Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.258
Filter
1.
Environ Sci Technol ; 58(26): 11718-11726, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889109

ABSTRACT

Mountaintop removal coal mining is a source of downstream pollution. Here, we show that mountaintop removal coal mining also pollutes ecosystems downwind. We sampled regional snowpack near the end of winter along a transect of sites located 3-60 km downwind of coal mining in the Elk River valley of British Columbia, Canada. Vast quantities of polycyclic aromatic compounds (PACs), a toxic class of organic contaminants, are emitted and transported atmospherically far from emission sources. Summed PAC (ΣPAC) snowpack concentrations ranged from 29-94,866 ng/L. Snowpack ΣPAC loads, which account for variable snowpack depth, ranged from <10 µg/m2 at sites >50 km southeast of the mines to >1000 µg/m2 at sites in the Elk River valley near mining operations, with one site >15,000 µg/m2. Outside of the Elk River valley, snowpack ΣPAC loads exhibited a clear spatial pattern decreasing away from the mines. The compositional fingerprint of this PAC pollution matches closely with Elk River valley coal. Beyond our study region, modeling results suggest a depositional footprint extending across western Canada and the northwestern United States. These findings carry important implications for receiving ecosystems and for communities located close to mountaintop removal coal mines exposed to air pollution elevated in PACs.


Subject(s)
Coal Mining , Snow , British Columbia , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring
2.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1275-1282, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886426

ABSTRACT

During the snowmelt period, the external erosive forces are dominated by freeze-thaw cycles and snowmelt runoff. These forces may affect soil structure and aggregate stability, thereby influencing snowmelt erosion. The process of snowmelt runoff can lead to the breakdown of aggregates during their transportation. However, few studies examined the effects of freeze-thaw cycles on the breakdown of aggregates during transportation. Focusing on 5-7 and 3-5 mm soil aggregates of typical black soil region in Northeast China, we analyzed the composition of water-stable aggregates, mean weight diameter (MWD), normalized mean weight diameter (NMWD), as well as breakdown rate of soil aggregates (BR) under different freeze-thaw cycles (0, 1, 5, 10, 15 and 20 times) and different transport distances (5, 10, 15, 20, 25 and 30 m). We further investigated the contribution (CT) of both freeze-thaw cycles and transport distances to BR. The results showed that: 1) After freeze-thaw cycles, the 5-7 and 3-5 mm aggregates were mainly composed of particles with a diameter of 0.5-1 mm. With increasing frequency of freeze-thaw cycles, the MWD generally showed a downward trend. Moreover, under the same number of freeze-thaw cycles, the NMWD of 3-5 mm aggregates was higher than that of 5-7 mm aggregates. 2) As the transport distance increased, the BR of 5-7and 3-5 mm aggregates gradually increased. Compared that under control group, the BR under one freeze-thaw cycle increased by 59.7%, 32.2%, 13.7%, 6.2%, 13.4%, 7.5%, and 60.0%, 39.0%, 18.4%, 13.0%, 6.3%, 6.1% at the condition of 5, 10, 15, 20, 25 and 30 m transport distances, respectively. However, with increasing frequency of freeze-thaw cycles, the BR increased slowly. 3) The breakdown of soil aggregates was mainly influenced by the transport distance (CT=54.6%) and freeze-thaw cycles (CT=26.2%). Freeze-thaw cycles primarily altered the stability of soil aggregates, which in turn affected the BR. Therefore, during the snowmelt period, freeze-thaw cycles reduced the stability of soil aggregates, leading to severe breakdown of soil aggregates during snowmelt runoff process. This made the soil more susceptible to migration with snowmelt runoff, which triggered soil erosion. Therefore, more attention should be paid on the prevention of soil erosion during snowmelt period.


Subject(s)
Freezing , Soil , Transportation , Soil/chemistry , China , Soil Erosion/prevention & control , Snow
3.
Ann Agric Environ Med ; 31(2): 205-211, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38940104

ABSTRACT

INTRODUCTION AND OBJECTIVE: Snow cover serves as a unique indicator of environmental pollution in both urban and rural areas. As a seasonal cover, it accumulates various pollutants emitted into the atmosphere, thus providing insight into air pollution types and the relative contributions of different pollution sources. The aim of the study is to analyze the distribution of trace elements in snow cover to assess the anthropogenic influence on pollution levels, and better understand ecological threats. MATERIAL AND METHODS: The study was conducted in rural areas around the village of Wólka in the Lublin Province of eastern Poland, and in urban districts of the city of Lublin, capital of the Province. Samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry, the Enrichment Factor (EF), and ecological risk indices (RI), were calculated to evaluate the contamination and potential ecological risks posed by the metals. RESULTS: The findings indicate higher concentrations of metals like sodium and iron in urban areas, likely due to road salt use and industrial activity, respectively. Enrichment factors showed significant anthropogenic contributions, particularly for metals like sodium, zinc, and cadmium, which had EF values substantially above natural levels. The potential ecological risk assessment highlighted a considerable ecological threat in urban areas compared to rural settings, primarily due to higher concentrations of metals. CONCLUSIONS: The variation in metal concentrations between urban and rural snow covers reflects the impact of human activities on local environments. Urban areas showed higher pollution levels, suggesting the need for targeted pollution control policies to mitigate the adverse ecological impacts. This study underscores the importance of continuous monitoring and comprehensive risk assessments to effectively manage environmental pollution.


Subject(s)
Environmental Monitoring , Metals , Snow , Snow/chemistry , Poland , Environmental Monitoring/methods , Risk Assessment , Metals/analysis , Humans , Air Pollutants/analysis , Cities , Rural Population
4.
Environ Int ; 188: 108782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821018

ABSTRACT

Snow dumping stations can be a hotspots for pollutants to water resources. However, little is known about the amount of microplastics including tyre wear particles transported this way. This study investigated microplastics and metals in snow from four snow dumping stations in Riga, Latvia, a remote site (Gauja National Park), and a roof top in Riga. Microplastics other than tyre wear particles were identified with Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) (>500 µm) and focal plane array based micro-Fourier Transform Infrared (FPA-µFTIR) imaging (10-500 µm), tyre wear particles by Pyrolysis Gas Chromatography-Mass Spectroscopy (Py-GC-MS), and total metals by Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Microplastics detected by FTIR were quantified by particle counts and their mass estimated, while tyre wear particles were quantified by mass. The concentrations varied substantially, with the highest levels in the urban areas. Microplastic concentrations measured by FTIR ranged between 26 and 2549 counts L-1 of melted snow with a corresponding estimated mass of 19-573 µg/L. Tyre wear particles were not detected at the two reference sites, while other sites held 44-3026 µg/L. Metal concentrations varied several orders of magnitude with for example sodium in the range 0.45-819.54 mg/L and cadmium in the range 0.05-0.94 µg/L. Correlating microplastic measured by FTIR to metal content showed a weak to moderate correlation. Tyre wear particles, however, correlated strongly to many of the metals. The study showed that snow can hold considerable amounts of these pollutants, which upon melting and release of the meltwater to the aquatic environment could impact receiving waters.


Subject(s)
Environmental Monitoring , Metals, Heavy , Microplastics , Snow , Snow/chemistry , Metals, Heavy/analysis , Microplastics/analysis , Water Pollutants, Chemical/analysis , Latvia , Spectroscopy, Fourier Transform Infrared
5.
J Phycol ; 60(3): 724-740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698553

ABSTRACT

Chlainomonas (Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. No Chlainomonas species have been successfully cultured in the laboratory, but diverse cell types have been observed from many field-collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy. Over 7 years (2017-2023), we observed seasonal blooms dominated by a Chlainomonas species from late spring through the summer months on a snow-on-lake habitat in an alpine basin in the North Cascade Mountains of Washington, USA. The Bagley Lake Chlainomonas is distinct from previously reported species based on morphology and sequence data. We observed a similar collection of cell types observed in other Chlainomonas species, with the addition of swarming biflagellate cells that emerged from sporangia. We present a life cycle hypothesis for this species that links cell morphologies observed in the field to seasonally available habitat. The progression of cell types suggests cells are undergoing both meiosis and fertilization in the life cycle. Since the life cycle is the most fundamental biological feature of an organism, with direct consequences for evolutionary processes, it is critical to understand how snow algal life cycles will influence their responses to changes in their habitat driven by climate warming. For microbial taxa that live in extreme environments and are difficult to culture, temporal field studies, such as we report here, may be key to creating testable hypotheses for life cycles.


Subject(s)
Chlorophyta , Snow , Chlorophyta/physiology , Chlorophyta/growth & development , Washington , Seasons , Life Cycle Stages , Lakes
6.
Environ Res ; 255: 119150, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763282

ABSTRACT

The coverage of accumulated snow plays a significant role in inducing changes in both microbial activity and environmental factors within freeze-thaw soil systems. This study aimed to analyze the impact of snow cover on the dynamics of archeal communities in freeze-thaw soil. Furthermore, it seeks to investigate the role of fertilization in freeze-thaw soil. Four treatments were established based on snow cover and fertilization:No snow and no fertilizer (CK-N), snow cover without fertilizer (X-N), fertilizer without snow cover (T-N), and both fertilizer and snow cover (T-X). The research findings indicated that after snow cover treatment, the carbon, nitrogen, and phosphorus content in freeze-thaw soil exhibit periodic fluctuations. Snow covered effectively altered the community composition of bacteria and archaea in the soil, with a greater impact on archaeal communities than on bacterial communities. Snow covered improves the stability of archaeal communities in freeze-thaw soil. Additionally, the arrival of snow also enhanced the correlation between archaea and environmental factors, with the key archaeal phyla involved being Nanoarchaeota and Crenarchaeota. Further research showed that the application of organic fertilizers also had some impact on freeze-thaw soil, but this impact was smaller compared to snow cover. In summary, the arrival of snow could alter the archaeal community and protect nutrient elements in freeze-thaw soil, reducing their loss, and its effect is more pronounced compared to the application of organic fertilizers.


Subject(s)
Archaea , Fertilizers , Freezing , Snow , Soil Microbiology , Soil , Fertilizers/analysis , Soil/chemistry , Nitrogen/analysis
7.
Environ Pollut ; 354: 124181, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38768677

ABSTRACT

Through a comprehensive investigation into the historical profiles of black carbon derived from ice cores, the spatial distributions of light-absorbing impurities in snowpit samples, and carbon isotopic compositions of black carbon in snowpit samples of the Third Pole, we have identified that due to barriers of the Himalayas and remove of wet deposition, local sources rather than those from seriously the polluted South Asia are main contributors of light-absorbing impurities in the inner part of the Third Pole. Therefore, reducing emissions from residents of the Third Pole themselves is a more effective way of protecting the glaciers of the inner Third Pole in terms of reducing concentrations of light-absorbing particles in the atmosphere and on glaciers.


Subject(s)
Air Pollutants , Environmental Monitoring , Environmental Monitoring/methods , Air Pollutants/analysis , Ice Cover/chemistry , Asia , Soot/chemistry , Atmosphere/chemistry , Snow/chemistry , Asia, Southern , Himalayas
8.
Environ Sci Pollut Res Int ; 31(25): 37196-37214, 2024 May.
Article in English | MEDLINE | ID: mdl-38764085

ABSTRACT

The transport and deposition of atmospheric pollutants in the Himalayas have a adverse impact on the climate, cryosphere, ecosystem, and monsoon patterns. Unfortunately, there is a insufficiency of data on trace element concentrations and behaviors in the high-altitude Himalayan region, leading to limited research in this area. This study presents a comprehensive and detailed comprehension of trace element deposition, its spatial distribution, seasonal variations, and anthropogenic signals in the high-altitude Kashmir region of the Western Himalayas. Our investigation involved the analysis of 10 trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in glacier ice, snow pits, surface snow, and rainwater collected at various sites including Kolahoi, Thajwas, Pahalgam (Greater Himalayan ranges), and Kongdori and Shopian (Pir Panjal Ranges) during 2021. The study reveals distinct ranges of concentrations for the trace elements at different sampling sites. Our analysis of trace element concentration depth profiles in snow pits reveals seasonal fluctuations during the deposition year. The highest concentrations were found in the autumn (below 20 cm) and summer (top layer), compared to the winter concentration (10-20 cm). The high enrichment factors (EFs) suggest the severity of human-induced trace metal deposition in the western Himalayan region, relative to surrounding regions. Surprisingly, the concentrations and EFs of trace elements showed seasonal contradictions, with lower concentration values and higher EFs during the non-monsoon season and vice versa. A source apportionment analysis using the positive matrix factorization (PMF) technique identified five sources of trace element deposition in the region, including crustal sources (32.33%), coal combustion (15.62%), biomass burning (17.63%), traffic emission (18.8%), and industrial sources (15.6%). Additionally, the study incorporated backward trajectories coupled with δ18O using the NOAA HYSPLIT model to estimate moisture sources in the region, which suggests atmospheric pollutants predominately deposited from the large-scale atmospheric circulation from westerlies (75%) during non-monsoon season. These findings underscore the urgent need for enhanced monitoring and research efforts in the future.


Subject(s)
Air Pollutants , Environmental Monitoring , Seasons , Trace Elements , Trace Elements/analysis , Air Pollutants/analysis , Snow/chemistry , India , Humans , Himalayas
9.
Microbiome ; 12(1): 91, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760842

ABSTRACT

BACKGROUND: Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS: In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION: Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.


Subject(s)
Giant Viruses , Ice Cover , Ice Cover/virology , Greenland , Giant Viruses/genetics , Giant Viruses/classification , Giant Viruses/isolation & purification , Phylogeny , Ecosystem , Genome, Viral , Metagenomics , Chlorophyta/virology , Chlorophyta/genetics , Metagenome , Snow
11.
Ecol Evol Physiol ; 97(1): 53-63, 2024.
Article in English | MEDLINE | ID: mdl-38717368

ABSTRACT

AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.


Subject(s)
Hibernation , Sciuridae , Seasons , Snow , Animals , Sciuridae/physiology , Hibernation/physiology , Female , Male , Torpor/physiology
12.
Nature ; 629(8014): 1075-1081, 2024 May.
Article in English | MEDLINE | ID: mdl-38811711

ABSTRACT

Climate warming induces shifts from snow to rain in cold regions1, altering snowpack dynamics with consequent impacts on streamflow that raise challenges to many aspects of ecosystem services2-4. A straightforward conceptual model states that as the fraction of precipitation falling as snow (snowfall fraction) declines, less solid water is stored over the winter and both snowmelt and streamflow shift earlier in season. Yet the responses of streamflow patterns to shifts in snowfall fraction remain uncertain5-9. Here we show that as snowfall fraction declines, the timing of the centre of streamflow mass may be advanced or delayed. Our results, based on analysis of 1950-2020 streamflow measurements across 3,049 snow-affected catchments over the Northern Hemisphere, show that mean snowfall fraction modulates the seasonal response to reductions in snowfall fraction. Specifically, temporal changes in streamflow timing with declining snowfall fraction reveal a gradient from earlier streamflow in snow-rich catchments to delayed streamflow in less snowy catchments. Furthermore, interannual variability of streamflow timing and seasonal variation increase as snowfall fraction decreases across both space and time. Our findings revise the 'less snow equals earlier streamflow' heuristic and instead point towards a complex evolution of seasonal streamflow regimes in a snow-dwindling world.


Subject(s)
Global Warming , Rain , Seasons , Snow , Ecosystem , Rivers , Time Factors , Water Movements , Global Warming/statistics & numerical data , Spatio-Temporal Analysis
13.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38662665

ABSTRACT

Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here, we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of 3 alternative annotation strategies was used including protein homology, RNA-seq evidence, and PacBio full-length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on Benchmarking Universal Single-Copy Orthologs analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow algae adaptation, behavior, and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.


Subject(s)
Molecular Sequence Annotation , Snow , Arctic Regions , Snow/microbiology , Phylogeny , Chlorophyta/genetics , Genomics/methods
14.
Extremophiles ; 28(2): 23, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575688

ABSTRACT

We assessed the fungal diversity present in snow sampled during summer in the north-west Antarctic Peninsula and the South Shetland Islands, maritime Antarctica using a metabarcoding approach. A total of 586,693 fungal DNA reads were obtained and assigned to 203 amplicon sequence variants (ASVs). The dominant phylum was Ascomycota, followed by Basidiomycota, Mortierellomycota, Chytridiomycota and Mucoromycota. Penicillium sp., Pseudogymnoascus pannorum, Coniochaeta sp., Aspergillus sp., Antarctomyces sp., Phenoliferia sp., Cryolevonia sp., Camptobasidiaceae sp., Rhodotorula mucilaginosa and Bannozyma yamatoana were assessed as abundant taxa. The snow fungal diversity indices were high but varied across the different locations sampled. Of the fungal ASVs detected, only 28 were present all sampling locations. The 116 fungal genera detected in the snow were dominated by saprotrophic taxa, followed by symbiotrophic and pathotrophic. Our data indicate that, despite the low temperature and oligotrophic conditions, snow can host a richer mycobiome than previously reported through traditional culturing studies. The snow mycobiome includes a complex diversity dominated by cosmopolitan, cold-adapted, psychrophilic and endemic taxa. While saprophytes dominate this community, a range of other functional groups are present.


Subject(s)
Mycobiome , Snow , Antarctic Regions , Fungi/genetics , Cold Temperature , DNA, Fungal/genetics
15.
Environ Entomol ; 53(3): 383-397, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38572766

ABSTRACT

Arthropods are active during the winter in temperate regions. Many use the seasonal snowpack as a buffer against harsh ambient conditions and are active in a refugium known as the subnivium. While the use of the subnivium by arthropods is well established, far less is known about subnivium community composition, abundance, biomass, and diversity and how these characteristics compare with the community in the summer. Understanding subnivium communities is especially important given the observed and anticipated changes in snowpack depth and duration due to the changing climate. We compared subnivium arthropod communities with those active during the summer using pitfall trapping in northern New Hampshire. We found that compositions of ground-active arthropod communities in the subnivium differed from those in the summer. The subnivium arthropod community featured moderate levels of richness and other measures of diversity that tended to be lower than the summer community. More strikingly, the subnivium community was much lower in overall abundance and biomass. Interestingly, some arthropods were dominant in the subnivium but either rare or absent in summer collections. These putative "subnivium specialists" included the spider Cicurina brevis (Emerton 1890) (Araneae: Hahniidae) and 3 rove beetles (Coleoptera: Staphylinidae): Arpedium cribratum Fauvel, 1878, Lesteva pallipes LeConte, 1863, and Porrhodites inflatus (Hatch, 1957). This study provides a detailed account of the subnivium arthropod community, establishes baseline information on arthropod communities in temperate forests of northeastern North America, and explores the idea of subnivium specialist taxa that are highly active in winter and might be especially vulnerable to climate change.


Subject(s)
Arthropods , Biodiversity , Seasons , Snow , Animals , New Hampshire , Spiders/physiology , Refugium , Biomass
16.
mSystems ; 9(5): e0008324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38647296

ABSTRACT

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Subject(s)
Snow , Snow/virology , Snow/microbiology , British Columbia , Bacteria/genetics , Bacteria/virology , Bacteria/isolation & purification , Eutrophication , Genome, Viral/genetics , Bacteriophages/genetics , Bacteriophages/isolation & purification , Rhodophyta/virology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification
17.
Proc Natl Acad Sci U S A ; 121(17): e2316452121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621125

ABSTRACT

The main sources of redox gradients supporting high-productivity life in the Europan and other icy ocean world oceans were proposed to be photolytically derived oxidants, such as reactive oxygen species (ROS) from the icy shell, and reductants (Fe(II), S(-II), CH4, H2) from bottom waters reacting with a (ultra)mafic seafloor. Important roadblocks to maintaining life, however, are that the degree of ocean mixing to combine redox species is unknown, and ROS damage biomolecules. Here, we envisage a unique solution using an acid mine drainage (AMD)-filled pit lakes analog system for the Europan ocean, which previous models predicted to be acidic. We hypothesize that surface-generated ROS oxidize dissolved Fe(II) resulting in Fe(III) (hydr)oxide precipitates, that settle to the seafloor as "iron snow." The iron snow provides a respiratory substrate for anaerobic microorganisms ("breathing iron"), and limits harmful ROS exposure since they are now neutralized at the ice-water interface. Based on this scenario, we calculated Gibbs energies and maximal biomass productivities of various anaerobic metabolisms for a range of pH, temperatures, and H2 fluxes. Productivity by iron reducers was greater for most environmental conditions considered, whereas sulfate reducers and methanogens were more favored at high pH. Participation of Fe in the metabolic redox processes is largely neglected in most models of Europan biogeochemistry. Our model overcomes important conceptual roadblocks to life in icy ocean worlds and broadens the potential metabolic diversity, thus increasing total primary productivity, the diversity and volume of habitable environmental niches and, ultimately, the probability of biosignature detection.


Subject(s)
Ice , Iron , Reactive Oxygen Species , Snow , Oxidation-Reduction , Ferrous Compounds
18.
Proc Natl Acad Sci U S A ; 121(19): e2321179121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683988

ABSTRACT

Certain fox species plunge-dive into snow to catch prey (e.g., rodents), a hunting mechanism called mousing. Red and arctic foxes can dive into snow at speeds ranging between 2 and 4 m/s. Such mousing behavior is facilitated by a slim, narrow facial structure. Here, we investigate how foxes dive into snow efficiently by studying the role of skull morphology on impact forces it experiences. In this study, we reproduce the mousing behavior in the lab using three-dimensional (3D) printed fox skulls dropped into fresh snow to quantify the dynamic force of impact. Impact force into snow is modeled using hydrodynamic added mass during the initial impact phase. This approach is based on two key facts: the added mass effect in granular media at high Reynolds numbers and the characteristics of snow as a granular medium. Our results show that the curvature of the snout plays a critical role in determining the impact force, with an inverse relationship. A sharper skull leads to a lower average impact force, which allows foxes to dive head-first into the snow with minimal tissue damage.


Subject(s)
Foxes , Skull , Snow , Animals , Foxes/anatomy & histology , Foxes/physiology , Skull/anatomy & histology , Diving/physiology , Predatory Behavior/physiology
19.
Commun Biol ; 7(1): 423, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684895

ABSTRACT

Snow is a major, climate-sensitive feature of the Earth's surface and catalyst of fundamentally important ecosystem processes. Understanding how snow influences sentinel species in rapidly changing mountain ecosystems is particularly critical. Whereas effects of snow on food availability, energy expenditure, and predation are well documented, we report how avalanches exert major impacts on an ecologically significant mountain ungulate - the coastal Alaskan mountain goat (Oreamnos americanus). Using long-term GPS data and field observations across four populations (421 individuals over 17 years), we show that avalanches caused 23-65% of all mortality, depending on area. Deaths varied seasonally and were directly linked to spatial movement patterns and avalanche terrain use. Population-level avalanche mortality, 61% of which comprised reproductively important prime-aged individuals, averaged 8% annually and exceeded 22% when avalanche conditions were severe. Our findings reveal a widespread but previously undescribed pathway by which snow can elicit major population-level impacts and shape demographic characteristics of slow-growing populations of mountain-adapted animals.


Subject(s)
Avalanches , Snow , Animals , Ecosystem , Ruminants/physiology , Seasons , Population Dynamics , Alaska , Climate , Climate Change , Male
20.
Environ Sci Technol ; 58(17): 7415-7424, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38578215

ABSTRACT

We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.


Subject(s)
Dust , Lakes , Seasons , Arctic Regions , Snow , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...