Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Commun Biol ; 7(1): 1207, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342033

ABSTRACT

Cyclopamine, a natural alkaloid, can act as an agonist when it binds to the Cysteine-Rich Domain (CRD) of Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explore the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower free energy barrier of ~2 kcal/mol, and expansion of hydrophobic tunnel to facilitate cholesterol transport agrees with cyclopamine's agonistic behavior when bound to CRD. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~4 kcal/mol and restricted hydrophobic tunnel shows cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there is a slightly larger inactive population at equilibrium and an increased free energy barrier (~3.5 kcal/mol) exhibiting an overall weak antagonistic effect. These findings show cyclopamine's domain-specific modulation of SMO regulates Hedgehog signaling and cholesterol transport.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Smoothened Receptor , Veratrum Alkaloids , Veratrum Alkaloids/pharmacology , Veratrum Alkaloids/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/chemistry , Binding Sites , Cholesterol/metabolism , Humans , Animals , Mutation
2.
Biophys J ; 122(7): 1400-1413, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36883002

ABSTRACT

Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 µs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism , Receptors, G-Protein-Coupled/metabolism , Molecular Dynamics Simulation , Cholesterol/metabolism , Hedgehog Proteins/metabolism
3.
Biochim Biophys Acta Biomembr ; 1864(8): 183946, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35483421

ABSTRACT

The Smoothened receptor (SMO, a 7 pass transmembrane domain, Class F GPCR family protein) plays a crucial role in the Hedgehog (HH) signaling pathway, which is involved in embryonic development and is implicated in various types of cancer throughout the animal kingdom. In the absence of HH signaling, SMO is inhibited by Patched 1 (PTC1; a 12 pass transmembrane domain protein), which is localized in the primary cilia. HH binding leads to the dislocation of PTC1 from the cilia, thus making way for SMO to localize in the primary cilia, as an essential prerequisite for its activation. We have carried out MARTINI coarse-grained molecular dynamics simulations of SMO in POPC and in ciliary membrane models, respectively, to study the interactions of SMO with cholesterol and other lipid molecules in the ciliary membrane, and to gain molecular-level insights into the role of the primary cilia in shaping the functional dynamics of SMO. We are able to identify the interaction of membrane cholesterols with definite sites and domains within SMO and relate them with known cholesterol-binding sequence and structure motifs. We show that cholesterol interactions with the transmembrane domain TMD, unlike those with the cysteine-rich domain (CRD) and the intracellular domain (ICD), are through residues belonging to known cholesterol-binding motifs. Notably, a few persistent interactions of cholesterol with lower TM cholesterol-binding domains are governed by the presence of multiple cholesterol-binding motifs. These analyses have also helped to identify and define a strict cholesterol consensus motif (CCM), which may well steer cholesterol into the hitherto identified binding sites within the TMD of SMO. We have also reported the interaction of phosphatidylinositol 4-phosphate with the intracellular region of transmembrane (TM) helices (TM1, TM3, TM4, and TM5), intracellular loop1, helix8, and Arg/Lys clusters of the ICD. Structural analysis of SMO domains shows significant changes in the CRD and ICD, during the course of the simulation. Further detailed analysis of the dynamics of the TMD reveals the movements of TM5, TM6, and TM7, linked with the helix8, which are possibly involved in shaping the conformational disposition of the ICD. The movement of these TM helices could possibly be a consequence of interactions involving the extracellular domain and extracellular loops. In addition, our analysis also shows that phosphatidylinositol-4-phosphate (PI4P), along with some ICD cholesterols, are implicated in anchoring SMO in the membrane.


Subject(s)
Cilia , Hedgehog Proteins , Animals , Cholesterol/metabolism , Cilia/metabolism , Hedgehog Proteins/metabolism , Membrane Lipids/metabolism , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism
4.
Biochem Pharmacol ; 196: 114647, 2022 02.
Article in English | MEDLINE | ID: mdl-34111427

ABSTRACT

The Hedgehog (Hh) family of lipid-modified signaling proteins directs embryonic tissue patterning and postembryonic tissue homeostasis, and dysregulated Hh signaling drives familial and sporadic cancers. Hh ligands bind to and inhibit the tumor suppressor Patched and allow the oncoprotein Smoothened (SMO) to accumulate in cilia, which in turn activates the GLI family of transcription factors. Recent work has demonstrated that endogenous cholesterol and oxidized cholesterol derivatives (oxysterols) bind and modulate SMO activity. Here we discuss the myriad sterols that activate or inhibit the Hh pathway, with emphasis on endogenous 24(S),25-epoxycholesterol and 3ß,5α-dihydroxycholest-7-en-6-one, and propose models of sterol regulation of SMO. Synthetic inhibitors of SMO have long been the focus of drug development efforts. Here, we discuss the possible utility of steroidal SMO ligands or inhibitors of enzymes involved in sterol metabolism as cancer therapeutics.


Subject(s)
Carcinogenesis/metabolism , Hedgehog Proteins/metabolism , Signal Transduction/physiology , Smoothened Receptor/metabolism , Sterols/metabolism , Animals , Carcinogenesis/chemistry , Hedgehog Proteins/chemistry , Humans , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Smoothened Receptor/chemistry , Sterols/chemistry
5.
J Med Chem ; 64(18): 13830-13840, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34492176

ABSTRACT

Class F G protein-coupled receptors are characterized by a large extracellular domain (ECD) in addition to the common transmembrane domain (TMD) with seven α-helixes. For smoothened receptor (SMO), structural studies revealed dissected ECD and TMD, and their integrated assemblies. However, distinct assemblies were reported under different circumstances. Using an unbiased approach based on four series of cross-conjugated bitopic ligands, we explore the relationship between the active status and receptor assembly. Different activity dependency on the linker length for these bitopic ligands corroborates the various occurrences of SMO assembly. These results reveal a rigid "near" assembly for active SMO, which is in contrast to previous results. Conversely, inactive SMO adopts a free ECD, which would be remotely captured at "far" assembly by cholesterol. Altogether, we propose a mechanism of cholesterol flow-caused SMO activation involving an erection of ECD from far to near assembly.


Subject(s)
Hydroxycholesterols/metabolism , Smoothened Receptor/metabolism , Anilides/chemical synthesis , Anilides/metabolism , Animals , Binding Sites , HEK293 Cells , Humans , Hydroxycholesterols/chemical synthesis , Ligands , Mice , NIH 3T3 Cells , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/metabolism , Protein Domains , Pyridines/chemical synthesis , Pyridines/metabolism , Smoothened Receptor/agonists , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/chemistry
6.
Nat Commun ; 12(1): 3919, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168128

ABSTRACT

The class Frizzled of G protein-coupled receptors (GPCRs), consisting of ten Frizzled (FZD1-10) subtypes and Smoothened (SMO), remains one of the most enigmatic GPCR families. While SMO relies on cholesterol binding to the 7TM core of the receptor to activate downstream signaling, underlying details of receptor activation remain obscure for FZDs. Here, we aimed to investigate the activation mechanisms of class F receptors utilizing a computational biology approach and mutational analysis of receptor function in combination with ligand binding and downstream signaling assays in living cells. Our results indicate that FZDs differ substantially from SMO in receptor activation-associated conformational changes. SMO manifests a preference for a straight TM6 in both ligand binding and functional readouts. Similar to the majority of GPCRs, FZDs present with a kinked TM6 upon activation owing to the presence of residue P6.43. Functional comparison of FZD and FZD P6.43F mutants in different assay formats monitoring ligand binding, G protein activation, DVL2 recruitment and TOPflash activity, however, underlines further the functional diversity among FZDs and not only between FZDs and SMO.


Subject(s)
Frizzled Receptors/chemistry , Frizzled Receptors/metabolism , Smoothened Receptor/chemistry , Binding Sites , Bioluminescence Resonance Energy Transfer Techniques , Boron Compounds/chemistry , Cryoelectron Microscopy , Cyclic AMP-Dependent Protein Kinases/metabolism , Frizzled Receptors/genetics , Humans , Molecular Dynamics Simulation , Mutation , Phosphoproteins/metabolism , Protein Conformation , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Veratrum Alkaloids/chemistry , Veratrum Alkaloids/metabolism
7.
Nucleic Acids Res ; 49(W1): W544-W550, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34038536

ABSTRACT

The functional activity of membrane proteins is carried out in a complex lipid environment. Increasingly, it is becoming clear that lipids are an important player in regulating or generally modulating their activity. A routinely used method to gain insight into this interplay between lipids and proteins are Molecular Dynamics (MD) simulations, since they allow us to study interactions at atomic or near-atomic detail as a function of time. A major bottleneck, however, is analyzing and visualizing lipid-protein interactions, which, in practice, is a time-demanding task. Here, we present ProLint (www.prolint.ca), a webserver that completely automates analysis of MD generated files and visualization of lipid-protein interactions. Analysis is modular allowing users to select their preferred method, and visualization is entirely interactive through custom built applications that enable a detailed qualitative and quantitative exploration of lipid-protein interactions. ProLint also includes a database of published MD results that have been processed through the ProLint workflow and can be visualized by anyone regardless of their level of experience with MD. The automated analysis, feature-rich visualization, database integration, and open-source distribution with an easy to install process, will allow ProLint to become a routine workflow in lipid-protein interaction studies.


Subject(s)
Lipids/chemistry , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Software , Cholesterol/chemistry , Internet , Phosphatidylinositols/chemistry , Receptors, G-Protein-Coupled/chemistry , Smoothened Receptor/chemistry
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33526656

ABSTRACT

Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.


Subject(s)
Hedgehog Proteins/metabolism , Mutation/genetics , Patched-1 Receptor/genetics , Signal Transduction , Allosteric Regulation , Animals , Biocatalysis , Cholesterol/metabolism , Cilia/metabolism , Holoprosencephaly/genetics , Ligands , Mice , Models, Biological , Patched-1 Receptor/metabolism , Phenotype , Protein Domains , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism
9.
Acta Pharmacol Sin ; 42(6): 1005-1013, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32855528

ABSTRACT

Aberrantly activated Hedgehog (Hh) pathway is critical for driving the initiation and progression of multiple types of cancers, including medulloblastoma (MB) and basal cellular carcinoma (BCC). The majority of current Hh antagonist function by targeting the transmembrane domain of the oncoprotein Smoothened (Smo), a G-protein-coupled receptor-like receptor of Hh pathway. However, the primary and acquired resistance to current Smo inhibitors raise a critical need to develop next-generation of Smo inhibitors to improve their clinical efficacy. In this study, we identify that FDA approved drug ABT-199 significantly and selectively inhibits the Hh pathway. Mechanistically, ABT-199 acts as a competitive inhibitor of oxysterol by potentially targeting the cysteine rich domain (CRD) of Smo, rather as a BH3 mimetic. ABT-199 obviously inhibits the growth of Hh-driven tumors and possesses capacity of combating the primary and acquired resistance to Smo inhibitors caused by Smo mutations. Our data reposition ABT-199 as a Smo inhibitor for treating Hh-driven tumors, especially for those bearing Smo mutations and resistant to current Smo inhibitors. Meanwhile, our findings strengthen the argument that the CRD of Smo is a promising target for developing novel Smo inhibitors with capacity of combating the resistance to Smo inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Neoplasms/drug therapy , Signal Transduction/drug effects , Smoothened Receptor/antagonists & inhibitors , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/metabolism , Binding Sites , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Hedgehog Proteins/metabolism , Humans , Hydroxycholesterols/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Neoplasms/metabolism , Protein Binding , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism , Sulfonamides/metabolism
10.
Nat Chem Biol ; 16(12): 1303-1313, 2020 12.
Article in English | MEDLINE | ID: mdl-33199907

ABSTRACT

The Hedgehog (Hh) signaling pathway coordinates cell-cell communication in development and regeneration. Defects in this pathway underlie diseases ranging from birth defects to cancer. Hh signals are transmitted across the plasma membrane by two proteins, Patched 1 (PTCH1) and Smoothened (SMO). PTCH1, a transporter-like tumor-suppressor protein, binds to Hh ligands, but SMO, a G-protein-coupled-receptor family oncoprotein, transmits the Hh signal across the membrane. Recent structural, biochemical and cell-biological studies have converged at the surprising model that a specific pool of plasma membrane cholesterol, termed accessible cholesterol, functions as a second messenger that conveys the signal between PTCH1 and SMO. Beyond solving a central puzzle in Hh signaling, these studies are revealing new principles in membrane biology: how proteins respond to and remodel cholesterol accessibility in membranes and how the cholesterol composition of organelle membranes is used to regulate protein function.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Cilia/metabolism , Hedgehog Proteins/metabolism , Patched-1 Receptor/metabolism , Smoothened Receptor/metabolism , Animals , Cell Membrane/chemistry , Cholesterol/chemistry , Cilia/chemistry , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Gene Expression Regulation , Hedgehog Proteins/chemistry , Hedgehog Proteins/genetics , Humans , Patched-1 Receptor/chemistry , Patched-1 Receptor/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Signal Transduction , Smoothened Receptor/chemistry , Smoothened Receptor/genetics
11.
Nat Chem Biol ; 16(12): 1368-1375, 2020 12.
Article in English | MEDLINE | ID: mdl-32929279

ABSTRACT

Smoothened (SMO), a class Frizzled G protein-coupled receptor (class F GPCR), transduces the Hedgehog signal across the cell membrane. Sterols can bind to its extracellular cysteine-rich domain (CRD) and to several sites in the seven transmembrane helices (7-TMs) of SMO. However, the mechanism by which sterols regulate SMO via multiple sites is unknown. Here we determined the structures of SMO-Gi complexes bound to the synthetic SMO agonist (SAG) and to 24(S),25-epoxycholesterol (24(S),25-EC). A novel sterol-binding site in the extracellular extension of TM6 was revealed to connect other sites in 7-TMs and CRD, forming an intramolecular sterol channel from the middle side of 7-TMs to CRD. Additional structures of two gain-of-function variants, SMOD384R and SMOG111C/I496C, showed that blocking the channel at its midpoints allows sterols to occupy the binding sites in 7-TMs, thereby activating SMO. These data indicate that sterol transport through the core of SMO is a major regulator of SMO-mediated signaling.


Subject(s)
Cholesterol/analogs & derivatives , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/metabolism , Signal Transduction , Smoothened Receptor/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Cholesterol/chemistry , Cholesterol/metabolism , Cyclohexylamines/chemistry , Cyclohexylamines/pharmacology , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Single-Chain Antibodies , Smoothened Receptor/agonists , Smoothened Receptor/chemistry , Smoothened Receptor/genetics , Thiophenes/chemistry , Thiophenes/pharmacology
12.
Hum Mutat ; 41(12): 2105-2118, 2020 12.
Article in English | MEDLINE | ID: mdl-32906187

ABSTRACT

Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.


Subject(s)
Holoprosencephaly/genetics , Holoprosencephaly/pathology , Mutation/genetics , Smoothened Receptor/chemistry , Smoothened Receptor/genetics , Amino Acid Sequence , Animals , Gain of Function Mutation/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Humans , Loss of Function Mutation/genetics , Models, Biological , Morpholinos/pharmacology , Mutagenesis/genetics , Phenotype , Protein Domains , Zebrafish/genetics , Zebrafish Proteins/genetics
13.
J Cell Biol ; 219(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32435793

ABSTRACT

In the absence of Hedgehog ligand, patched-1 (Ptch1) localizes to cilia and prevents ciliary accumulation and activation of smoothened (Smo). Upon ligand binding, Ptch1 is removed from cilia, and Smo is derepressed and accumulates in cilia where it activates signaling. The mechanisms regulating these dynamic movements are not well understood, but defects in intraflagellar transport components, including Ift27 and the BBSome, cause Smo to accumulate in cilia without pathway activation. We find that in the absence of ligand-induced pathway activation, Smo is ubiquitinated and removed from cilia, and this process is dependent on Ift27 and BBSome components. Activation of Hedgehog signaling decreases Smo ubiquitination and ciliary removal, resulting in its accumulation. Blocking ubiquitination of Smo by an E1 ligase inhibitor or by mutating two lysine residues in intracellular loop three causes Smo to aberrantly accumulate in cilia without pathway activation. These data provide a mechanism to control Smo's ciliary level during Hedgehog signaling by regulating the ubiquitination state of the receptor.


Subject(s)
Cilia/metabolism , Flagella/metabolism , Hedgehog Proteins/genetics , Protein Processing, Post-Translational , Signal Transduction , Smoothened Receptor/genetics , Ubiquitin/genetics , Animals , Biological Transport , Cell Line, Transformed , Cilia/ultrastructure , Embryo, Mammalian , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Flagella/ultrastructure , Hedgehog Proteins/metabolism , Mice , Models, Molecular , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Protein Structure, Secondary , Proteins/genetics , Proteins/metabolism , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Ubiquitin/metabolism , Ubiquitination , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
14.
Proteins ; 88(3): 514-526, 2020 03.
Article in English | MEDLINE | ID: mdl-31589795

ABSTRACT

Smoothened (SMO) antagonist Vismodegib effectively inhibits the Hedgehog pathway in proliferating cancer cells. In early stage of treatment, Vismodegib exhibited promising outcomes to regress the tumors cells, but ultimately relapsed due to the drug resistive mutations in SMO mostly occurring before (primary mutations G497W) or after (acquired mutations D473H/Y) anti-SMO therapy. This study investigates the unprecedented insights of structural and functional mechanism hindering the binding of Vismodegib with sensitive and resistant mutant variants of SMO (SMOMut ). Along with the basic dynamic understanding of Vismodegib-SMO complexes, network propagation theory based on heat diffusion principles is first time applied here to identify the modules of residues influenced by the individual mutations. The allosteric modulation by GLY497 residue in Vismodegib bound SMO wild-type (SMOWT ) conformation depicts the interconnections of intermediate residues of SMO with the atom of Vismodegib and identify two important motifs (E-X-P-L) and (Q-A-N-V-T-I-G) mediating this allosteric regulation. In this study a novel computational framework based on the heat diffusion principle is also developed, which identify significant residues of allosteric site causing drug resistivity in SMOMut . This framework could also be useful for assessing the potential allosteric sites of different other proteins. Moreover, previously reported novel inhibitor "ZINC12368305," which is proven to make an energetically favorable complex with SMOWT is chosen as a control sample to assess the impact of receptor mutation on its binding and subsequently identify the important factors that govern binding disparity between Vismodegib and ZINC12368305 bound SMOWT/Mut conformations.


Subject(s)
Anilides/chemistry , Antineoplastic Agents/chemistry , Drug Resistance, Neoplasm/genetics , Neoplasm Proteins/chemistry , Pyridines/chemistry , Smoothened Receptor/chemistry , Allosteric Regulation , Allosteric Site , Anilides/metabolism , Anilides/pharmacology , Anthracenes/chemistry , Anthracenes/metabolism , Anthracenes/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites , Gene Expression , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kinetics , Molecular Dynamics Simulation , Mutation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phenanthrenes/chemistry , Phenanthrenes/metabolism , Phenanthrenes/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyridines/metabolism , Pyridines/pharmacology , Signal Transduction , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Thermodynamics
15.
PLoS One ; 14(9): e0214901, 2019.
Article in English | MEDLINE | ID: mdl-31539380

ABSTRACT

Dysregulation of the seven-transmembrane (7TM) receptor Smoothened (SMO) and other components of the Hedgehog (Hh) signaling pathway contributes to the development of cancers including basal cell carcinoma (BCC) and medulloblastoma (MB). However, SMO-specific antagonists produced mixed results in clinical trials, marked by limited efficacy and high rate of acquired resistance in tumors. Here we discovered that Nilotinib, an approved inhibitor of several kinases, possesses an anti-Hh activity, at clinically achievable concentrations, due to direct binding to SMO and inhibition of SMO signaling. Nilotinib was more efficacious than the SMO-specific antagonist Vismodegib in inhibiting growth of two Hh-dependent MB cell lines. It also reduced tumor growth in subcutaneous MB mouse xenograft model. These results indicate that in addition to its known activity against several tyrosine-kinase-mediated proliferative pathways, Nilotinib is a direct inhibitor of the Hh pathway. The newly discovered extension of Nilotinib's target profile holds promise for the treatment of Hh-dependent cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Medulloblastoma/drug therapy , Pyrimidines/pharmacology , Smoothened Receptor/antagonists & inhibitors , 3T3 Cells , Animals , Antineoplastic Agents/therapeutic use , Binding Sites , Cell Proliferation/drug effects , Cells, Cultured , HEK293 Cells , Humans , Mice , Protein Binding , Pyrimidines/therapeutic use , Signal Transduction/drug effects , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism
16.
J Med Chem ; 62(21): 9983-9989, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31408335

ABSTRACT

We unveiled an underside binding site on smoothened receptor (SMO) by a colocalization strategy using two structurally complementary photoaffinity probes derived from a known ligand Allo-1. Docking study and structural dissection identified key interactions within the site, including hydrogen bonding, π-π interactions, and hydrophobic interactions between Allo-1 and its contacting residues. Taken together, our results reveal the molecular base of Allo-1 binding and provide a basis for the design of new-generation ligands to overcome drug resistance.


Subject(s)
Cell Membrane/metabolism , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism , Binding Sites , Drug Design , Models, Molecular , Molecular Probes/chemistry , Molecular Probes/metabolism , Protein Domains , Protein Transport , Structure-Activity Relationship
17.
Nature ; 571(7764): 284-288, 2019 07.
Article in English | MEDLINE | ID: mdl-31263273

ABSTRACT

Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration1. Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma2. Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models3-5, a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results-combined with signalling studies and molecular dynamics simulations-delineate the structural basis for PTCH1-SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors.


Subject(s)
Cell Membrane/chemistry , Hedgehog Proteins/agonists , Signal Transduction/drug effects , Smoothened Receptor/agonists , Smoothened Receptor/metabolism , Sterols/pharmacology , Animals , Binding Sites , Biosensing Techniques , Catalytic Domain/drug effects , Cell Membrane/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Cholesterol/pharmacology , Hedgehog Proteins/metabolism , Ligands , Mice , Models, Molecular , Molecular Dynamics Simulation , Patched-1 Receptor/antagonists & inhibitors , Patched-1 Receptor/metabolism , Protein Conformation , Protein Stability , Single-Chain Antibodies/immunology , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/chemistry , Sterols/chemistry , Sterols/metabolism , Xenopus Proteins/chemistry
18.
Nature ; 571(7764): 279-283, 2019 07.
Article in English | MEDLINE | ID: mdl-31168089

ABSTRACT

The oncoprotein Smoothened (SMO), a G-protein-coupled receptor (GPCR) of the Frizzled-class (class-F), transduces the Hedgehog signal from the tumour suppressor Patched-1 (PTCH1) to the glioma-associated-oncogene (GLI) transcription factors, which activates the Hedgehog signalling pathway1,2. It has remained unknown how PTCH1 modulates SMO, how SMO is stimulated to form a complex with heterotrimeric G proteins and whether G-protein coupling contributes to the activation of GLI proteins3. Here we show that 24,25-epoxycholesterol, which we identify as an endogenous ligand of PTCH1, can stimulate Hedgehog signalling in cells and can trigger G-protein signalling via human SMO in vitro. We present a cryo-electron microscopy structure of human SMO bound to 24(S),25-epoxycholesterol and coupled to a heterotrimeric Gi protein. The structure reveals a ligand-binding site for 24(S),25-epoxycholesterol in the 7-transmembrane region, as well as a Gi-coupled activation mechanism of human SMO. Notably, the Gi protein presents a different arrangement from that of class-A GPCR-Gi complexes. Our work provides molecular insights into Hedgehog signal transduction and the activation of a class-F GPCR.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Oxysterols/chemistry , Smoothened Receptor/chemistry , Smoothened Receptor/ultrastructure , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hedgehog Proteins/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Ligands , Models, Molecular , Oxysterols/metabolism , Patched-1 Receptor/metabolism , Protein Conformation , Signal Transduction , Smoothened Receptor/metabolism , Veratrum Alkaloids/chemistry
19.
Curr Opin Struct Biol ; 57: 204-214, 2019 08.
Article in English | MEDLINE | ID: mdl-31247512

ABSTRACT

The Hedgehog (HH) signalling pathway is a cell-cell communication system that controls the patterning of multiple tissues during embryogenesis in metazoans. In adults, HH signals regulate tissue stem cells and regenerative responses. Abnormal signalling can cause birth defects and cancer. The HH signal is received on target cells by Patched (PTCH1), the receptor for HH ligands, and then transmitted across the plasma membrane by Smoothened (SMO). Recent structural and biochemical studies have pointed to a sterol lipid, likely cholesterol itself, as the elusive second messenger that communicates the HH signal between PTCH1 and SMO, thus linking ligand reception to transmembrane signalling.


Subject(s)
Cholesterol/metabolism , Hedgehog Proteins/metabolism , Patched Receptors/chemistry , Patched Receptors/metabolism , Signal Transduction , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism , Animals , Humans , Spine
20.
Future Med Chem ; 11(6): 617-638, 2019 03.
Article in English | MEDLINE | ID: mdl-30912670

ABSTRACT

Since the Hedgehog signaling pathway has been associated with cancer, it has emerged as a therapeutic target for cancer therapy. The main target among the key Hedgehog proteins is the GPCR-like Smo receptor. Therefore, some Smo antagonists that have entered clinical trials, including the US FDA-approved drugs vismodegib and sonidegib, to treat basal cell carcinoma and medulloblastoma. However, early resistance of these drugs has spawned the need to understand the molecular bases of this phenomena. We therefore reviewed details about Smo receptor structures and the best Smo antagonist chemical structures. In addition, we discussed strategies that should be considered to develop new, safer generations of Smo antagonists that avoid current clinical limitations.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Smoothened Receptor/antagonists & inhibitors , Animals , Hedgehog Proteins/antagonists & inhibitors , Hedgehog Proteins/metabolism , Humans , Ligands , Models, Molecular , Molecular Targeted Therapy/methods , Neoplasms/metabolism , Protein Conformation/drug effects , Signal Transduction/drug effects , Smoothened Receptor/chemistry , Smoothened Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL