Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.500
Filter
1.
Biomed Res Int ; 2024: 6692421, 2024.
Article in English | MEDLINE | ID: mdl-39140000

ABSTRACT

Background: Snakebite is a global environmental and occupational hazard and a significant public health threat. In rural areas, snakebite cases often go unreported and undocumented due to the lack of access to well-structured healthcare facilities/infrastructure. In some cases, the need for antisnake venom (ASV) far outstrips supply, negatively affecting treatment outcomes. This study, therefore, assessed the epidemiological characteristics of snakebite cases, their management, and how antivenoms are utilised at the selected hospital in the Jasikan District Hospital. Methods: A 6-year retrospective study using secondary data from antivenom return forms (pharmacy records), clinical records (patient folders), the District Health Information Management System-2 (DHIMS-2) database, and consulting room registers was carried out in selected hospitals in the Jasikan District, Oti, Ghana. Results: The predominant symptom of snakebite was localised pain (71.4%). The snakebite commonly occurred at home (19%) and on farms (18%). Of the 98 snakebite cases, ASV was administered to 73 (74.5%) cases. Supportive treatment applied included prophylactic antitetanus immunoglobulin (ATS) (80.6%), prophylactic antibiotics (63%), corticosteroids (80.6%), and analgesics (63%). 95% (n = 94) of complete recoveries were recorded; three were discharged against medical advice, and one was mortality. The supply and use of antivenom were erratic throughout the months of high incidence, partly due to inconsistent availability at the Regional Medical Stores. The average ASV vials and hospital stay duration were 1.23 ± 0.86 vials and 2.67 ± 1.97 days, respectively. Although the peak of snakebites occurs in April, May, and June, the demand for antivenom in April and May exceeded supply. Conclusion: The outcome of most snakebite case management was appropriate, irrespective of inadequate ASV supply in certain months. The erratic antivenom supply should be aligned with seasonal and facility-use patterns to enhance regional snakebite management.


Subject(s)
Antivenins , Snake Bites , Snake Bites/epidemiology , Snake Bites/drug therapy , Humans , Ghana/epidemiology , Antivenins/therapeutic use , Male , Retrospective Studies , Female , Adult , Middle Aged , Adolescent , Young Adult , Child , Aged , Child, Preschool , Snake Venoms
2.
Adv Protein Chem Struct Biol ; 141: 539-562, 2024.
Article in English | MEDLINE | ID: mdl-38960485

ABSTRACT

Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.


Subject(s)
Metalloproteins , Snake Venoms , Animals , Humans , Snake Venoms/metabolism , Snake Venoms/chemistry , Snake Venoms/enzymology , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/antagonists & inhibitors
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063187

ABSTRACT

Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-ß signalling. In this study, the role of integrins and TGF-ß signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-ß pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-ß signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.


Subject(s)
Drug Resistance, Neoplasm , Melanoma , Snake Venoms , Vemurafenib , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Snake Venoms/pharmacology , Integrin beta3/metabolism , Integrin beta3/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Integrins/metabolism , Integrins/antagonists & inhibitors , Integrin alpha5/metabolism , Integrin alpha5/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Indoles/pharmacology , Indoles/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Toxicon ; 247: 107841, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38950738

ABSTRACT

Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.


Subject(s)
Proteomics , Snake Venoms , Snake Venoms/chemistry , Animals , Protein Processing, Post-Translational , Protein Isoforms
5.
ACS Chem Neurosci ; 15(14): 2600-2611, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957957

ABSTRACT

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-ß (Aß) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aß42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aß42 aggregation and eliminate Aß42 aggregates. Additionally, all of the peptides showed an affinity for Aß42. This study is the first to describe the potential of crotamine derivative peptides against Aß42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.


Subject(s)
Amyloid beta-Peptides , Crotalid Venoms , Peptide Fragments , Amyloid beta-Peptides/metabolism , Humans , Animals , Protein Aggregates/drug effects , Snake Venoms/chemistry , Peptides/pharmacology , Peptides/chemistry , Crotalus
6.
Anal Chem ; 96(26): 10791-10799, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38914924

ABSTRACT

The analysis and detection of snake venom toxins are a matter of great importance in clinical diagnosis for fast treatment and the discovery of new pharmaceutical products. Current detection methods have high associated costs and require the use of sophisticated bioreceptors, which in some cases are difficult to obtain. Herein, we report the synthesis of template-based molecularly imprinted micromotors for dynamic detection of α-bungarotoxin as a model toxin present in the venom of many-banded krait (Bungarus multicinctus). The specific recognition sites are built-in in the micromotors by incubation of the membrane template with the target toxin, followed by a controlled electrodeposition of a poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate) polymeric layer, a magnetic Ni layer to promote magnetic guidance and facilitate washing steps, and a Pt layer for autonomous propulsion in the presence of hydrogen peroxide. The enhanced fluid mixing and autonomous propulsion increase the likelihood of interactions with the target analyte as compared with static counterparts, retaining the tetramethylrhodamine-labeled α-bungarotoxin on the micromotor surface with extremely fast dynamic sensor response (after just 20 s navigation) in only 3 µL of water, urine, or serum samples. The sensitivity achieved meets the clinically relevant concentration postsnakebite (from 0.1 to 100 µg/mL), illustrating the feasibility of the approach for practical applications. The selectivity of the protocol is very high, as illustrated by the absence of fluorescence in the micromotor surface in the presence of α-cobratoxin as a representative toxin with a size and structure similar to those of α-bungarotoxin. Recoveries higher than 95% are obtained in the analysis of urine- and serum-fortified samples. The new strategy holds considerable promise for fast, inexpensive, and even onsite detection of several toxins using multiple molecularly imprinted micromotors with tailored recognition abilities.


Subject(s)
Bungarotoxins , Bungarotoxins/chemistry , Bungarotoxins/urine , Animals , Polymers/chemistry , Snake Venoms/chemistry , Bungarus , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Molecular Imprinting , Sulfonic Acids
7.
Toxicon ; 247: 107831, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38936670

ABSTRACT

Establishing humane endpoints to minimize animal suffering in studies on snake venom toxicity and antivenom potency tests is crucial. Our findings reveal that Swiss mice exhibit early temperature drop following exposure to different snake venoms and combinations of venoms and antivenoms, predicting later mortality. Evaluating temperature we can identify within 3 h post-inoculation, the animals that will not survive in a period of 48 h. Implementing temperature as a criterion would significantly reduce animal suffering in these studies without compromising the outcomes.


Subject(s)
Antivenins , Snake Venoms , Animals , Mice , Antivenins/pharmacology , Snake Venoms/toxicity , Body Temperature/drug effects , Temperature , Male
8.
Sci Rep ; 14(1): 11157, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834598

ABSTRACT

Snakebite envenomation is a major public health issue which causes severe morbidity and mortality, affecting millions of people annually. Of a diverse range of clinical manifestations, local and systemic haemorrhage are of particular relevance, as this may result in ischemia, organ failure and even cardiovascular shock. Thus far, in vitro studies have failed to recapitulate the haemorrhagic effects observed in vivo. Here, we present an organ-on-a-chip approach to investigate the effects of four different snake venoms on a perfused microfluidic blood vessel model. We assess the effect of the venoms of four snake species on epithelial barrier function, cell viability, and contraction/delamination. Our findings reveal two different mechanisms by which the microvasculature is being affected, either by disruption of the endothelial cell membrane or by delamination of the endothelial cell monolayer from its matrix. The use of our blood vessel model may shed light on the key mechanisms by which tissue-damaging venoms exert their effects on the capillary vessels, which could be helpful for the development of effective treatments against snakebites.


Subject(s)
Lab-On-A-Chip Devices , Snake Venoms , Animals , Humans , Endothelial Cells/drug effects , Hemorrhage , Cell Survival/drug effects , Snake Bites/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Microphysiological Systems
9.
Biomed Pharmacother ; 177: 116967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908206

ABSTRACT

Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.


Subject(s)
Acute Kidney Injury , Metalloproteases , Snake Bites , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Mice , Male , Metalloproteases/antagonists & inhibitors , Metalloproteases/metabolism , Snake Bites/drug therapy , Snake Bites/complications , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Crotalinae , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Oxidative Stress/drug effects , Kidney/drug effects , Kidney/pathology , Crotalid Venoms/toxicity , Snake Venoms , Apoptosis/drug effects , Elapid Venoms
10.
Toxicon ; 247: 107824, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38908525

ABSTRACT

Phagocytosis, an essential process for host defense, requires the coordination of a variety of signaling reactions. MT-II, an enzymatically inactive Lys49 phospholipase A2 (PLA2) homolog, and MT-III, a catalytically-active Asp49 PLA2, are known to activate phagocytosis in macrophages. In this study, the signaling pathways mediating phagocytosis, focusing on protein kinases, were investigated. Macrophages from male Swiss mice peritoneum were obtained 96 h after intraperitoneal thioglycolate injection. Phagocytosis was evaluated using non-opsonized zymosan particles in the presence or absence of specific inhibitors, as well as PKC and PKC-α localization by confocal microscopy. Moreover, protein kinase C (PKC) activity was assessed by γP32 ATP in macrophages stimulated by both PLA2s. Data showed that both sPLA2s increased phagocytosis. Cytochalasin D, staurosporine/H7, wortmannin, and herbimycin, inhibitors of actin polymerization, PKC, phosphoinositide 3-kinase (PI3K), and protein tyrosine kinase (PTK), respectively, significantly reduced phagocytosis induced by both PLA2s. PKC activity was increased in macrophages stimulated by both PLA2s. Actin polymerization and talin were evidenced by immunofluorescence and talin was recruited 5 min after both PLA2s stimulation. PKC and PKC-α localization within the cell were increased after 60 min of MT-II and MT-III stimulation. These data suggest that the effect of both PLA2s depends on actin cytoskeleton rearrangements and the activation of PKC, PI3K, and PTK signaling events required for phagocytosis.


Subject(s)
Phagocytosis , Protein Kinase C-alpha , Signal Transduction , Animals , Phagocytosis/drug effects , Mice , Signal Transduction/drug effects , Male , Protein Kinase C-alpha/metabolism , Macrophages/drug effects , Phospholipases A2, Secretory/metabolism , Snake Venoms/toxicity , Rifabutin/analogs & derivatives , Rifabutin/pharmacology
11.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Article in English | MEDLINE | ID: mdl-38809847

ABSTRACT

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Subject(s)
Antivenins , Neutralization Tests , Animals , Horses/immunology , Antivenins/immunology , Antivenins/administration & dosage , Mice , Africa South of the Sahara , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Snake Venoms/immunology , Immune Sera/immunology , Elapid Venoms/immunology , Snake Bites/immunology
12.
F1000Res ; 13: 192, 2024.
Article in English | MEDLINE | ID: mdl-38708289

ABSTRACT

On the 26 th January 2023, a free to attend, 'improving in vivo snake venom research: a community discussion' meeting was held virtually. This webinar brought together researchers from around the world to discuss current neutralisation of venom lethality mouse assays that are used globally to assess the efficacy of therapies for snakebite envenoming. The assay's strengths and weaknesses were highlighted, and we discussed what improvements could be made to refine and reduce animal testing, whilst supporting preclinical antivenom and drug discovery for snakebite envenoming. This report summarises the issues highlighted, the discussions held, with additional commentary on key perspectives provided by the authors.


Subject(s)
Antivenins , Snake Bites , Snake Venoms , Antivenins/therapeutic use , Animals , Snake Venoms/antagonists & inhibitors , Mice , Snake Bites/drug therapy , Humans
13.
J Proteome Res ; 23(7): 2367-2375, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38814071

ABSTRACT

Investigating snake venom is necessary for developing new treatments for envenoming and harnessing the therapeutic potential that lies within venom toxins. Despite considerable efforts in previous research, several technical challenges remain for characterizing the individual components within such complex mixtures. Here, we present native and top-down mass spectrometry (MS) workflows that enable the analysis of individual venom proteins within complex mixtures and showcase the utility of these methodologies on King cobra (Ophiophagus hannah) venom. First, we coupled ion mobility spectrometry for separation and electron capture dissociation for charge reduction to resolve highly convoluted mass spectra containing multiple proteins with masses ranging from 55 to 127 kDa. Next, we performed a top-down glycomic analysis of a 25.5 kDa toxin, showing that this protein contains a fucosylated complex glycan. Finally, temperature-controlled nanoelectrospray mass spectrometry facilitated the top-down sequence analysis of a ß-cardiotoxin, which cannot be fragmented by collisional energy due to its disulfide bond pattern. The work presented here demonstrates the applicability of new and promising MS methods for snake venom analysis.


Subject(s)
Elapid Venoms , Animals , Elapid Venoms/chemistry , Elapidae , Snake Venoms/chemistry , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Proteomics/methods , Amino Acid Sequence
14.
Clin Toxicol (Phila) ; 62(5): 277-279, 2024 May.
Article in English | MEDLINE | ID: mdl-38804828

ABSTRACT

INTRODUCTION: Antivenom is widely accepted as an effective treatment for snake envenomation. This is despite very limited evidence supporting clinical effectiveness for major envenomation syndromes, and is mainly based on pre-clinical studies and observational studies without control groups. EFFECTIVENESS OF EARLY ANTIVENOM: Although antivenom exhibits efficacy by binding to snake toxins and preventing toxic injury in animals if pre-mixed with venom, this efficacy does not always translate to clinical effectiveness. There are many irreversible venom mediated effects that antivenom cannot neutralise or reverse, such as pre-synaptic neurotoxicity and myotoxicity. Fortunately, early antivenom appears to prevent some of these. PRACTICALITIES OF ADMINISTERING ANTIVENOM EARLY: With good evidence that early antivenom prevents some envenomation syndromes, the time between bite and antivenom administration must be reduced. This requires improving the initial assessment of snakebite patients, and improving early decision making based on clinical effects. CONCLUSION: Until there are improved, simplified, easy to use, rapid and inexpensive tests, whether available in the laboratory or preferably at the bedside that identify systemic envenomation, the key to early antivenom administration is early assessment and decision making based on systemic symptoms, including nausea, vomiting, headache and abdominal pain.


Subject(s)
Antivenins , Snake Bites , Animals , Humans , Antivenins/therapeutic use , Antivenins/administration & dosage , Snake Bites/drug therapy , Snake Venoms/antagonists & inhibitors , Time Factors
15.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704067

ABSTRACT

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.


Subject(s)
Antineoplastic Agents , Snake Venoms , Humans , Snake Venoms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Animals , Neoplasms/drug therapy , L-Amino Acid Oxidase/chemistry , L-Amino Acid Oxidase/pharmacology , Apoptosis/drug effects , Phospholipases A2/metabolism , Phospholipases A2/chemistry , Toxins, Biological/chemistry , Toxins, Biological/pharmacology
16.
Toxicon ; 244: 107772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768828

ABSTRACT

Around 95% of snake venom is protein. Along with the soluble proteins, snake venom also contains proteins encapsulated in vesicles known as Snake Venom Extracellular Vesicles (SVEV). SVEVs are nano-sized membrane-bound vesicles released from the snake venom gland cells. The available published research works on SVEVs are minimal. Extracellular vesicles in the Snake Venom gland were initially discovered during the histopathological analysis of the Crotalus durissus terrificus snakes' venom gland. Later, various techniques were employed to isolate and characterize the SVEVs. The cargo of SVEV consists of a variety of proteins like Phospholipase A-2, C-type Lectins, L-Amino Acid Oxidase, Cysteine-Rich Secretory Proteins, Serine Proteinases, Dipeptidyl Peptidase-IV, Aminopeptidase-A, Ecto-5'-nucleotidases, Disintegrins. Proteomic data revealed the presence of some exclusive proteins in the SVEVs, and the other proteins are in varying concentrations in the SVEVs compared to their whole Venom. Interaction of SVEVs with mammalian cell lines showed the disruption of primary physiological functions leads to host immune modulation, and long-term effects of envenoming. Snakebite victim's blood showed variations in the specific Extracellular vesicle concentration. It has been hypothesized that SVEVs are responsible for long-term toxicity. The current review focuses on the various techniques adopted to isolate and characterize SVEVs and discusses the exclusiveness and variations of SVEV proteins and their role in snakebites.


Subject(s)
Extracellular Vesicles , Snake Venoms , Extracellular Vesicles/metabolism , Animals , Proteomics , Crotalus
17.
Toxicon ; 244: 107740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705487

ABSTRACT

Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.


Subject(s)
Transcriptome , Animals , Snake Venoms/genetics , Lectins, C-Type/genetics , Brazil , Metalloproteases/genetics
18.
Toxins (Basel) ; 16(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38668601

ABSTRACT

The evolutionary interplay between predator and prey has significantly shaped the development of snake venom, a critical adaptation for subduing prey. This arms race has spurred the diversification of the components of venom and the corresponding emergence of resistance mechanisms in the prey and predators of venomous snakes. Our study investigates the molecular basis of venom resistance in pythons, focusing on electrostatic charge repulsion as a defense against α-neurotoxins binding to the alpha-1 subunit of the postsynaptic nicotinic acetylcholine receptor. Through phylogenetic and bioactivity analyses of orthosteric site sequences from various python species, we explore the prevalence and evolution of amino acid substitutions that confer resistance by electrostatic repulsion, which initially evolved in response to predatory pressure by Naja (cobra) species (which occurs across Africa and Asia). The small African species Python regius retains the two resistance-conferring lysines (positions 189 and 191) of the ancestral Python genus, conferring resistance to sympatric Naja venoms. This differed from the giant African species Python sebae, which has secondarily lost one of these lysines, potentially due to its rapid growth out of the prey size range of sympatric Naja species. In contrast, the two Asian species Python brongersmai (small) and Python bivittatus (giant) share an identical orthosteric site, which exhibits the highest degree of resistance, attributed to three lysine residues in the orthosteric sites. One of these lysines (at orthosteric position 195) evolved in the last common ancestor of these two species, which may reflect an adaptive response to increased predation pressures from the sympatric α-neurotoxic snake-eating genus Ophiophagus (King Cobras) in Asia. All these terrestrial Python species, however, were less neurotoxin-susceptible than pythons in other genera which have evolved under different predatory pressure as: the Asian species Malayopython reticulatus which is arboreal as neonates and juveniles before rapidly reaching sizes as terrestrial adults too large for sympatric Ophiophagus species to consider as prey; and the terrestrial Australian species Aspidites melanocephalus which occupies a niche, devoid of selection pressure from α-neurotoxic predatory snakes. Our findings underline the importance of positive selection in the evolution of venom resistance and suggest a complex evolutionary history involving both conserved traits and secondary evolution. This study enhances our understanding of the molecular adaptations that enable pythons to survive in environments laden with venomous threats and offers insights into the ongoing co-evolution between venomous snakes and their prey.


Subject(s)
Boidae , Static Electricity , Animals , Boidae/genetics , Boidae/physiology , Neurotoxins/genetics , Neurotoxins/chemistry , Phylogeny , Elapid Venoms/genetics , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Predatory Behavior , Snake Venoms/genetics , Snake Venoms/chemistry
19.
Toxins (Basel) ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668590

ABSTRACT

Snakebite envenomation (SBE) is a public health issue in sub-Saharan countries. Antivenom is the only etiological treatment. Excellent tolerance is essential in managing SBE successfully. This study aimed to evaluate tolerance of InoserpTM PAN-AFRICA (IPA). It was conducted on fourteen sites across Cameroon. IPA was administered intravenously and repeated at the same dose every two hours if needed. Early and late tolerance was assessed by the onset of clinical signs within two hours and at a visit two weeks or more after the first IPA administration, respectively. Over 20 months, 447 patients presenting with a snakebite were included. One dose of IPA was administered to 361 patients and repeated at least once in 106 patients. No significant difference was shown between the proportion of adverse events in patients who received IPA (266/361, 73.7%) and those who did not (69/85, 81.2%) (p = 0.95). Adverse reactions, probably attributable to IPA, were identified in four (1.1%) patients, including one severe (angioedema) and three mild. All these reactions resolved favorably. None of the serious adverse events observed in twelve patients were attributed to IPA. No signs of late intolerance were observed in 302 patients. Tolerance appears to be satisfactory. The availability of effective and well-tolerated antivenoms would reduce the duration of treatment and prevent most disabilities and/or deaths.


Subject(s)
Antivenins , Snake Bites , Humans , Snake Bites/drug therapy , Antivenins/therapeutic use , Antivenins/adverse effects , Male , Cameroon , Female , Adult , Middle Aged , Adolescent , Young Adult , Child , Aged , Child, Preschool , Aged, 80 and over , Snake Venoms/antagonists & inhibitors , Snake Venoms/immunology , Animals , Drug Tolerance
20.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673799

ABSTRACT

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Subject(s)
Antivenins , Snake Bites , Snake Venoms , Antivenins/pharmacology , Antivenins/immunology , Snake Bites/drug therapy , Snake Bites/immunology , Animals , Africa South of the Sahara , Mice , Snake Venoms/immunology , Snakes , Antibodies, Neutralizing/immunology , Humans , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL