological components, including the cellular compositions and their communication networks within the tumor compartment, to enhance our understanding of the interactions between immunotherapy and melanoma, providing insights for future investigation and the development of drug targets and predictive biomarkers.


Immune Checkpoint Inhibitors , Melanoma , Skin Neoplasms , Tumor Microenvironment , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Neoplasm Metastasis , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Tumor Microenvironment/drug effects
...