Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.998
Filter
1.
Parasit Vectors ; 17(1): 283, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956636

ABSTRACT

BACKGROUND: Lymnaeid snails of the genus Austropeplea are an important vector of the liver fluke (Fasciola hepatica), contributing to livestock production losses in Australia and New Zealand. However, the species status within Austropeplea is ambiguous due to heavy reliance on morphological analysis and a relative lack of genetic data. This study aimed to characterise the mitochondrial genome of A. cf. brazieri, an intermediate host of liver fluke in eastern Victoria. METHODS: The mitochondrial genome was assembled and annotated from a combination of second- and third-generation sequencing data. For comparative purposes, we performed phylogenetic analyses of the concatenated nucleotide sequences of the mitochondrial protein-coding genes, cytochrome c oxidase subunit 1 and 16S genes. RESULTS: The assembled mt genome was 13,757 base pairs and comprised 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. The mt genome length, gene order and nucleotide compositions were similar to related species of lymnaeids. Phylogenetic analyses of the mt nucleotide sequences placed A. cf. brazieri within the same clade as Orientogalba ollula with strong statistical supports. Phylogenies of the cox1 and 16S mt sequences were constructed due to the wide availability of these sequences representing the lymnaeid taxa. As expected in both these phylogenies, A. cf. brazieri clustered with other Austropeplea sequences, but the nodal supports were low. CONCLUSIONS: The representative mt genome of A. cf. brazieri should provide a useful resource for future molecular, epidemiology and parasitological studies of this socio-economically important lymnaeid species.


Subject(s)
Genome, Mitochondrial , Phylogeny , Snails , Animals , Genome, Mitochondrial/genetics , Snails/parasitology , Australia , Fasciola hepatica/genetics , Fasciola hepatica/classification , Electron Transport Complex IV/genetics , Disease Vectors , Sequence Analysis, DNA
2.
Parasit Vectors ; 17(1): 291, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972983

ABSTRACT

BACKGROUND: Oncomelania hupensis is the exclusive intermediate host of Schistosoma japonicum in China. Snail control is an essential component of schistosomiasis elimination programme. With 70 years of continuous efforts, the range of O. hupensis had reduced significantly, but slowed down in last decades. A large number of levees against flooding were constructed along Yangtze River and its affiliated lakes in the middle and lower reaches, which influenced the hydrology and ecology in the alluvial plains. The purpose of this study was to assess the impact of levees on the distribution of O. hupensis in the middle and lower reaches of the Yangtze River. METHODS: The snail habitats were digitalised by hand-held GPS system. The years for discovery and elimination of snail habitats were extracted from historical records. The accumulated snail-infested range for each habitat was calculated on the basis of annual reports. The current distribution of O. hupensis was determined by systematic and environmental sampling. The geographical distribution of levees was obtained from satellite imagery. To assess the impact of levees, the data pertaining to O. hupensis were divided into two parts: inside and outside the Yangtze River. Joinpoint regression was utilised to divide the study time span and further characterise the regression in each period. The 5-year-period moving averages of eliminated area infested by snails were calculated for the habitats inside and outside Yangtze River. The moving routes of corresponding geographical median centres were simulated in ArcGIS. Hotspot analysis was used to determine the areas with statistical significance clustering of O. hupensis density. RESULTS: Three periods were identified according to Joinpoint regression both inside and outside Yangtze River. The area infested by O. hupensis increased in the first two periods. It decreased rapidly outside Yangtze River year over year after 1970, while that inside the Yangtze River did not change significantly. Furthermore, the latter was significantly higher than the former. It was observed that the present density of O. hupensis inside Yangtze River was lower than outside the Yangtze River. The median centre for eliminated ranges inside Yangtze River wavered between the east (lower reach) and the west (middle reach). In contrast, the median centre for eliminated ranges continuously moved from the east to the west. CONCLUSIONS: Our findings indicated that the levees had a considerable negative impact on the distribution of O. hupensis outside Yangtze River. Some hotspots observed in the irrigation areas need a sluice system at the inlet of branch for snail control. The major distribution of O. hupensis located in Hubei might be caused by severe waterlogging. The intensive surveillance should be implemented there. The biggest two freshwater lakes, the major endemic regions historically, were identified as cold spots. The long-term impact of Three Gorges Dam on the distribution of O. hupensis in the lakes should be monitored and evaluated.


Subject(s)
Ecosystem , Rivers , Schistosoma japonicum , Snails , Animals , Snails/parasitology , Rivers/parasitology , China , Schistosoma japonicum/physiology , Schistosomiasis japonica/transmission , Schistosomiasis japonica/epidemiology , Schistosomiasis japonica/parasitology
3.
Parasit Vectors ; 17(1): 298, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982497

ABSTRACT

BACKGROUND: Angiostrongyliasis is a zoonotic parasitic disease caused by the rat lungworm Angiostrongylus cantonensis. The intermediate hosts of A. cantonensis are gastropods, and snail species such as Pomacea canaliculata play a key role in the transmission of human angiostrongyliasis. Detecting A. cantonensis infection in snails is an important component of epidemiological surveillance and the control of angiostrongyliasis. METHODS: In this study, a new method for diagnosing A. cantonensis infection in gastropods was developed by recovering larvae from the buccal cavity of three snail species. The entire buccal cavity of a snail was extracted, and the tissue was pressed between two microscope slides to observe whether A. cantonensis larvae were present. Our new method was compared with traditional pathogenic detection methods of lung microscopy, tissue homogenization, and artificial digestion. We artificially infected 160 P. canaliculata, 160 Cipangopaludina chinensis, and 160 Bellamya aeruginosa snails with A. cantonensis. Then, the four different detection methods were used to diagnose infection in each snail species at 7, 14, 21, and 28 days post exposure. RESULTS: We found no significant difference in the percentages of infected P. canaliculata snails using the four methods to detect A. cantonensis larvae. The radula pressing method had a mean detection rate of 80%, while the lung microscopy (81.3%), tissue homogenization (83.8%), and artificial digestion (85%) methods had slightly greater detection rates. Similarly, the percentages of infected C. chinensis snails that were detected using the radula pressing (80%), tissue homogenization (82.1%), and artificial digestion (83.8%) methods were not significantly different. Finally, the percentages of infected B. aeruginosa snails that were detected using the radula pressing (81.3%), tissue homogenization (81.9%), and artificial digestion (81.4%) methods were not significantly different. These results showed that the radula pressing method had a similar detection rate to traditional lung microscopy, tissue homogenization, or artificial digestion methods. CONCLUSIONS: This study demonstrates a new method for the qualitative screening of gastropods that act as intermediate hosts of A. cantonensis (and other Angiostrongylus species), provides technical support for the control of human angiostrongyliasis, and furthers research on A. cantonensis.


Subject(s)
Angiostrongylus cantonensis , Larva , Snails , Strongylida Infections , Animals , Snails/parasitology , Strongylida Infections/diagnosis , Strongylida Infections/parasitology , Strongylida Infections/veterinary , Angiostrongylus cantonensis/isolation & purification , Angiostrongylus cantonensis/physiology , Mouth/parasitology , Angiostrongylus/isolation & purification , Angiostrongylus/physiology , Rats , Humans
4.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 299-303, 2024 Apr 29.
Article in Chinese | MEDLINE | ID: mdl-38952317

ABSTRACT

OBJECTIVE: To evaluate the potential risk of transmission of angiostrongyliasis by common freshwater snails in Dali Bai Autonomous Prefecture, Yunnan Province, so as to provide insights into local surveillance of angiostrongyliasis. METHODS: Common freshwater snails were collected from Dali Bai Autonomous Prefecture, Yunnan Province from March to April, 2020, and identified and bred in laboratory. SD rats were infected with third-stage larvae of Angiostrongylus cantonensis that were isolated from commercially available Pomacea canaliculata snails in Dali Bai Autonomous Prefecture, and freshwater snails were infected with the first-stage larvae of A. cantonensis that were isolated from the feces of SD rats 39 days post-infection at room temperature. The developmental process and morphological characteristics of worms in hosts were observed, and the percentages of A. cantonensis infections in different species of freshwater snails were calculated. Then, SD rats were infected with the third-stage larvae of A. cantonensis that were isolated from A. cantonensis-infected freshwater snails, and the larval development and reproduction was observed. RESULTS: More than 3 000 freshwater snail samples were collected from farmlands, ditches and wetlands around Erhai Lake in Dali Bai Autonomous Prefecture, and Cipangopaludina chinensis, P. canaliculata, Parafossarulus striatulus, Oncomelania hupensis robertsoni, Galba pervia, Physa acuta, Radix swinhoei, Assiminea spp., Tricula spp. and Bellamya spp. were morphologically identified. A total of 105 commercially available P. canaliculata snails were tested for A. cantonensis infections, and 2 P. canaliculata snails were found to be infected with A. cantonensis, in which the third-stage larvae of A. cantonensis were isolated. Ten species of freshwater snails were artificially infected with the third-stage larvae of A. cantonensis, and all 10 species of freshwater snails were found to be infected with A. cantonensis, with the highest positive rate of A. cantonensis infections in Bellamya spp. (62.3%, 137/204), and the lowest in C. chinensis (35.5%, 11/31). After SD rats were infected with the third-stage larvae of A. cantonensis isolated from different species of freshwater snails, mature adult worms of A. cantonensis were yielded. CONCLUSIONS: Multiple species of freshwater snails may serve as intermediate hosts of A. cantonensis under laboratory conditions in Dali Bai Autonomous Prefecture of Yunnan Province. Further investigations on natural infection of A. cantonensis in wild snails in Dali Bai Autonomous Prefecture seem justified.


Subject(s)
Angiostrongylus cantonensis , Fresh Water , Rats, Sprague-Dawley , Snails , Animals , Snails/parasitology , China , Angiostrongylus cantonensis/physiology , Angiostrongylus cantonensis/isolation & purification , Rats , Fresh Water/parasitology , Larva/physiology , Larva/growth & development , Strongylida Infections/parasitology , Strongylida Infections/veterinary , Strongylida Infections/transmission
5.
Dis Aquat Organ ; 159: 9-14, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989789

ABSTRACT

Glypthelmins quieta is a frog trematode native to North and Central America. This trematode was recently detected in Japan in the American bullfrog Lithobates catesbeianus, which was introduced from North America to Japan. As the first intermediate host of G. quieta, typically a snail, has not yet been identified in Japan, we conducted a snail survey in eastern Japan to screen for an intermediate host using DNA barcoding based on the nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1. We sampled 3 different snail species, Orientogalba ollula, Physella acuta, and Sinotaia quadrata histrica (157 individuals in total), and only the freshwater snail Physella acuta, which is also believed to have been introduced from North America to Japan, had sporocysts of G. quieta in its hepatopancreas. The introduction of the intermediate and definitive hosts from North America may have facilitated the invasion of G. quieta into Japan.


Subject(s)
Snails , Trematoda , Animals , Japan , Trematoda/genetics , Snails/parasitology , Introduced Species , Host-Parasite Interactions , RNA, Ribosomal, 28S/genetics
6.
Adv Exp Med Biol ; 1454: 391-440, 2024.
Article in English | MEDLINE | ID: mdl-39008272

ABSTRACT

The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.


Subject(s)
Animals, Wild , Birds , Host-Parasite Interactions , Trematoda , Trematode Infections , Animals , Trematoda/physiology , Trematoda/classification , Animals, Wild/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , Birds/parasitology , Amphibians/parasitology , Snails/parasitology , Mammals/parasitology , Life Cycle Stages
7.
PeerJ ; 12: e17598, 2024.
Article in English | MEDLINE | ID: mdl-39011383

ABSTRACT

Background: In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. Methodology: The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. Results: The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. Conclusions: Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.


Subject(s)
Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Poland/epidemiology , Snails/parasitology , Lakes/parasitology , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , DNA, Helminth/genetics
8.
Parasitol Res ; 123(7): 257, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940835

ABSTRACT

As ecosystem disruptors and intermediate hosts for various parasites, freshwater snails have significant socioeconomic impacts on human health, livestock production, and aquaculture. Although traditional molluscicides have been widely used to mitigate these effects, their environmental impact has encouraged research into alternative, biologically based strategies to create safer, more effective molluscicides and diminish the susceptibility of snails to parasites. This review focuses on alterations in glucose metabolism in snails under the multifaceted stressors of parasitic infections, drug exposure, and environmental changes and proposes a novel approach for snail management. Key enzymes within the glycolytic pathway, such as hexokinase and pyruvate kinase; tricarboxylic acid (TCA) cycle; and electron transport chains, such as succinate dehydrogenase and cytochrome c oxidase, are innovative targets for molluscicide development. These targets can affect both snails and parasites and provide an important direction for parasitic disease prevention research. For the first time, this review summarises the reverse TCA cycle and alternative oxidase pathway, which are unique metabolic bypasses in invertebrates that have emerged as suitable targets for the formulation of low-toxicity molluscicides. Additionally, it highlights the importance of other metabolic pathways, including lactate, alanine, glycogenolysis, and pentose phosphate pathways, in snail energy supply, antioxidant stress responses, and drug evasion mechanisms. By analysing the alterations in key metabolic enzymes and their products in stressed snails, this review deepens our understanding of glucose metabolic alterations in snails and provides valuable insights for identifying new pharmacological targets.


Subject(s)
Glucose , Molluscacides , Snails , Animals , Molluscacides/pharmacology , Snails/drug effects , Snails/metabolism , Snails/parasitology , Glucose/metabolism , Fresh Water
9.
J Helminthol ; 98: e47, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828707

ABSTRACT

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Subject(s)
Life Cycle Stages , Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Schistosomatidae/classification , Schistosomatidae/isolation & purification , Schistosomatidae/growth & development , Schistosomatidae/anatomy & histology , Chile , Argentina , Birds/parasitology , Bird Diseases/parasitology , RNA, Ribosomal, 28S/genetics , Snails/parasitology , South America , Electron Transport Complex IV/genetics
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 159-164, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38857959

ABSTRACT

OBJECTIVE: To analyze the trends in Oncomelania hupensis distribution in Wuhan City, Hubei Province from 2003 to 2022, so as to provide insights into precision schistosomiasis control. METHODS: Data pertaining to O. hupensis snail survey in Wuhan City from 2003 to 2022 were collected. The trends in the proportion of areas with snail habitats, actual area with snail habitats, mean density of living snails and prevalence of Schistosoma japonicum infection in snails were evaluated in schistosomiasis-endemic areas of Wuhan City from 2003 to 2022 with the slope of trend curve (ß), annual percent change (APC) and average annual percent change (AAPC) using a Joinpoint regression model. RESULTS: During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in Wuhan City in 2005 and 2015, with a rise during the period from 2003 to 2005 (ß1 = 5.93, t = 1.280, P > 0.05), a decline from 2005 to 2015 (ß2 = -0.88, t = -2.074, P > 0.05) and a rise from 2015 to 2022 (ß3 = 1.46, t = -2.356, P < 0.05). During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in islet endemic areas of Wuhan City in 2006 and 2015, with no significant differences in the trends from 2003 to 2006 (ß1 = 4.64, t = 1.888, P > 0.05) or from 2006 to 2015 (ß2 = -1.45, t = -2.143, P > 0.05), and with a tendency towards a rise from 2015 to 2022 (ß3 = 2.04, t = -3.100, P < 0.05). During the period from 2003 through 2022, there were two turning points for the proportion of areas with snail habitats in inner embankment endemic areas of Wuhan City in 2012 and 2020, with a tendency towards a decline from 2003 to 2012 (ß1 = -0.39, t = -4.608, P < 0.05) and with no significant differences in the trends from 2012 to 2020 (ß2 = 0.03, t = 0.245, P > 0.05) and from 2020 to 2022 (ß3 = 1.38, t = 1.479, P > 0.05). During the period from 2003 to 2022, the actual area with snail habitats all appeared a tendency towards a decline in Wuhan City, and in islet and inner embankment endemic areas of Wuhan City from 2003 to 2022 (AAPC = -2.39%, -5.75% and -2.35%, all P values < 0.05). The mean density of living snails reduced from 0.087 snails/0.1 m2 in 2003 to 0.027 snails/0.1 m2 in 2022 in Wuhan City, with a significant difference in the tendency towards the decline (APC = AAPC = -11.47%, P < 0.05). The annual mean decline rate of the mean density of living snails was 17.36% in outside embankment endemic areas of Wuhan City from 2003 to 2022 (APC = AAPC = -17.36%, P < 0.05), and there was no significant difference in the trends in the mean density of living snails in islet endemic areas of Wuhan City from 2003 to 2022 (APC = AAPC = -0.97%, P > 0.05). In addition, the prevalence of S. japonicum infection in snails appeared a tendency towards a decline in Wuhan City from 2003 to 2022 (APC = AAPC = -12.45%, P < 0.05). CONCLUSIONS: The proportion of areas with snail habitats, actual area with snail habitats, mean density of living snails and prevalence of S. japonicum infection in snails all appeared a tendency towards a decline in Wuhan City from 2003 to 2022. Intensified snail control, modification of snail habitats, shrinking of areas with snails and implementation of grazing prohibition in snail-infested settings are required, in order to facilitate the progress towards schistosomiasis elimination in Wuhan City.


Subject(s)
Schistosomiasis , Snails , China/epidemiology , Animals , Snails/parasitology , Schistosomiasis/epidemiology , Regression Analysis , Humans , Disease Reservoirs/parasitology
11.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 165-168, 2024 Apr 23.
Article in Chinese | MEDLINE | ID: mdl-38857960

ABSTRACT

OBJECTIVE: To investigate the changes in distribution of Oncomelania hupensis snails in forestlands in Songjiang District, Shanghai Municipality from 2009 to 2023, so as to provide insights into formulation of O. hupensis snail surveillance programs. METHODS: The reports on O. hupensis snail surveillance in Songjiang District, Shanghai Municipality from 2009 to 2023 were collected, and the snail surveillance data in forestlands were extracted. The trends in the proportion of areas with snails in forestlands in total areas with snails, occurrence of frames with living snails and density of living snails were evaluated using a Joinpoint regression model in Songjiang District from 2009 to 2023, and the annual percent change (APC) and average annual percent change (AAPC). RESULTS: A total of 40 sites with snails were found in forestlands in 14 administrative villages of 4 townships, Songjiang District, Shanghai Municipality from 2009 to 2023. A total of 39 065 frames were surveyed for snails in settings covering an area of 609 600 m2, and there were 6 084 frames with snails, covering 151 250 m2 snail habitats. A total of 22 210 snails were captured, with the highest density of 260.00 snails/0.1 m2, and 6 262 snails were dissected, with no Schistosoma japonicum infection identified in snails. The proportion of areas with snails in forestlands in total areas with snails appeared a tendency towards a rise in forestlands in Songjiang District, Shanghai Municipality from 2009 to 2023 (APC = AAPC = 24.9%, P > 0.05); however, there were no turning points in the trend curve, with the highest proportion seen in 2009 (53.81%), the lowest in 2011 and 2023 (both 0) and a mean proportion of 24.81%. The occurrence of frames with living snails appeared a tendency towards a rise from 2009 to 2023 (APC = AAPC = 41.5%, P > 0.05); however, there were no turning points in the trend curve, with the highest occurrence in 2009 (53.81%), the lowest in 2011 and 2013 (both 0), and the mean occurrence of 15.57%. In addition, the density of living snails appeared a tendency towards a rise from 2009 to 2023 (APC = AAPC = 55.0%, P > 0.05); however, there were no turning points in the trend curve, with the highest density in 2023 (0.96 snails/0.1 m2), the lowest in 2011 and 2013 (both 0), and a mean density of 0.57 snails/0.1 m2. CONCLUSIONS: The difficulty in O. hupensis snail control and risk of imported snails appeared a tendency towards a rise in forestlands in Songjiang District, Shanghai Municipality over years from 2009 to 2023. Supervision and assessment prior to seedling transplantation and intensified surveillance post-transplantation are recommended to reduce the risk of O. hupensis snail importation and spread.


Subject(s)
Forests , Snails , Animals , China , Snails/parasitology
12.
Folia Parasitol (Praha) ; 712024 May 06.
Article in English | MEDLINE | ID: mdl-38841845

ABSTRACT

Schistosomiasis is a snail-borne disease that has a considerable impact on human and animal health, particularly in sub-Saharan Africa. The intermediate hosts of the schistosome parasites are freshwater snails of the genera Biomphalaria Preston, 1910 and Bulinus Müller, 1781. In order to identify existing gaps in the spread of the disease in the Democratic Republic of Congo (DRC), this study compiled the available knowledge of the distribution, population dynamics and ecology of the intermediate hosts of schistosomiasis. A systematic literature search was conducted in PubMed, Embase and Scopus for all malacological studies on schistosoma intermediate hosts in DRC published between 1927 and October 2022. A total of 55 records were found, of which 31 met the inclusion criteria: these were published field and experimental studies conducted in the DRC and focused on snails as intermediate hosts of schistosomes. The analysis of these studies revealed that more up-to-date data on the distribution of snail intermediate hosts in the DRC are needed. Moreover, ecological factors have been less studied for Bulinus species than for Biomphalaria species. These factors play a crucial role in determining suitable snail habitats, and the lack of comprehensive information poses a challenge in snail control. This review makes it clear that there are no current malacological data in the DRC. There is a clear need for molecular and ecological research to update the exact species status and population dynamics of all potential intermediate host species. This will facilitate targeted snail control measures that complement drug treatment in the control of schistosomiasis in the country.


Subject(s)
Biomphalaria , Schistosomiasis , Animals , Humans , Biomphalaria/parasitology , Bulinus/parasitology , Democratic Republic of the Congo/epidemiology , Schistosoma/physiology , Schistosomiasis/epidemiology , Schistosomiasis/veterinary , Snails/parasitology
13.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822348

ABSTRACT

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Subject(s)
Fasciola , Fascioliasis , Snails , Animals , Iran/epidemiology , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology , Snails/parasitology , Fasciola/genetics , Fasciola/isolation & purification , Fasciola/classification , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Fasciola hepatica/classification , Climate , Ecosystem , Seasons , Polymorphism, Restriction Fragment Length
14.
Vet Parasitol ; 329: 110209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823188

ABSTRACT

The transmission of Fasciola hepatica occurs only where there are -or recently were- aquatic or amphibious snails of the Lymnaeidae family, the intermediate host of this parasite. Direct detection of these snails is time-consuming and imprecise, hindering accurate and detailed mapping of transmission risk. To identify which microenvironmental factors could be used as proxies for the occurrence of the lymnaeid snail Galba viator, a major intermediate host in South America, a total of 183 1-m2 quadrants across diverse water bodies in an endemic area in Andean Patagonia were manually timed-searched for snails and microenvironmental variables were registered. Data was analyzed using a Bayesian hierarchical occupancy model that assessed the effects of the microenvironmental variables on the presence of snails while considering imperfect snail detection. The model estimated that G. viator predominantly inhabits shallow aquatic environments, in the presence of grasses, where snails of the genus Biomphalaria are also detected, and with scarce tree canopy cover. Physical factors affecting occupancy presumably act as proxies for the average water temperature, while the temperature at the time of sampling was found to affect snail detectability. The identified variables are easy, fast, and inexpensive to measure, and can complement management decisions and risk maps based on coarser remote-sensing data, particularly relevant in a context of growing resistance to anthelminthic drugs.


Subject(s)
Fasciola hepatica , Snails , Temperature , Water , Animals , Fasciola hepatica/physiology , Snails/parasitology , Water/parasitology , Water/chemistry , Argentina/epidemiology , Fascioliasis/veterinary , Fascioliasis/epidemiology , Fascioliasis/parasitology , Bayes Theorem
15.
Parasit Vectors ; 17(1): 272, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937778

ABSTRACT

BACKGROUND: Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models that interpolate snail information across under-sampled regions is required to understand and assess current and future risk of schistosomiasis. METHODS: A secondary geospatial analysis of recently collected malacological and environmental survey data was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Bulinus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature (LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted locations. Our adopted model used a combination of two-dimensional (2D) and one dimensional (1D) mapping. RESULTS: A significant association between normalised difference vegetation index (NDVI) and abundance of Bulinus spp. was detected (log risk ratio - 0.83, 95% CrI - 1.57, - 0.09). A qualitatively similar association was found between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio - 1.42, 95% CrI - 3.09, 0.10). Analyses of all other environmental data were considered non-significant. CONCLUSIONS: The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine-scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would better reveal local environmental transmission possibilities.


Subject(s)
Biomphalaria , Bulinus , Lakes , Schistosomiasis , Animals , Malawi/epidemiology , Lakes/parasitology , Biomphalaria/parasitology , Bulinus/parasitology , Schistosomiasis/epidemiology , Schistosomiasis/transmission , Schistosomiasis/parasitology , Spatial Analysis , Humans , Bayes Theorem , Snails/parasitology , Disease Vectors
16.
Nat Commun ; 15(1): 4838, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898012

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change. Here, we used machine learning, remote sensing, and 30 years of snail occurrence records to map the historical and current distribution of forward-transmitting Biomphalaria hosts throughout Brazil. We identified key features influencing the distribution of suitable habitat and determined how Biomphalaria habitat has changed with climate and urbanization over the last three decades. Our models show that climate change has driven broad shifts in snail host range, whereas expansion of urban and peri-urban areas has driven localized increases in habitat suitability. Elucidating change in Biomphalaria distribution-while accounting for non-linearities that are difficult to detect from local case studies-can help inform schistosomiasis control strategies.


Subject(s)
Biomphalaria , Climate Change , Ecosystem , Schistosoma mansoni , Schistosomiasis mansoni , Urbanization , Animals , Brazil , Schistosoma mansoni/physiology , Biomphalaria/parasitology , Schistosomiasis mansoni/transmission , Schistosomiasis mansoni/epidemiology , Schistosomiasis mansoni/parasitology , Snails/parasitology , Snails/physiology , Humans
17.
J Parasitol ; 110(3): 221-231, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38897603

ABSTRACT

Environmental DNA (eDNA) surveys promise to be a sensitive and powerful tool for the detection of trematodes. This can contribute to the limited studies on trematode ecology, specifically in aquatic ecosystems. Here, we developed species-specific primer and probe sets for Moliniella anceps, Opisthioglyphe ranae, and Plagiorchis multiglandularis cercariae and applied a novel eDNA qPCR assay to detect larval trematodes quantitatively. We evaluated the effectiveness of the assays using filtered lake water samples collected from different sites of Lake Fadikha and Kargat River Estuary in Lake Chany, Russia, showing high species specificity and sensitivity in all 3 assays. Further, all 3 assays had high efficiencies ranging from 94.9 to 105.8%. Moliniella anceps, O. ranae, and P. multiglandularis were detected in the environmental water samples through real-time PCR. Thus, we anticipate that our approach will be beneficial for biomonitoring, measuring, and managing ecological systems.


Subject(s)
DNA, Environmental , DNA, Helminth , Lakes , Real-Time Polymerase Chain Reaction , Trematoda , Animals , Lakes/parasitology , Real-Time Polymerase Chain Reaction/standards , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , DNA, Helminth/isolation & purification , DNA, Helminth/analysis , Russia , DNA, Environmental/isolation & purification , DNA, Environmental/analysis , Species Specificity , Trematode Infections/parasitology , Trematode Infections/diagnosis , Trematode Infections/veterinary , Sensitivity and Specificity , DNA Primers , Snails/parasitology
18.
An Acad Bras Cienc ; 96(2): e20230707, 2024.
Article in English | MEDLINE | ID: mdl-38747790

ABSTRACT

Urban parks are not only important for the wellbeing of the human population, but are also widely considered to be potentially important sites for the conservation of biodiversity. However, they may offer risk parasitic infections, such as schistosomiasis and fascioliasis, which are both transmitted by freshwater snails. The present study investigated the occurrence of freshwater gastropods in urban parks of the Brazilian city of Rio de Janeiro, and their possible infection by helminths of medical-veterinary importance. Gastropods were collected from six parks (2021 - 2022) and examined for the presence of larval helminths. In all, 12 gastropod species from different families were collected: Ampullariidae, Assimineidae, Burnupidae, Lymnaeidae, Physidae, Planorbidae, Succineidae, and Thiaridae. The parasitological examination revealed cercaria of three types in five snail species, with the Pleurolophocerca cercariae type in Melanoides tuberculata (the most abundant species), Echinostoma cercariae in Physella acuta and Pomacea maculata, and Virgulate cercariae, in Pomacea sp. and Pomacea maculata. None of the Biomphalaria tenagophila and Pseudosuccinea columella (the most frequent species) specimens were parasitized by Schistosoma mansoni or Fasciola hepatica, respectively. Even so, some parks may represent a considerable potential risk for transmission of both Schistosoma mansoni and Fasciola hepatica, given the presence of these gastropod vectors and the frequent contact of visitors with the waterbodies.


Subject(s)
Fresh Water , Gastropoda , Parks, Recreational , Animals , Brazil/epidemiology , Fresh Water/parasitology , Gastropoda/parasitology , Gastropoda/classification , Humans , Snails/parasitology
19.
Int J Food Microbiol ; 418: 110732, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38728973

ABSTRACT

Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/µL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.


Subject(s)
Nucleic Acid Amplification Techniques , Snails , Animals , Nucleic Acid Amplification Techniques/methods , Snails/parasitology , Echinostomatidae/isolation & purification , Echinostomatidae/genetics , Echinostomatidae/classification , Thailand , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Food Parasitology
20.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773521

ABSTRACT

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Subject(s)
Fresh Water , Introduced Species , Snails , Trematoda , Animals , Zimbabwe/epidemiology , Snails/parasitology , Trematoda/genetics , Trematoda/classification , Trematoda/isolation & purification , Trematoda/physiology , Cross-Sectional Studies , Fresh Water/parasitology , One Health , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Biodiversity , Prevalence , Schistosomiasis/epidemiology , Schistosomiasis/parasitology , Schistosomiasis/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...