Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59.866
Filter
1.
J Environ Sci (China) ; 147: 404-413, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003058

ABSTRACT

Salinity was considered to have effects on the characteristics, performance microbial communities of aerobic granular sludge. This study investigated granulation process with gradual increase of salt under different gradients. Two identical sequencing batch reactors were operated, while the influent of Ra and Rb was subjected to stepwise increments of NaCl concentrations (0-4 g/L and 0-10 g/L). The presence of filamentous bacteria may contribute to granules formed under lower salinity conditions, potentially leading to granules fragmentation. Excellent removal efficiency achieved in both reactors although there was a small accumulation of nitrite in Rb at later stages. The removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Ra were 95.31%, 93.70% and 88.66%, while the corresponding removal efficiencies in Rb were 94.19%, 89.79% and 80.74%. Salinity stimulated extracellular polymeric substances (EPS) secretion and enriched EPS producing bacteria to help maintain the integrity and stability of the aerobic granules. Heterotrophic nitrifying bacteria were responsible for NH4+-N and NO2--N oxidation of salinity systems and large number of denitrifying bacteria were detected, which ensure the high removal efficiency of TN in the systems.


Subject(s)
Bioreactors , Nitrogen , Sewage , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology , Phosphorus/metabolism , Salinity , Sodium Chloride , Bacteria/metabolism , Microbiota , Biological Oxygen Demand Analysis
2.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001005

ABSTRACT

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Subject(s)
Germination , Gibberellins , Lactuca , Seedlings , Seeds , Gibberellins/pharmacology , Lactuca/growth & development , Lactuca/drug effects , Seedlings/drug effects , Seedlings/growth & development , Germination/drug effects , Germination/physiology , Seeds/drug effects , Seeds/growth & development , Salt Stress/drug effects , Sodium Chloride/pharmacology
3.
Environ Geochem Health ; 46(8): 300, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990399

ABSTRACT

This study investigated microplastic (MP) contamination in conventional sea salt farming systems. Various crude sea salt samples (n = 22) that were traditionally produced were collected from salt farms and local vendors. Salt water (n = 15), macroalgae (n = 6), and clay of pond floors (n = 6) were collected from ponds subjected to different production (stabilization, evaporation, and concentration and crystallization concentration) processes. All samples were analyzed for MP abundance and characteristics. The potential sources of MP contamination in the salt were also investigated. The mean abundance of MPs in the salt water and clay of pond floor increased progressively throughout the production process and reached its highest level in the concentration and crystallization ponds (7400 MP particles/m3 in salt water and 19,336 MP particles/m2 in the clay of the pond floor). A maximum of 26,500 MP particles/kg of macroalgal material indicated the potential sink of MPs on the surface of the algae. Approximately 34-2377 MP particles/kg salt were found in the crude sea salt samples. However, the mean abundance (378 MP particles/kg of salt) indicated nonsignificant impacts of different harvesting processes on MP contamination. Most MP size distributions, shapes and polymer types in the salts were similar to those found in the salt water, macroalgae and clay of the pond floor. Approximately 99% of the MPs were fragments that were suspected to be decomposed from larger plastic debris and plastic machinery and tools used at the salt farm. Similar patterns of polymer distribution, in which PP > PE > PET > PS, were found for all samples studied.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Environmental Monitoring/methods , Aquaculture , Seaweed/chemistry , Sodium Chloride/chemistry , Sodium Chloride/analysis , Particle Size
4.
Physiol Plant ; 176(4): e14430, 2024.
Article in English | MEDLINE | ID: mdl-38981734

ABSTRACT

Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.


Subject(s)
Cell Wall , Lignin , Plant Stems , Poaceae , Salt Stress , Cell Wall/chemistry , Cell Wall/metabolism , Lignin/metabolism , Poaceae/drug effects , Poaceae/physiology , Poaceae/genetics , Plant Stems/drug effects , Plant Stems/chemistry , Plant Stems/metabolism , Pectins/metabolism , Cellulose/metabolism , Genotype , Biomass , Sodium Chloride/pharmacology
5.
Am J Bot ; 111(7): e16373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010314

ABSTRACT

PREMISE: Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS: We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS: There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS: We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.


Subject(s)
Adaptation, Physiological , Orchidaceae , Plant Leaves , Salt Tolerance , Orchidaceae/physiology , Orchidaceae/drug effects , Plant Leaves/physiology , Plant Leaves/drug effects , Sodium Chloride/pharmacology , Chlorophyll/metabolism , Sodium/metabolism , Tropical Climate
6.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38949588

ABSTRACT

Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.


Subject(s)
Cardiolipins , Fluorescent Dyes , Unilamellar Liposomes , Cardiolipins/chemistry , Fluorescent Dyes/chemistry , Unilamellar Liposomes/chemistry , Surface Properties , Liposomes/chemistry , Sodium Chloride/chemistry , Surface-Active Agents/chemistry , Molecular Structure
8.
Environ Geochem Health ; 46(9): 329, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012551

ABSTRACT

Tailings dust can negatively affect the surrounding environment and communities because the tailings are vulnerable to wind erosion. In this study, the effects of halides (sodium chloride [NaCl], calcium chloride [CaCl2], and magnesium chloride hexahydrate [MgCl2·6H2O]), and polymer materials (polyacrylamide [PAM], polyvinyl alcohol [PVA], and calcium lignosulfonate [LS]) were investigated for the stabilization of tailings for dust control. Erect milkvetch (Astragalus adsurgens), ryegrass (Lolium perenne L.), and Bermuda grass (Cynodon dactylon) were planted in the tailings and sprayed with chemical dust suppressants. The growth status of the plants and their effects on the mechanical properties of tailings were also studied. The results show that the weight loss of tailings was stabilized by halides and polymers, and decreased with increasing concentration and spraying amount of the solutions. The penetration resistance of tailings stabilized by halides and polymers increased with increasing concentration and spraying amount of the solutions. Among the halides and polymers tested, the use of CaCl2 and PAM resulted in the best control of tailings dust, respectively. CaCl2 solution reduces the adaptability of plants and therefore makes it difficult for grass seeds to germinate normally. PAM solutions are beneficial for the development of herbaceous plants. Among the three herbaceous species, ryegrass exhibited the best degree of development and was more suitable for growth in the tailings. The ryegrass plants planted in the tailings sprayed with PAM grew the best, and the root-soil complex that formed increased the shear strength of the tailings.


Subject(s)
Dust , Lolium , Lolium/drug effects , Cynodon , Astragalus Plant , Calcium Chloride , Magnesium Chloride/pharmacology , Sodium Chloride/chemistry , Acrylic Resins/chemistry , Industrial Waste , Polymers , Poaceae , Lignin/analogs & derivatives
9.
Curr Microbiol ; 81(8): 260, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980435

ABSTRACT

Viral diseases are a serious threat to humans while the most antiviral drugs have low efficiency and side effects on human health. Therefore, using microbial biopolymers as the drugs alternate to treat viral infections seems cost-effective and human friendly option. In the present study, thirty-four exopolysaccharides (EPSs) producing bacteria were isolated, and EPSs production capacity of five salt-tolerant isolates was determined under 0, 100 and 150 mM NaCl. Among these, two isolates exhibiting high anti-coliphage activity were identified through 16S rRNA gene analysis. Moreover, the EPSs were characterized by Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis, and their composition was determined. Five salt-tolerant bacteria (MK1, MK2, MK10, MK22 and MK29) exhibited higher production of EPSs at 100 mM NaCl compared to that under non-saline control. At 100 mM NaCl, the yield of EPSs ranged between 105 and 330 mg 100 mL-1 broth. The EPSs produced by the isolates MK1 and MK2 exhibited higher anti-coliphage activity (plaque forming unit decreased from 43 × 106 mL-1 to 3 × 106 and 4 × 106 mL-1, respectively), and were comprised of glucose, fructose, galactose, sucrose, lactose and xylose sugars. FTIR spectroscopy depicted that EPSs are mainly composed of hydroxyl, aliphatic, carboxyl, sulfate and phosphate functional groups, which could have bound coliphage and thus conferred higher anti-coliphage activities to the EPSs. Phylogenetic analysis revealed that MK1 and MK2 isolates formed clades within genus Priestia and Bacillus sequences, respectively. High EPSs production capacity of bacterial isolates under saline condition and high anti-coliphage activity of the EPSs implies that bacterial biopolymers could be useful in antiviral drugs therapy.


Subject(s)
Antiviral Agents , Bacillus , Polysaccharides, Bacterial , RNA, Ribosomal, 16S , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , RNA, Ribosomal, 16S/genetics , Bacillus/genetics , Bacillus/metabolism , Bacillus/chemistry , Bacillus/classification , Phylogeny , Spectroscopy, Fourier Transform Infrared , Sodium Chloride/pharmacology , Sodium Chloride/metabolism
10.
PLoS One ; 19(6): e0304831, 2024.
Article in English | MEDLINE | ID: mdl-38923971

ABSTRACT

This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 µM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 µM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 µM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 µM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.


Subject(s)
Achillea , Chlorophyll , Salt Stress , Spermidine , Spermidine/pharmacology , Spermidine/metabolism , Achillea/metabolism , Achillea/drug effects , Salt Stress/drug effects , Chlorophyll/metabolism , Photosynthesis/drug effects , Carotenoids/metabolism , Proline/metabolism , Gene Expression Regulation, Plant/drug effects , Salinity , Antioxidants/metabolism , Sodium Chloride/pharmacology , Chlorophyll A/metabolism
11.
Food Chem ; 455: 139870, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850985

ABSTRACT

The present study investigated thermal gelation of mixed sarcoplasmic (Sarc), myofibrillar (Myof), and pea proteins corresponding to partial meat replacements (0, 25, and 50%) by pea protein isolate (PPI) at reducing salt levels (0.6 â†’ 0.1 M NaCl) to understand in situ (simulated) structure-forming properties of hybrid meat analogues. The amount of soluble proteins in hybrids generally increased with salt concentrations and PPI substitution. While muscle proteins (mixed Sarc and Myof) had the strongest gelling capacity, hybrid proteins also exhibited moderate aggregation and gelling activity based on the sol→gel rheological transition and gel hardness testing. Sarc and pea 7S/11S globulins collectively compensated for the attenuated gelling capacity of mixed proteins due to diminishing Myof in the hybrids. Immobilized water within hybrid protein gels was tightly bonded (T2 from nuclear magnetic resonance), consistent with the dense and uniform microstructure observed. These findings offer a new knowledge base for developing reduced-salt hybrid meat analogues.


Subject(s)
Gels , Muscle Proteins , Pea Proteins , Gels/chemistry , Muscle Proteins/chemistry , Animals , Pea Proteins/chemistry , Rheology , Meat Products/analysis , Sodium Chloride/chemistry , Pisum sativum/chemistry , Meat Substitutes
12.
Sci Rep ; 14(1): 14931, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942909

ABSTRACT

Salinity has become a major environmental concern for agricultural lands, leading to decreased crop yields. Hence, plant biology experts aim to genetically improve barley's adaptation to salinity stress by deeply studying the effects of salt stress and the responses of barley to this stress. In this context, our study aims to explore the variation in physiological and biochemical responses of five Tunisian spring barley genotypes to salt stress during the heading phase. Two salinity treatments were induced by using 100 mM NaCl (T1) and 250 mM NaCl (T2) in the irrigation water. Significant phenotypic variations were detected among the genotypes in response to salt stress. Plants exposed to 250 mM of NaCl showed an important decline in all studied physiological parameters namely, gas exchange, ions concentration and relative water content RWC. The observed decreases in concentrations ranged from, approximately, 6.64% to 40.76% for K+, 5.91% to 43.67% for Na+, 14.12% to 52.38% for Ca2+, and 15.22% to 38.48% for Mg2+ across the different genotypes and salt stress levels. However, under salinity conditions, proline and soluble sugars increased for all genotypes with an average increase of 1.6 times in proline concentrations and 1.4 times in soluble sugars concentration. Furthermore, MDA levels rose also for all genotypes, with the biggest rise in Lemsi genotype (114.27% of increase compared to control). Ardhaoui and Rihane showed higher photosynthetic activity compared to the other genotypes across all treatments. The stepwise regression approach identified potassium content, K+/Na+ ratio, relative water content, stomatal conductance and SPAD measurement as predominant traits for thousand kernel weight (R2 = 84.06), suggesting their significant role in alleviating salt stress in barley. Overall, at heading stage, salt accumulation in irrigated soils with saline water significantly influences the growth of barley by influencing gas exchange parameters, mineral composition and water content, in a genotype-dependent manner. These results will serve on elucidating the genetic mechanisms underlying these variations to facilitate targeted improvements in barley's tolerance to salt stress.


Subject(s)
Genotype , Hordeum , Minerals , Salt Stress , Water , Hordeum/genetics , Hordeum/metabolism , Hordeum/physiology , Water/metabolism , Minerals/metabolism , Salinity , Sodium Chloride/pharmacology , Sodium Chloride/metabolism
13.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861000

ABSTRACT

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Subject(s)
Base Composition , DNA, Bacterial , Nitrogen Fixation , Phylogeny , RNA, Ribosomal, 16S , Salt Tolerance , India , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Wetlands , Fatty Acids/metabolism , Fatty Acids/analysis , Geologic Sediments/microbiology , Bacterial Typing Techniques , Soil Microbiology , Phospholipids/analysis , Sequence Analysis, DNA , Sodium Chloride/metabolism , Actinobacteria/genetics , Actinobacteria/classification , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Actinobacteria/physiology
14.
Sci Rep ; 14(1): 13199, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851793

ABSTRACT

The increasing global phenomenon of soil salinization has prompted heightened interest in the physiological ecology of plant salt and alkali tolerance. Halostachys caspica belonging to Amaranthaceae, an exceptionally salt-tolerant halophyte, is widely distributed in the arid and saline-alkali regions of Xinjiang, in Northwest China. Soil salinization and alkalinization frequently co-occur in nature, but very few studies focus on the interactive effects of various salt and alkali stress on plants. In this study, the impacts on the H. caspica seed germination, germination recovery and seedling growth were investigated under the salt and alkali stress. The results showed that the seed germination percentage was not significantly reduced at low salinity at pH 5.30-9.60, but decreased with elevated salt concentration and pH. Immediately after, salt was removed, ungerminated seeds under high salt concentration treatment exhibited a higher recovery germination percentage, indicating seed germination of H. caspica was inhibited under the condition of high salt-alkali stress. Stepwise regression analysis indicated that, at the same salt concentrations, alkaline salts exerted a more severe inhibition on seed germination, compared to neutral salts. The detrimental effects of salinity or high pH alone were less serious than their combination. Salt concentration, pH value, and their interactions had inhibitory effects on seed germination, with salinity being the decisive factor, while pH played a secondary role in salt-alkali mixed stress.


Subject(s)
Alkalies , Amaranthaceae , Germination , Salt-Tolerant Plants , Seeds , Germination/drug effects , Salt-Tolerant Plants/growth & development , Amaranthaceae/growth & development , Seeds/drug effects , Seeds/growth & development , Hydrogen-Ion Concentration , Seedlings/growth & development , Seedlings/drug effects , Salinity , Stress, Physiological , Sodium Chloride/pharmacology , Salt Stress , Salt Tolerance
15.
PeerJ ; 12: e17465, 2024.
Article in English | MEDLINE | ID: mdl-38854802

ABSTRACT

Salt stress is one of the significant abiotic stress factors that exert harmful effects on plant growth and yield. In this study, five cultivars of mung bean (Vigna radiata L.) were treated with different concentrations of NaCl and also inoculated with a salt-tolerant bacterial strain to assess their growth and yield. The bacterial strain was isolated from the saline soil of Sahiwal District, Punjab, Pakistan and identified as Bacillus pseudomycoides. Plant growth was monitored at 15-days interval and finally harvested after 120 days at seed set. Both sodium and potassium uptake in above and below-ground parts were assessed using a flame photometer. Fresh and dry mass, number of pods, seeds per plant, weight of seeds per plant and weight of 100 seeds reduced significantly as the concentration of NaCl increased from 3 to 15 dSm-1. There was a significant reduction in the growth and yield of plants exposed to NaCl stress without bacterial inoculum compared to the plants with bacterial inoculum. The latter plants showed a significant increase in the studied parameters. It was found that the cultivar Inqelab mung showed the least reduction in growth and yield traits among the studied cultivars, while Ramzan mung showed the maximum reduction. Among all the cultivars, maximum Na+ uptake occurred in roots, while the least uptake was observed in seeds. The study concludes that NaCl stress significantly reduces the growth and yield of mung bean cultivars, but Bacillus pseudomycoides inoculum alleviates salt stress. These findings will be helpful to cultivate the selected cultivars in soils with varying concentrations of NaCl.


Subject(s)
Bacillus , Sodium Chloride , Vigna , Bacillus/drug effects , Vigna/microbiology , Vigna/drug effects , Vigna/growth & development , Sodium Chloride/pharmacology , Salt Stress , Potassium/metabolism , Pakistan , Soil Microbiology , Sodium/metabolism , Seeds/microbiology , Seeds/drug effects , Seeds/growth & development , Plant Roots/microbiology , Plant Roots/drug effects , Salt Tolerance
16.
Sci Rep ; 14(1): 12705, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831025

ABSTRACT

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Subject(s)
Genotype , Mustard Plant , Salt Stress , Salt Tolerance , Seedlings , Mustard Plant/genetics , Mustard Plant/growth & development , Mustard Plant/drug effects , Mustard Plant/physiology , Seedlings/growth & development , Seedlings/drug effects , Seedlings/genetics , Salt Tolerance/genetics , Germination/drug effects , Sodium Chloride/pharmacology , Plant Roots/growth & development , Plant Roots/drug effects
17.
Parasit Vectors ; 17(1): 251, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858771

ABSTRACT

BACKGROUND: Salinity, exacerbated by rising sea levels, is a critical environmental cue affecting freshwater ecosystems. Predicting ecosystem structure in response to such changes and their implications for the geographical distribution of arthropod disease vectors requires further insights into the plasticity and adaptability of lower trophic level species in freshwater systems. Our study investigated whether populations of the mosquito Culex pipiens, typically considered sensitive to salt, have adapted due to gradual exposure. METHODS: Mesocosm experiments were conducted to evaluate responses in life history traits to increasing levels of salinity in three populations along a gradient perpendicular to the North Sea coast. Salt concentrations up to the brackish-marine transition zone (8 g/l chloride) were used, upon which no survival was expected. To determine how this process affects oviposition, a colonization experiment was performed by exposing the coastal population to the same concentrations. RESULTS: While concentrations up to the currently described median lethal dose (LD50) (4 g/l) were surprisingly favored during egg laying, even the treatment with the highest salt concentration was incidentally colonized. Differences in development rates among populations were observed, but the influence of salinity was evident only at 4 g/l and higher, resulting in only a 1-day delay. Mortality rates were lower than expected, reaching only 20% for coastal and inland populations and 41% for the intermediate population at the highest salinity. Sex ratios remained unaffected across the tested range. CONCLUSIONS: The high tolerance to salinity for all key life history parameters across populations suggests that Cx. pipiens is unlikely to shift its distribution in the foreseeable future, with potential implications for the disease risk of associated pathogens.


Subject(s)
Culex , Oviposition , Salinity , Animals , Culex/physiology , Culex/drug effects , Culex/growth & development , Female , Male , Ecosystem , Salt Tolerance , Fresh Water , Life History Traits , Mosquito Vectors/physiology , Lethal Dose 50 , Sodium Chloride/pharmacology
18.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928132

ABSTRACT

Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.


Subject(s)
Antivenins , Blood Coagulation , Crotalid Venoms , Crotalus , Dimethyl Sulfoxide , Humans , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/chemistry , Antivenins/pharmacology , Antivenins/chemistry , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/pharmacology , Animals , Blood Coagulation/drug effects , Ruthenium Compounds/pharmacology , Ruthenium Compounds/chemistry , Sodium Chloride/pharmacology , Sodium Chloride/chemistry , Thrombelastography , Venomous Snakes
19.
Sci Rep ; 14(1): 14714, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926419

ABSTRACT

Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 µg/mL) as compared to controls (0.37 µg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.


Subject(s)
Antioxidants , Diterpenes, Kaurane , Gibberellins , Glucosides , Plant Shoots , Stevia , Stevia/metabolism , Stevia/growth & development , Stevia/drug effects , Diterpenes, Kaurane/metabolism , Glucosides/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Gibberellins/metabolism , Antioxidants/metabolism , Secondary Metabolism , Flavonoids/metabolism , Flavonoids/analysis , Phenols/metabolism , Sodium Chloride/pharmacology , Purines/metabolism , Proline/metabolism , Polyethylene Glycols/pharmacology , Polyethylene Glycols/chemistry , Benzyl Compounds
20.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926637

ABSTRACT

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Subject(s)
Brassica napus , Salicylic Acid , Salt Stress , Brassica napus/drug effects , Brassica napus/growth & development , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Salt Stress/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Sodium Chloride/pharmacology , Antioxidants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL