Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.146
Filter
1.
Environ Monit Assess ; 196(10): 894, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230631

ABSTRACT

Solid waste refers to the material that is discarded because of human activity. In developing countries like Ethiopia, rapid urbanization leads to the production of large amounts of solid waste in towns. As a consequence, it causes severe problems to human health, aesthetics, and the environment, particularly in Dangila Town. Therefore, this study aimed to assess household solid waste characteristics, quantity, and management practices. Data was collected for seven days in January 2020 from 73 households, which were divided into three income groups. Observations, interviews, field measurements, sorting, and open-ended questionnaires were used as data collection tools. The research showed that food waste and ash and dust were the most dominant fractions, comprising 41.04% and 26.18%, respectively. It was also revealed that 77.88%, 12.74%, and 9.38% of household solid waste was decomposable, recyclable, and disposable waste, respectively. Furthermore, the waste components showed a significant statistical difference among income groups, except for the metal and miscellaneous groups. The quantification result indicated that the per capita household generation rate was 0.26 kg/day. The management practice assessment found that most households did not practice integrated solid waste management options. They disposed of waste indiscriminately, leading to environmental pollution. The results of this study suggest that the municipality needs to create awareness among households regarding proper solid waste management practices. It is crucial to apply appropriate solid waste management mechanisms and establish a well-organized institution that will collect solid waste in the town and achieve a circular economy.


Subject(s)
Family Characteristics , Refuse Disposal , Solid Waste , Waste Management , Ethiopia , Solid Waste/analysis , Refuse Disposal/methods , Refuse Disposal/statistics & numerical data , Waste Management/methods , Humans , Recycling , Environmental Pollution/statistics & numerical data
2.
Environ Monit Assess ; 196(10): 910, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251482

ABSTRACT

Selecting suitable Megacity Solid Waste Disposal (MSWD) sites is a challenging task in densely populated deltas of developing countries, exacerbated by limited public awareness about waste management. One of the major environmental concerns in Dhaka City, the world's densest megacity, is the presence of dumps close to surface water bodies resources. This study employed the Geographic Information System (GIS)-Analytic Hierarchy Process (AHP) framework to integrate geomorphological (slope and flow accumulation), geological (lithological and lineament), hydrogeological (depth to groundwater table and surface waterbody), socioeconomic (Land use land cover, distance to settlement, road, and airport), and climatological (wind direction) determinants, coupled by land-use and hydro-environmental analyses, to map optimal dumps (MSWDO) sites. The resulting preliminary (MSWDP) map revealed 15 potential landfill areas, covering approximately 5237 hectares (ha). Combining statistical analysis of restricted areas (settlements, water bodies, land use) with AHP-based ratings, the MSWDO map revealed two optimal locations (2285 ha). Additionally, the hydro-environmental analysis confirmed the unsuitability of northern sites due to shallow groundwater (< 5.43 m) and thin clay, leaving 11 options excluded. Sites 12 (Zone A, 2255 ha) and 15 (Zone B, 30 ha), with deeper groundwater tables and thicker clay layers, emerged as optimal choices for minimizing environmental risks and ensuring effective long-term waste disposal. This study successfully integrates remote sensing, geospatial data, and GIS-AHP modeling to facilitate the development of sustainable landfill strategies in similar South Asian delta megacities. Such an approach provides valuable insights for policymakers to implement cost-effective and sustainable waste management plans, potentially minimizing the environmental risks to achieve Sustainable Development Goals (SDGs) 6, 11, 13, and 15.


Subject(s)
Environmental Monitoring , Geographic Information Systems , Refuse Disposal , Bangladesh , Refuse Disposal/methods , Environmental Monitoring/methods , Waste Disposal Facilities , Remote Sensing Technology , Solid Waste/analysis , Cities , Waste Management/methods
3.
Waste Manag ; 189: 265-275, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39217801

ABSTRACT

High-solid digestion (HSD) for biogas production is a resource-efficient and sustainable method to treat organic wastes with high total solids content and obtain renewable energy and an organic fertiliser, using a lower dilution rate than in the more common wet digestion process. This study examined the effect of reactor type on the performance of an HSD process, comparing plug-flow (PFR) type reactors developed for continuous HSD processes, and completely stirred-tank reactors (CSTRs) commonly used for wet digestion. The HSD process was operated in thermophilic conditions (52 °C), with a mixture of household waste, garden waste and agricultural residues (total solids content 27-28 %). The PFRs showed slightly better performance, with higher specific methane production and nitrogen mineralisation than the CSTRs, while the reduction of volatile solids was the same in both reactor types. Results from 16S rRNA gene sequencing showed a significant difference in the microbial population, potentially related to large differences in stirring speed between the reactor types (1 rpm in PFRs and 70-150 rpm in CSTRs, respectively). The bacterial community was dominated by the genus Defluviitoga in the PFRs and order MBA03 in the CSTRs. For the archaeal community, there was a predominance of the genus Methanoculleus in the PFRs, and of the genera Methanosarcina and Methanothermobacter in the CSTRs. Despite these shifts in microbiology, the results showed that stable digestion of substrates with high total solids content can be achieved in both reactor types, indicating flexibility in the choice of technique for HSD processes.


Subject(s)
Bioreactors , Bioreactors/microbiology , Refuse Disposal/methods , Solid Waste/analysis , Biofuels/analysis , Methane/analysis , Methane/metabolism , RNA, Ribosomal, 16S , Bacteria/metabolism , Bacteria/genetics , Archaea/metabolism , Archaea/genetics
4.
Waste Manag ; 189: 290-299, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39222552

ABSTRACT

This study proposes a comprehensive evaluation method based on a two-stage model to assess greenhouse gas (GHG) emissions and reductions in high-food-waste-content (HFWC) municipal solid waste (MSW) landfills. The proposed method considers typical processes such as fugitive landfill gas (LFG), LFG collection, flaring, power generation, and leachate treatment. A case study of an HFWC MSW landfill in eastern China is considered to illustrate the evaluation. The findings revealed that the GHG emissions equivalent of the case landfill amounted to 21.23 million tons from 2007 to 2022, averaging 1.03 tons CO2-eq per ton of MSW. There was a potential underestimation of LFG generation at the landfill site during the initial stages, which led to delayed LFG collection and substantial fugitive LFG emissions. Additionally, the time distribution of GHG emissions from HFWC MSW was significantly different from that of low-food-waste-content (LFWC) MSW landfills, with peak emissions occurring much earlier. Owing to the rapid degradation characteristics of HFWC MSW, the cumulative LFG production of the landfill by 2022 (2 years after the final cover) was projected to reach 77 % of the total LFG potential. In contrast, it would take until 2030 for LFWC MSW landfills to reach this level. Furthermore, various scenarios were analyzed, in which if the rapid LFG generation characteristics of HFWC MSW are known in advance, and relevant facilities are constructed ahead of time, the collection efficiency can be improved from 31 % to over 78 %, resulting in less GHG emissions.


Subject(s)
Greenhouse Gases , Refuse Disposal , Solid Waste , Waste Disposal Facilities , China , Greenhouse Gases/analysis , Refuse Disposal/methods , Solid Waste/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Food
5.
Waste Manag ; 189: 421-426, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39241560

ABSTRACT

The analysis of the presence and content of substances that are toxic to aquatic life in waste is essential for classification of waste with regard to hazard property (HP) 14 'ecotoxic'. For the determination of HP14 classified copper (Cu) and zinc (Zn) compounds in various municipal solid waste incineration bottom ashes (IBA) and one fly ash (FA) from Germany we applied X-ray absorption near-edge structure (XANES) spectroscopy in combination with linear combination fitting. The analysis showed that approx. 50-70% of Cu in the IBA are Cu(I) compounds and elemental Cu(0), but these compounds were not equally distributed in the different IBA. In contrast, the majority (approx. 50-70%) of Zn in all IBA is elemental zinc, which originates from brass or other alloys and galvanized metals with a large content of zinc in the waste. The FA contain higher mass fraction on Zn and other toxic elements, but similar Cu and Zn species. Additional performed selective extraction at a pH of 4 with an organic acid of some IBA showed that the ecotoxic Zn fraction is mainly elemental zinc and zinc oxide. In contrast, for the ecotoxic Cu fraction within the IBA no specific compound could be identified. Furthermore, the XANES analysis showed that the HP14 properties of especially Cu in IBA is overestimated with current best-practice guidelines for sample processing for the current substance-related approach with the 0.1% cut-off rule for each substance. However, it should be considered whether it would not be better from an environmental point of view to take the ecotoxicologically leachable copper and zinc as a reference value.


Subject(s)
Coal Ash , Copper , Incineration , Solid Waste , Zinc , Coal Ash/chemistry , Coal Ash/analysis , Copper/analysis , Zinc/analysis , Solid Waste/analysis , Refuse Disposal/methods , Germany , X-Ray Absorption Spectroscopy
6.
Chemosphere ; 364: 143216, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218262

ABSTRACT

Food-waste biochar holds significant potential as a bio-solid fuel for achieving carbon neutrality; however, its high content of sodium (Na), potassium (K), calcium (Ca), chlorine (Cl), and nitrogen, inhibits its potential use. This study explored the effects of post-treatment with ascorbic, acetic, citric, and iminodiacetic acids on the properties of food-waste biochar and volatile ionic substances to establish a foundation for assessing both the environmental impact and practical use of food waste. Post-treatment with organic acids achieved 92% Cl-removal efficiency and induced deformation of the functional groups of food-waste biochar surfaces, leading to the re-adsorption of alkali and alkaline earth metals. This re-adsorption of alkali metal ions showed a distinct correlation with NOx mitigation. The amount of re-adsorbed Na and K varied based on the types of organic acids, resulting in different NOx emission reduction effects. Iminodiacetic acid was particularly effective in alleviating Ca and PO4 volatilization, whereas citric acid exhibited the highest Ca elution performance, and the Ca-contained leachate is a potential source of CO2 storage through indirect mineral carbonation. Acetic acid is the most feasible alternative, considering both economic and environmental aspects. The findings suggest that the post-treatment of food-waste biochar effectively mitigates air pollutants during combustion and is beneficial for sustainable biosolid fuel production and bio-waste management.


Subject(s)
Charcoal , Charcoal/chemistry , Adsorption , Food , Solid Waste/analysis , Chlorine/chemistry
7.
BMC Plant Biol ; 24(1): 887, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39343905

ABSTRACT

The recent over production of municipal solid waste (MSW) poses a significant threat to both the ecosystem and human health. Utilizing MSW for agricultural purposes has emerged as a promising strategy to reduce solid waste disposal while simultaneously increasing soil fertility. To explore this potential solution further, an experiment was designed to assess the impact of varying concentrations of MSW (25%, 50%, and 75%) on the proximate composition of 15 different vegetable species. The experiment, conducted between 2018 and 2019, involved treating soil with different levels of solid waste and analyzing the proximate components, such as crude protein, dry matter, crude fiber, crude fat, and moisture content, in the 15 selected crops. The results indicate that the application of 25% MSW significantly increased the levels of crude protein, crude fiber, dry matter, and fat in Spinacia oleracea, Solanum tuberosum, Solanum melongena, and Abelmoschus esculentus. Conversely, the addition of 75% MSW notably elevated the moisture and ash content in Cucumis sativus. Correlation and scatter matrix analyses were conducted to elucidate the relationships between the protein, fiber, dry matter, ash, and fat contents. Principal component analysis and clustering confirmed the substantial impact of Treatment_1 (25% MSW) and Treatment_3 (75% MSW) on the proximate composition of the aforementioned vegetables, leading to their categorization into distinct groups. Our study highlights the efficacy of using 25% MSW to enhance the proximate composition and nutritional value of vegetables. Nonetheless, further research is warranted to investigate the mineral, antioxidant, vitamin, and heavy metal contents in the soil over an extended period of MSW application.


Subject(s)
Fertilizers , Solid Waste , Vegetables , Vegetables/chemistry , Solid Waste/analysis , Fertilizers/analysis , Humans , Refuse Disposal/methods , Soil/chemistry , Environment
8.
J Environ Manage ; 368: 122143, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128346

ABSTRACT

In the context of Circular Economy, the significance of municipal solid waste management systems (MSWMSs) has increased, as well as the need for comprehensive assessment tools of their sustainability. In the Life Cycle Thinking (LCT) framework, the Life Cycle Sustainability Assessment (LCSA), which is a methodology aiming to evaluate the environmental, economic, and social burdens throughout the various phases of waste management, has raised great interest. The paper describes the state-of-the-art of the implementation of LCT tools, with high regard to LCSA, for the evaluation of MSWMSs through their life cycle, with a deep focus on the use of both midpoint and endpoint categories. Drawing insights from an analysis of 69 case studies, the paper identifies the most frequently applied midpoint and endpoint categories for the sustainability assessment of MSWMSs. These categories are exposed in terms of their significance and applicability to specific waste management scenarios, providing valuable guidance for experts and researchers seeking to employ LCSA in MSWMSs assessments. Additionally, the paper outlines the limits associated with the implementation of LCSA, thereby highlighting areas for further research and improvement. In contrast to other reviews in this field, this paper uniquely focuses on the implementation of LCSA in the specific context provided by MSWMSs. By disseminating such insights, the paper aspires to foster the widespread adoption of LCSA by experts and researchers, ultimately advancing the sustainability discourse in municipal solid waste management.


Subject(s)
Refuse Disposal , Solid Waste , Waste Management , Solid Waste/analysis , Waste Management/methods , Refuse Disposal/methods
9.
J Environ Manage ; 368: 122222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39153321

ABSTRACT

With the increasing demand for Li, the recovery of Li from solid waste, such as Li-containing Al electrolytes, is receiving growing attention. However, Li-containing Al electrolytes often contain large amounts of F, leading to environmental pollution. Herein, a new method for preparing water-soluble Li salt from waste Li-containing Al electrolytes with high F and Na contents is proposed based on CaO roasting and water leaching. The effects of different roasting and leaching conditions on the Li leaching efficiency and reaction pathway were systematically investigated. Under the optimum processing conditions, the Li leaching efficiency reached 98%, while those of Na and F were 98.41% and 0.24%, respectively. Phase evolution analysis showed that the addition of CaO promoted the conversion of LiF and Na2LiAlF6 to Li2O, whereas F entered the slag phase as CaF2, which could be reused as a raw material for steel refinement. Overall, this study proposes an efficient and environmentally friendly method for the treatment and resource utilization of waste Al electrolytes with high F and Na contents.


Subject(s)
Electrolytes , Lithium , Lithium/chemistry , Aluminum/chemistry , Water/chemistry , Sodium/chemistry , Sodium/analysis , Solid Waste/analysis
10.
Waste Manag Res ; 42(9): 842-854, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39162055

ABSTRACT

The recycling of bio-waste from households is an essential factor in achieving the recycling quotas for municipal waste laid down by the EU. A major problem is posed by impurities in the bio-waste collected, such as plastics, metals and glass. It is virtually impossible for compost producers to produce quality-assured compost from bio-waste with an impurity content of more than 3 wt%OS. The draft of the new Austrian Compost Ordinance stipulates a limit of 2 wt%OS of interfering substances in accepted bio-waste. A rapid measurement method has been developed and comprehensively validated for the immediate on-site checking of contaminant content at the bio-waste bin or in a vehicles. Data on the type and amount of impurities collected in the course of sorting analyses carried out over several years in 10 selected areas in Styria, Austria showed an average impurity content of 2.1 wt%OS. This impurity content can be considered representative for rural and urban communities in Austria. Among the interfering substances, plastics predominate, at 53%, of which pre-collection bags made of plastics form the highest proportion. A more detailed examination of pre-collection bags shows a higher proportion of use of biodegradable plastic bags, which have become more numerous in recent years in the more rural communities. In order to reduce mis-sorting, the effect of a wide variety of measures on citizens was tested in selected areas. Here, the distribution of paper bags as well as the threat of a cost increase due to special collections in combination with distribution of these bags were the methods with the greatest effect. Motivational letters and the threat of special collections, however, showed no significant result.


Subject(s)
Recycling , Austria , Recycling/methods , Composting/methods , Refuse Disposal/methods , Solid Waste/analysis , Family Characteristics , Plastics/analysis , Waste Management/methods
11.
Waste Manag ; 189: 148-158, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39197183

ABSTRACT

Paper packaging made with recycled paperboard is used to pack various consumer goods that can include amongst others, electronics, toys, food, cosmetics, and stationery. Chemical profiling of the various paper recycling grades used in the manufacture of recycled paperboard was undertaken to investigate possible sources of contaminants and their propagation in the paper recycling chain. Pre-consumer, retail and post-consumer paper-based materials were collected at papermills, corrugators, grocery stores, household waste, solid waste disposal sites and recycling facilities. In the GC-MS analysis, phthalates, long-chain aliphatic compounds, and fatty acids were the most commonly detected compounds whilst phthalates and bisphenols featured most prevalently in the LC-MS analysis. The factors that were identified as likely contributors to the detection of the different chemical compounds included the presence of wood derivatives, the use of certain chemical additives during manufacturing, and exposure of paper to contaminants from consumers, other goods and the environment. Waste mingling, recovery, sorting and reprocessing into recycled paper were also shown to influence the chemical profile of paper materials. Sparse partial least squares-discriminate analysis indicated that newspaper and office paper had unique chemical constituents, whilst cartons were shown to have higher variability. By looking at key stages of paper recycling, this study showed that the possible persistence and transformation of chemical compounds in additives must be evaluated when considering the recyclability of paper-based materials. Further, it highlighted that different separation approaches may be required to reduce contaminant exposure opportunities in post-consumer paper materials.


Subject(s)
Gas Chromatography-Mass Spectrometry , Paper , Recycling , Recycling/methods , Gas Chromatography-Mass Spectrometry/methods , Phthalic Acids/analysis , Chromatography, Liquid/methods , Phenols/analysis , Benzhydryl Compounds/analysis , Solid Waste/analysis , Liquid Chromatography-Mass Spectrometry
12.
Waste Manag ; 189: 211-218, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39213882

ABSTRACT

Solid waste incineration is a clean and sustainable approach for solid waste management. However, ash deposition and corrosion remain a critical issue due to fuel's inherent enrichment of alkali chlorine. This study develops an integrated online deposition and corrosion monitoring system to enhance the operational safety and efficiency of solid waste incineration boilers. This system combines linear polarization resistance (LPR) for corrosion rate estimation with heat flux measurements for ash deposition analysis. It can offer a novel approach for real-time monitoring of heat exchangers' safety during solid waste combustion. It was deployed in a full-scale circulating fluidized bed (CFB) boiler that purely combust solid wastes. Key findings demonstrate the system's capability to deliver continuous, real-time data, crucial for the dynamic control of combustion processes and the maintenance of heat transfer surfaces. Its robust diagnostic capabilities were evident across various scenarios. Specially, initial corrosion rates sharply increase with deposition rates due to the enrichment of alkali chlorine on inner deposit layer, in which chlorine serves as a catalyst, facilitating the rapid penetration and aggravation of corrosion by other agents. As deposit further buildup, the corrosion rate steadily decreases along with surface temperature, highlighting a dynamic interaction. Moreover, measured corrosion rates can quickly response to temperature variations. Such multi-process online monitoring system provide more possibilities to investigate the inherent interaction between deposition and corrosion. Therefore, this work offers insights that could significantly influence operational strategies, maintenance protocols, and the overall reliability of waste-to-energy technologies.


Subject(s)
Incineration , Solid Waste , Corrosion , Incineration/methods , Solid Waste/analysis , Refuse Disposal/methods
13.
Waste Manag ; 189: 68-76, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39178485

ABSTRACT

Waste management researchers have identified that the correct disposal of solid waste is better addressed upstream, where people properly sort their solid waste. Sorting solid waste is a practice that requires a behaviour friendly to sorting and willingness to continuously comply with waste management policies. However, the dynamic and ever-changing nature of service buildings' users makes fostering such behaviour challenging, potentially jeopardizing solid waste sorting efforts. Therefore, in this paper, we explore the possible role of artificial intelligence in alleviating the cumbersome process of sorting solid waste, by developing a virtual assistant that interacts with tenants via verbal and visual inputs to provide them with waste management services and instructions. The virtual assistant utilizes Natural Language Processing and computer vision techniques to enable voice and image recognition functionalities and achieved accuracy levels of 85% and 88% for verbal and visual inputs, respectively. The present work can be a solid foundation to investigate further implementation of virtual assistants to support sustainability practices in Facility Management.


Subject(s)
Artificial Intelligence , Waste Management , Waste Management/methods , Solid Waste/analysis , Refuse Disposal/methods , Humans
14.
Waste Manag ; 189: 88-102, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39180806

ABSTRACT

The detection and characterization of illegal solid waste disposal sites are essential for environmental protection, particularly for mitigating pollution and health hazards. Improperly managed landfills contaminate soil and groundwater via rainwater infiltration, posing threats to both animals and humans. Traditional landfill identification approaches, such as on-site inspections, are time-consuming and expensive. Remote sensing is a cost-effective solution for the identification and monitoring of solid waste disposal sites that enables broad coverage and repeated acquisitions over time. Earth Observation (EO) satellites, equipped with an array of sensors and imaging capabilities, have been providing high-resolution data for several decades. Researchers proposed specialized techniques that leverage remote sensing imagery to perform a range of tasks such as waste site detection, dumping site monitoring, and assessment of suitable locations for new landfills. This review aims to provide a detailed illustration of the most relevant proposals for the detection and monitoring of solid waste sites by describing and comparing the approaches, the implemented techniques, and the employed data. Furthermore, since the data sources are of the utmost importance for developing an effective solid waste detection model, a comprehensive overview of the satellites and publicly available data sets is presented. Finally, this paper identifies the open issues in the state-of-the-art and discusses the relevant research directions for reducing the costs and improving the effectiveness of novel solid waste detection methods.


Subject(s)
Environmental Monitoring , Refuse Disposal , Remote Sensing Technology , Solid Waste , Waste Disposal Facilities , Remote Sensing Technology/methods , Environmental Monitoring/methods , Refuse Disposal/methods , Solid Waste/analysis
15.
Chemosphere ; 364: 143163, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39181456

ABSTRACT

Incineration is an effective method for reducing and safely treating municipal solid waste. However, microplastics (MPs) inevitably remain in the bottom ash, potentially introducing new pollution risks during subsequent treatment processes. This study conducted an analysis of the accumulation and release potential of MPs in bottom ash samples collected from 4 municipal solid waste incineration plants in Zhejiang, China. The results showed that the abundance of MPs ranged from 20 to 118 items g-1. Remarkably, MPs were found to accumulate predominantly in smaller bottom ash particles below 4.75 mm accounted for up to 70% of the total MPs. Most MPs in the bottom ash were under 100 µm in size, with a majority exceeding 50% being less than 50 µm, typically manifesting as shafts and fibers. In scenarios of secondary crushing, the abundance of MPs increased gradually with the degree of bottom ash crushing. When bottom ash was crushed to a particle size of less than 0.6 mm, the abundance of MPs reached up to 87-901 items g-1, which is 5-10 times higher than the original bottom ash. It is estimated that the annual release of MPs may reach up to 4.05 × 1016 particles. Re-incinerating thoroughly crushed bottom ash at 600 °C successfully decomposed the MPs. Mechanical stress can significantly increase the risk of MPs releasing in bottom ash. This risk can be eliminated by using secondary incineration to achieve complete MPs decomposition.


Subject(s)
Coal Ash , Incineration , Microplastics , Solid Waste , Solid Waste/analysis , Microplastics/analysis , China , Coal Ash/chemistry , Refuse Disposal/methods , Particle Size , Environmental Monitoring
16.
Waste Manag ; 189: 114-126, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39182277

ABSTRACT

This study optimized the anaerobic digestion (AD) of separated collected organic fractions of municipal solid waste (OFMSW) to produce energy and digestate as biofertilizer. Due to OFMSW's partial recalcitrance to degradation, enzymatic (UPP2, MCPS, USC4, USE2, A. niger) and physical (mechanical blending, heating, hydrodynamic cavitation) pre-treatments were tested. Experimental and modeling approaches were used to compare AD performance regarding energy sustainability and digestate quality. Digestate was separated into solid and liquid fractions, and then chemically and physically characterized by investigating the nutrient release mechanisms. Principal Component Analysis was applied, equally weighing energy and digestate productions. Unlike previous studies focusing only on biogas, this study evaluated the effects of pre-treatments on both biogas and digestate production, viewing AD as a biorefinery process for urban waste valorization. Results showed that all pre-treatments were energetically sustainable, but enzymatic pre-treatments yielded digestates richer in nutrients (increase of 80% N, 200% P and 150% K as compared to OFMSW) and with greater organic matter degradation compared to physical pre-treatments. The liquid fraction of digestate from enzymatic pre-treatments had higher nutrient concentrations, while those from physical pre-treatments had more balanced nutrient content, making them more suitable for fertigation.


Subject(s)
Biofuels , Refuse Disposal , Solid Waste , Anaerobiosis , Biofuels/analysis , Solid Waste/analysis , Refuse Disposal/methods , Agriculture/methods , Bioreactors
17.
Waste Manag ; 189: 127-136, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39186920

ABSTRACT

This study used the horizontal tubular heating furnace to explore the melting potential of circulating fluidized bed (CFB) incinerator fly ash and mechanical grate furnace (MGF) incinerator fly ash. The horizontal cyclone melting furnace was then built to explore further the feasibility of scale melting of MSWI fly ash. The melting characteristic temperature, amorphous content, and heavy metal leaching concentration characterized the melting potential and solidification effect of MSWI fly ash. The experimental results show that the amorphous content of CFB fly ash after melting is up to 92.37%, and the volatilization rate of heavy metals Zn, Pb, and Ni does not exceed 30%. MGF fly ash exhibits the "sintering into shells" phenomenon during heating, and the leaching concentrations of heavy metals Pb in the sintered products still exceed the standard limits. In addition, the volatilization rates of heavy metals Cu, Zn, Cd, Pb, Cr, and Ni in Slag II are above 50%, and the volatilization rate of Cr reaches 85%. So, slag's amorphous content also affects heavy metals' volatilization rate. The MSWI fly ash melting characteristic temperature decreases with the decrease of alkalinity value. When the alkalinity value drops to 0.6, the melting characteristic temperature reaches its lowest value. Mixing 80% CFB fly ash or 50% MGF bottom ash into MGF fly ash can significantly enhance the melting potential to reduce hazardous waste. When using the horizontal cyclone melting furnace to process MSWI fly ash on a large scale, MSWI fly ash achieves an excellent melting effect with an amorphous content of over 93% at the positions of the furnace middle section, inner tail cone, slag discharge outlet, and flue gas outlet. The fly ash particles are in motion in the melting furnace, so the particle size distribution affects the melting effect of MSWI fly ash.


Subject(s)
Coal Ash , Incineration , Metals, Heavy , Solid Waste , Incineration/methods , Coal Ash/chemistry , Coal Ash/analysis , Metals, Heavy/analysis , Metals, Heavy/chemistry , Solid Waste/analysis , Refuse Disposal/methods
18.
J Environ Manage ; 367: 122040, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094408

ABSTRACT

The Fossetto landfill has operated in the municipality of Monsummano Terme (Tuscany, Italy) since 1988, being considered a state-of-the-art landfill for 35 years. Initially, Fossetto acted as a conventional sanitary landfill for mixed municipal solid waste. With changes in regulations and technology, the Fossetto landfill was gradually equipped with a biogas recovery and valorisation system, a mechanical-biological treatment (MBT) plant in 2003 and a reverse osmosis leachate treatment plant, so the concentrated leachate has been recirculated back into the landfill body since 2006. Long-term biogas monitoring, enables the calculation of the efficiency of biogas recovery using a rather simplified methodology, which was assessed as being approximately 40% over the prior ten-years period. This value was lower than expected, confirming the results of previous studies and indicating the need of attributes. Applying the USEPA LandGEM model showed that the adoption of MBT substantially reduced biogas generation yields and rates by up to approximately 90% which was facilitated by the adoption of landfill leachate recirculation transforming the conventional landfill into a bioreactor. Detailed fugitive emission monitoring has allowed the evaluation of the impact of the cover type (final or temporary) and the emissions hotspots. From these results, possible remedial actions have been suggested including the more frequent monitoring of the fugitive emissions using simple and cost-effective methods (e.g., UAVs). Approximately 50% of fugitive emissions can be attributed to emissions hotspots, which reduce biogas recovery and the efficiency of temporary covers.


Subject(s)
Biofuels , Waste Disposal Facilities , Biofuels/analysis , Italy , Refuse Disposal/methods , Bioreactors , Solid Waste/analysis
19.
J Environ Manage ; 367: 122036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094419

ABSTRACT

Rapid global urbanization and economic growth have significantly increased solid waste volumes, with hazardous waste posing substantial health and environmental risks. Co-processing strategies for industrial solid and hazardous waste as alternative fuels highlight the importance of integrated waste management for energy and material recovery. This study identifies and characterizes solid and hazardous industrial wastes with high calorific values from various industrial processes at Nirma Industries Limited. Nine types of combustible industrial wastes were analyzed: discarded containers (W1), plastic waste (W2), spent ion exchange resins from RO plants (W3), sludge from effluent treatment in soap plants (W4), glycerine foot from soap plants (W5), rock wool puff material (W6), fiber-reinforced plastic waste (W7), spent activated carbon (W8), and spent cartridges from reverse osmosis plants (W9). Physical characterization, proximate and ultimate analysis, heavy metal concentration evaluation, and thermogravimetric analysis were conducted to assess their properties, revealing high calorific values exceeding 2500 kcal/kg. Notably, W1 and W2 exhibited the highest calorific values (∼10,870 kcal/kg), followed by W6 and W8 (∼6000 kcal/kg) and W9 (∼8727 kcal/kg). Safe heavy metal levels are safe, and high calorific values support the prospects of energy recovery and economic and environmental benefits, reducing landfill reliance and enhancing sustainable waste management.


Subject(s)
Hazardous Waste , Hazardous Waste/analysis , Waste Management/methods , Solid Waste/analysis , Chemical Industry , Metals, Heavy/analysis
20.
J Chromatogr A ; 1730: 465151, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39002509

ABSTRACT

Onion peels (OP) are byproduct of food processing industries that poses economic and environmental challenges. However, being rich source of bioactive compounds like Quercetin (Qt), a polyphenolic antioxidant with potential health benefits, harnessing value from such waste can imbibe sustainable practices and protect environment. With this view, the present study targets selective recovery of Qt from OP waste using rationally designed molecularly imprinted polymer (MIP). Density Functional Theory (DFT) was used for the theoretical selection of the best conformer of Qt (template), methacrylic acid (MAA) as functional monomer, ratio of Qt-MAA for getting stable pre-polymerization complex, and to avoid hit and trial experiments. The theoretical results were validated experimentally by synthesizing MIP/ control polymer (NIP) using MAA as functional monomer, EGDMA as a cross-linker and AIBN as initiator. Synthesized MIP/NIP were characterized using various characterization techniques to confirm successful imprinting. Prepared MIP and NIP could effectively rebind the Qt molecule with binding capacity of 46.67 and 20.89 mg g-1 respectively. Furthermore, synthesized MIP could selectively recover 62.81 % of Qt from 1 g of dry onion peel powder. This study can be effectually used for sustainable recovery of Qt in large scale for various foods, cosmetic and pharmaceutical applications.


Subject(s)
Molecularly Imprinted Polymers , Onions , Quercetin , Quercetin/chemistry , Quercetin/isolation & purification , Onions/chemistry , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting , Solid Waste/analysis , Density Functional Theory , Solid Phase Extraction/methods , Antioxidants/chemistry , Antioxidants/isolation & purification , Methacrylates/chemistry , Polymers/chemistry , Chromatography, High Pressure Liquid
SELECTION OF CITATIONS
SEARCH DETAIL