Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.067
Filter
1.
BMJ Open ; 14(7): e081148, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964802

ABSTRACT

INTRODUCTION: Despite many technological advances, the diagnostic yield of bronchoscopic peripheral lung nodule analysis remains limited due to frequent mispositioning. Needle-based confocal laser endomicroscopy (nCLE) enables real-time microscopic feedback on needle positioning, potentially improving the sampling location and diagnostic yield. Previous studies have defined and validated nCLE criteria for malignancy, airway and lung parenchyma. Larger studies demonstrating the effect of nCLE on diagnostic yield are lacking. We aim to investigate if nCLE-imaging integrated with conventional bronchoscopy results in a higher diagnostic yield compared with conventional bronchoscopy without nCLE. METHODS AND ANALYSIS: This is a parallel-group randomised controlled trial. Recruitment is performed at pulmonology outpatient clinics in universities and general hospitals in six different European countries and one hospital in the USA. Consecutive patients with a for malignancy suspected peripheral lung nodule (10-30 mm) with an indication for diagnostic bronchoscopy will be screened, and 208 patients will be included. Web-based randomisation (1:1) between the two procedures will be performed. The primary outcome is diagnostic yield. Secondary outcomes include diagnostic sensitivity for malignancy, needle repositionings, procedure and fluoroscopy duration, and complications. Pathologists will be blinded to procedure type; patients and endoscopists will not. ETHICS AND DISSEMINATION: Primary approval by the Ethics Committee of the Amsterdam University Medical Center. Dissemination involves publication in a peer-reviewed journal. SUPPORT: Financial and material support from Mauna Kea Technologies. TRIAL REGISTRATION NUMBER: NCT06079970.


Subject(s)
Bronchoscopy , Lung Neoplasms , Microscopy, Confocal , Solitary Pulmonary Nodule , Humans , Bronchoscopy/methods , Microscopy, Confocal/methods , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Lung/pathology , Lung/diagnostic imaging , Needles
2.
J Cardiothorac Surg ; 19(1): 392, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937772

ABSTRACT

BACKGROUND: Currently, the differentiation between benign and malignant cystic pulmonary nodules poses a significant challenge for clinicians. The objective of this retrospective study was to construct a predictive model for determining the likelihood of malignancy in patients with cystic pulmonary nodules. METHODS: The current study involved 129 patients diagnosed with cystic pulmonary nodules between January 2017 and June 2023 at the Neijiang First People's Hospital. The study gathered the clinical data, preoperative imaging features of chest CT, and postoperative histopathological results for both cohorts. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors, from which a prediction model and nomogram were developed. In addition, The model's performance was assessed through receiver operating characteristic (ROC) curve analysis, calibration curve analysis, and decision curve analysis (DCA). RESULTS: A cohort of 129 patients presenting with cystic pulmonary nodules, consisting of 92 malignant and 37 benign lesions, was examined. Logistic data analysis identified a cystic airspace with a mural nodule, spiculation, mural morphology, and the number of cystic cavities as significant independent predictors for discriminating between benign and malignant cystic lung nodules. The nomogram prediction model demonstrated a high level of predictive accuracy, as evidenced by an area under the ROC curve (AUC) of 0.874 (95% CI: 0.804-0.944). Furthermore, the calibration curve of the model displayed satisfactory calibration. DCA proved that the prediction model was useful for clinical application. CONCLUSION: In summary, the risk prediction model for benign and malignant cystic pulmonary nodules has the potential to assist clinicians in the diagnosis of such nodules and enhance clinical decision-making processes.


Subject(s)
Lung Neoplasms , Nomograms , Tomography, X-Ray Computed , Humans , Male , Female , Retrospective Studies , Tomography, X-Ray Computed/methods , Middle Aged , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Diagnosis, Differential , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Aged , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , ROC Curve , Adult , Radiomics
3.
J Cardiothorac Surg ; 19(1): 396, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937797

ABSTRACT

In recent years, with the widespread use of chest CT, the detection rate of pulmonary nodules has significantly increased (Abtin and Brown, J Clin Oncol 31:1002-8, 2013). Video-assisted thoracoscopic surgery (VATS) is the most commonly used method for suspected malignant nodules. However, for nodules with a diameter less than 1 cm, or located more than 1.5 cm from the pleural edge, especially ground-glass nodules, it is challenging to achieve precise intraoperative localization by manual palpation (Ciriaco et al., Eur J Cardiothorac Surg 25:429-33, 2004). Therefore, preoperative accurate localization of such nodules becomes a necessary condition for precise resection. This article provides a comprehensive review and analysis of the research progress in pulmonary nodule localization, focusing on four major localization techniques: Percutaneous puncture-assisted localization, Bronchoscopic preoperative pulmonary nodule localization, 3D Printing-Assisted Localization, and intraoperative ultrasound-guided pulmonary nodule localization.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Thoracic Surgery, Video-Assisted , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/pathology , Thoracic Surgery, Video-Assisted/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Bronchoscopy/methods , Tomography, X-Ray Computed , Printing, Three-Dimensional
4.
J Cardiothorac Surg ; 19(1): 404, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943205

ABSTRACT

BACKGROUND: Today, the detection rate of lung nodules is increasing. Some of these nodules may become malignant. Thus, timely resection of potentially malignant nodules is essential. However, Identifying the location of nonsurface or soft-textured nodules during surgery is challenging. Various localization techniques have been developed to accurately identify lung nodules. Common methods include preoperative CT-guided percutaneous placement of hook wires and microcoils. Nonetheless, these procedures may cause complications such as pneumothorax and haemothorax. Other methods regarding localization of pulmonary nodules have their own drawbacks. We conducted a clinical study which was retrospective to identify a safe, accurate and suitable method for determining lung nodule localization. To evaluate the clinical value of CT-assisted body surface localization combined with intraoperative stereotactic anatomical localization in thoracoscopic lung nodule resection. METHODS: We retrospectively collected the clinical data of 120 patients who underwent lung nodule localization and resection surgery at the Department of Thoracic Surgery, First Affiliated Hospital of Bengbu Medical College, from January 2020 to January 2022. Among them, 30 patients underwent CT-assisted body surface localization combined with intraoperative stereotactic anatomical localization, 30 patients underwent only CT-assisted body surface localization, 30 patients underwent only intraoperative stereotactic anatomical localization, and 30 patients underwent CT-guided percutaneous microcoil localization. The success rates, complication rates, and localization times of the four lung nodule localization methods were statistically analysed. RESULTS: The success rates of CT-assisted body surface localization combined with intraoperative stereotactic anatomical localization and CT-guided percutaneous microcoil localization were both 96.7%, which were significantly higher than the 70.0% success rate in the CT-assisted body surface localization group (P < 0.05). The complication rate in the combined group was 0%, which was significantly lower than the 60% in the microcoil localization group (P < 0.05). The localization time for the combined group was 17.73 ± 2.52 min, which was significantly less than that (27.27 ± 7.61 min) for the microcoil localization group (P < 0.05). CONCLUSIONS: CT-assisted body surface localization combined with intraoperative stereotactic anatomical localization is a safe, painless, accurate, and reliable method for lung nodule localization.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Retrospective Studies , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Lung Neoplasms/surgery , Lung Neoplasms/diagnostic imaging , Aged , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Thoracic Surgery, Video-Assisted/methods , Stereotaxic Techniques , Surgery, Computer-Assisted/methods
5.
J Cardiothorac Surg ; 19(1): 386, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926779

ABSTRACT

BACKGROUND: Computed tomography (CT)-guided biopsy (CTB) procedures are commonly used to aid in the diagnosis of pulmonary nodules (PNs). When CTB findings indicate a non-malignant lesion, it is critical to correctly determine false-negative results. Therefore, the current study was designed to construct a predictive model for predicting false-negative cases among patients receiving CTB for PNs who receive non-malignant results. MATERIALS AND METHODS: From January 2016 to December 2020, consecutive patients from two centers who received CTB-based non-malignant pathology results while undergoing evaluation for PNs were examined retrospectively. A training cohort was used to discover characteristics that predicted false negative results, allowing the development of a predictive model. The remaining patients were used to establish a testing cohort that served to validate predictive model accuracy. RESULTS: The training cohort included 102 patients with PNs who showed non-malignant pathology results based on CTB. Each patient underwent CTB for a single nodule. Among these patients, 85 and 17 patients, respectively, showed true negative and false negative PNs. Through univariate and multivariate analyses, higher standardized maximum uptake values (SUVmax, P = 0.001) and CTB-based findings of suspected malignant cells (P = 0.043) were identified as being predictive of false negative results. Following that, these two predictors were combined to produce a predictive model. The model achieved an area under the receiver operating characteristic curve (AUC) of 0.945. Furthermore, it demonstrated sensitivity and specificity values of 88.2% and 87.1% respectively. The testing cohort included 62 patients, each of whom had a single PN. When the developed model was used to evaluate this testing cohort, this yielded an AUC value of 0.851. CONCLUSIONS: In patients with PNs, the predictive model developed herein demonstrated good diagnostic effectiveness for identifying false-negative CTB-based non-malignant pathology data.


Subject(s)
Image-Guided Biopsy , Lung Neoplasms , Multiple Pulmonary Nodules , Tomography, X-Ray Computed , Humans , Male , Female , Retrospective Studies , Middle Aged , Image-Guided Biopsy/methods , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , False Negative Reactions , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Aged , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Predictive Value of Tests , Adult
6.
Eur Respir Rev ; 33(172)2024 Apr.
Article in English | MEDLINE | ID: mdl-38925794

ABSTRACT

INTRODUCTION: Implementation of lung cancer screening, with its subsequent findings, is anticipated to change the current diagnostic and surgical lung cancer landscape. This review aimed to identify and present the most updated expert opinion and discuss relevant evidence regarding the impact of lung cancer screening and lung nodule management on the diagnostic and surgical landscape of lung cancer, as well as summarise points for clinical practice. METHODS: This article is based on relevant lectures and talks delivered during the European Society of Thoracic Surgeons-European Respiratory Society Collaborative Course on Thoracic Oncology (February 2023). Original lectures and talks and their relevant references were included. An additional literature search was conducted and peer-reviewed studies in English (December 2022 to June 2023) from the PubMed/Medline databases were evaluated with regards to immediate affinity of the published papers to the original talks presented at the course. An updated literature search was conducted (June 2023 to December 2023) to ensure that updated literature is included within this article. RESULTS: Lung cancer screening suspicious findings are expected to increase the number of diagnostic investigations required therefore impacting on current capacity and resources. Healthcare systems already face a shortage of imaging and diagnostic slots and they are also challenged by the shortage of interventional radiologists. Thoracic surgery will be impacted by the wider lung cancer screening implementation with increased volume and earlier stages of lung cancer. Nonsuspicious findings reported at lung cancer screening will need attention and subsequent referrals where required to ensure participants are appropriately diagnosed and managed and that they are not lost within healthcare systems. CONCLUSIONS: Implementation of lung cancer screening requires appropriate mapping of existing resources and infrastructure to ensure a tailored restructuring strategy to ensure that healthcare systems can meet the new needs.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Predictive Value of Tests , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/surgery , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/pathology , Pneumonectomy , Prognosis , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology
8.
J Cardiothorac Surg ; 19(1): 317, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824602

ABSTRACT

BACKGROUND: To investigate the risk factors of pneumothorax of using computed tomography (CT) guidance to inject autologous blood to locate isolated lung nodules. METHODS: In the First Hospital of Putian City, 92 cases of single small pulmonary nodules were retrospectively analyzed between November 2019 and March 2023. Before each surgery, autologous blood was injected, and the complications of each case, such as pneumothorax and pulmonary hemorrhage, were recorded. Patient sex, age, position at positioning, and nodule type, size, location, and distance from the visceral pleura were considered. Similarly, the thickness of the chest wall, the depth and duration of the needle-lung contact, the length of the positioning procedure, and complications connected to the patient's positioning were noted. Logistics single-factor and multi-factor variable analyses were used to identify the risk factors for pneumothorax. The multi-factor logistics analysis was incorporated into the final nomogram prediction model for modeling, and a nomogram was established. RESULTS: Logistics analysis suggested that the nodule size and the contact depth between the needle and lung tissue were independent risk factors for pneumothorax. CONCLUSION: The factors associated with pneumothorax after localization are smaller nodules and deeper contact between the needle and lung tissue.


Subject(s)
Lung Neoplasms , Pneumothorax , Solitary Pulmonary Nodule , Tomography, X-Ray Computed , Humans , Male , Retrospective Studies , Pneumothorax/etiology , Pneumothorax/diagnostic imaging , Female , Risk Factors , Tomography, X-Ray Computed/methods , Middle Aged , Lung Neoplasms/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Aged , Adult , Blood Transfusion, Autologous/methods
9.
Anticancer Res ; 44(7): 3163-3173, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925826

ABSTRACT

BACKGROUND/AIM: Although the importance of low-dose computed tomography (LDCT) screening is increasingly emphasized and implemented, many lung cancers continue to be incidentally detected during routine medical practices, and data on incidentally detected lung cancer (IDLC) remain scarce. This study aimed to investigate the clinical characteristics and prognosis of IDLCs by comparing them with screening-detected lung cancers (SDLCs). PATIENTS AND METHODS: In this retrospective study, subjects with cT1 (≤3 cm) pulmonary nodules detected on baseline computed tomography (CT), later pathologically confirmed as primary lung cancer in 2015, were included. Patients were categorized into IDLC and SDLC groups based on the setting of the first pulmonary nodule detection. RESULTS: Out of 457 subjects, 129 (28.2%) were IDLCs and 328 (71.8%) were SDLCs. The IDLC group, consisted of older individuals with a higher prevalence of smokers and underlying pulmonary disease, compared to the SDLC group. Adenocarcinomas were more frequently detected in SDLCs (87.5%) than in IDLCs (76.7%, p<0.001). The time to treatment initiation (TTI) and 5-year overall survival (OS) rates were similar. Multivariate analyses revealed underlying interstitial lung disease, DLCO, solidity of nodules and TNM stage as independent risk factors associated with mortality. Less than 30% of study participants would have been eligible for the current lung cancer screening program. CONCLUSION: The IDLC group was associated with older age, higher rate of smokers, underlying pulmonary disease, and non-adenocarcinoma histology. However, prognosis was similar to that of the SDLC group, attributable to the similarity in TNM stage, strict adherence to guidelines, and short TTI. Furthermore, less than 30% of the participants would have been suitable for the existing lung cancer screening program, indicating a potential need to reconsider the scope for screening candidates.


Subject(s)
Early Detection of Cancer , Incidental Findings , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Male , Female , Aged , Prognosis , Middle Aged , Early Detection of Cancer/methods , Retrospective Studies , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/mortality , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 503-510, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932536

ABSTRACT

Automatic detection of pulmonary nodule based on computer tomography (CT) images can significantly improve the diagnosis and treatment of lung cancer. However, there is a lack of effective interactive tools to record the marked results of radiologists in real time and feed them back to the algorithm model for iterative optimization. This paper designed and developed an online interactive review system supporting the assisted diagnosis of lung nodules in CT images. Lung nodules were detected by the preset model and presented to doctors, who marked or corrected the lung nodules detected by the system with their professional knowledge, and then iteratively optimized the AI model with active learning strategy according to the marked results of radiologists to continuously improve the accuracy of the model. The subset 5-9 dataset of the lung nodule analysis 2016(LUNA16) was used for iteration experiments. The precision, F1-score and MioU indexes were steadily improved with the increase of the number of iterations, and the precision increased from 0.213 9 to 0.565 6. The results in this paper show that the system not only uses deep segmentation model to assist radiologists, but also optimizes the model by using radiologists' feedback information to the maximum extent, iteratively improving the accuracy of the model and better assisting radiologists.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Solitary Pulmonary Nodule/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Machine Learning
11.
Expert Rev Respir Med ; 18(3-4): 175-188, 2024.
Article in English | MEDLINE | ID: mdl-38794918

ABSTRACT

INTRODUCTION: Lung nodules are commonly encountered in clinical practice. Technological advances in navigational bronchoscopy and imaging modalities have led to paradigm shift from nodule screening or follow-up to early lung cancer detection. This is due to improved nodule localization and biopsy confirmation with combined modalities of navigational platforms and imaging tools. To conduct this article, relevant literature was reviewed via PubMed from January 2014 until January 2024. AREAS COVERED: This article highlights the literature on different imaging modalities combined with commonly used navigational platforms for diagnosis of peripheral lung nodules. Current limitations and future perspectives of imaging modalities will be discussed. EXPERT OPINION: The development of navigational platforms improved localization of targets. However, published diagnostic yield remains lower compared to percutaneous-guided biopsy. The discordance between the actual location of lung nodule during the procedure and preprocedural CT chest is the main factor impacting accurate biopsies. The utilization of advanced imaging tools with navigation-based bronchoscopy has been shown to assist with localizing targets in real-time and improving biopsy success. However, it is important for interventional bronchoscopists to understand the strengths and limitations of these advanced imaging technologies.


Subject(s)
Bronchoscopy , Lung Neoplasms , Humans , Bronchoscopy/methods , Bronchoscopy/instrumentation , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Image-Guided Biopsy/methods , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed
13.
Comput Biol Med ; 177: 108674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815486

ABSTRACT

Accurate segmentation of pulmonary nodule is essential for subsequent pathological analysis and diagnosis. However, current U-Net architectures often rely on a simple skip connection scheme, leading to the fusion of feature maps with different semantic information, which can have a negative impact on the segmentation model. In response to this challenge, this study introduces a novel U-shaped model specifically designed for pulmonary nodule segmentation. The proposed model incorporates features such as the U-Net backbone, semantic aggregation feature pyramid module, and reverse attention module. The semantic aggregation module combines semantic information with multi-scale features, addressing the semantic gap between the encoder and decoder. The reverse attention module explores missing object parts and captures intricate details by erasing the currently predicted salient regions from side-output features. The proposed model is evaluated using the LIDC-IDRI dataset. Experimental results reveal that the proposed method achieves a dice similarity coefficient of 89.11%and a sensitivity of 90.73 %, outperforming state-of-the-art approaches comprehensively.


Subject(s)
Semantics , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Algorithms , Databases, Factual
14.
Eur Respir J ; 63(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38697647

ABSTRACT

BACKGROUND: This population-based study aimed to identify the risk factors for lung nodules in a Western European general population. METHODS: We quantified the presence or absence of lung nodules among 12 055 participants of the Dutch population-based ImaLife (Imaging in Lifelines) study (age ≥45 years) who underwent low-dose chest computed tomography. Outcomes included the presence of 1) at least one solid lung nodule (volume ≥30 mm3) and 2) a clinically relevant lung nodule (volume ≥100 mm3). Fully adjusted multivariable logistic regression models were applied overall and stratified by smoking status to identify independent risk factors for the presence of nodules. RESULTS: Among the 12 055 participants (44.1% male; median age 60 years; 39.9% never-smokers; 98.7% White), we found lung nodules in 41.8% (5045 out of 12 055) and clinically relevant nodules in 11.4% (1377 out of 12 055); the corresponding figures among never-smokers were 38.8% and 9.5%, respectively. Factors independently associated with increased odds of having any lung nodule included male sex, older age, low educational level, former smoking, asbestos exposure and COPD. Among never-smokers, a family history of lung cancer increased the odds of both lung nodules and clinically relevant nodules. Among former and current smokers, low educational level was positively associated with lung nodules, whereas being overweight was negatively associated. Among current smokers, asbestos exposure and low physical activity were associated with clinically relevant nodules. CONCLUSIONS: The study provides a large-scale evaluation of lung nodules and associated risk factors in a Western European general population: lung nodules and clinically relevant nodules were prevalent, and never-smokers with a family history of lung cancer were a non-negligible group.


Subject(s)
Lung Neoplasms , Smoking , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Aged , Risk Factors , Smoking/epidemiology , Lung Neoplasms/epidemiology , Lung Neoplasms/diagnostic imaging , Netherlands/epidemiology , Logistic Models , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/epidemiology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/epidemiology , Multivariate Analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Asbestos/adverse effects , Lung/diagnostic imaging
15.
Clin Chest Med ; 45(2): 249-261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816086

ABSTRACT

Early detection with accurate classification of solid pulmonary nodules is critical in reducing lung cancer morbidity and mortality. Computed tomography (CT) remains the most widely used imaging examination for pulmonary nodule evaluation; however, other imaging modalities, such as PET/CT and MRI, are increasingly used for nodule characterization. Current advances in solid nodule imaging are largely due to developments in machine learning, including automated nodule segmentation and computer-aided detection. This review explores current multi-modality solid pulmonary nodule detection and characterization with discussion of radiomics and risk prediction models.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Positron Emission Tomography Computed Tomography , Magnetic Resonance Imaging , Multiple Pulmonary Nodules/diagnostic imaging , Early Detection of Cancer/methods
16.
Clin Chest Med ; 45(2): 263-277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816087

ABSTRACT

Subsolid nodules are heterogeneously appearing and behaving entities, commonly encountered incidentally and in high-risk populations. Accurate characterization of subsolid nodules, and application of evolving surveillance guidelines, facilitates evidence-based and multidisciplinary patient-centered management.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/pathology , Diagnosis, Differential
17.
PLoS One ; 19(5): e0302641, 2024.
Article in English | MEDLINE | ID: mdl-38753596

ABSTRACT

The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. However, lung nodules can be difficult to detect and classify, from CT images since different imaging modalities may provide varying levels of detail and clarity. Besides, the existing convolutional neural network may struggle to detect nodules that are small or located in difficult-to-detect regions of the lung. Therefore, the attention pyramid pooling network (APPN) is proposed to identify and classify lung nodules. First, a strong feature extractor, named vgg16, is used to obtain features from CT images. Then, the attention primary pyramid module is proposed by combining the attention mechanism and pyramid pooling module, which allows for the fusion of features at different scales and focuses on the most important features for nodule classification. Finally, we use the gated spatial memory technique to decode the general features, which is able to extract more accurate features for classifying lung nodules. The experimental results on the LIDC-IDRI dataset show that the APPN can achieve highly accurate and effective for classifying lung nodules, with sensitivity of 87.59%, specificity of 90.46%, accuracy of 88.47%, positive predictive value of 95.41%, negative predictive value of 76.29% and area under receiver operating characteristic curve of 0.914.


Subject(s)
Lung Neoplasms , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Tomography, X-Ray Computed/methods , Deep Learning , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/diagnosis , Algorithms , Lung/diagnostic imaging , Lung/pathology , Radiographic Image Interpretation, Computer-Assisted/methods
18.
Cancer Imaging ; 24(1): 60, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720391

ABSTRACT

BACKGROUND: This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS: A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS: Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION: We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Radiographic Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods
19.
Zhongguo Fei Ai Za Zhi ; 27(4): 291-298, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38769832

ABSTRACT

With the popularization of chest computed tomography (CT) lung cancer screening, the detection rate of peripheral pulmonary nodules is increasing day by day. Some patients could make clear diagnoses and receive early treatment by obtaining biopsy specimens. Transbronchial lung biopsy (TBLB) is one of the non-surgical biopsy methods for peripheral pulmonary nodules, which has less trauma and lower incidence of complications compared to percutaneous thoracic needle biopsy (PTNB). However, the diagnostic rate of TBLB is about 70%, which is still inferior to that of PTNB, which is about 90%. Since 2018, robot assisted bronchoscopy systems have been applied in clinical practice. This article reviews their application in further improving the diagnostic rate of peripheral pulmonary nodules by TBLB.
.


Subject(s)
Bronchoscopy , Lung Neoplasms , Humans , Bronchoscopy/methods , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Robotic Surgical Procedures/methods , Biopsy/methods , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/diagnostic imaging
20.
Clin Respir J ; 18(5): e13769, 2024 May.
Article in English | MEDLINE | ID: mdl-38736274

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. This study aimed to establish novel multiclassification prediction models based on machine learning (ML) to predict the probability of malignancy in pulmonary nodules (PNs) and to compare with three published models. METHODS: Nine hundred fourteen patients with PNs were collected from four medical institutions (A, B, C and D), which were organized into tables containing clinical features, radiologic features and laboratory test features. Patients were divided into benign lesion (BL), precursor lesion (PL) and malignant lesion (ML) groups according to pathological diagnosis. Approximately 80% of patients in A (total/male: 632/269, age: 57.73 ± 11.06) were randomly selected as a training set; the remaining 20% were used as an internal test set; and the patients in B (total/male: 94/53, age: 60.04 ± 11.22), C (total/male: 94/47, age: 59.30 ± 9.86) and D (total/male: 94/61, age: 62.0 ± 11.09) were used as an external validation set. Logical regression (LR), decision tree (DT), random forest (RF) and support vector machine (SVM) were used to establish prediction models. Finally, the Mayo model, Peking University People's Hospital (PKUPH) model and Brock model were externally validated in our patients. RESULTS: The AUC values of RF model for MLs, PLs and BLs were 0.80 (95% CI: 0.73-0.88), 0.90 (95% CI: 0.82-0.99) and 0.75 (95% CI: 0.67-0.88), respectively. The weighted average AUC value of the RF model for the external validation set was 0.71 (95% CI: 0.67-0.73), and its AUC values for MLs, PLs and BLs were 0.71 (95% CI: 0.68-0.79), 0.98 (95% CI: 0.88-1.07) and 0.68 (95% CI: 0.61-0.74), respectively. The AUC values of the Mayo model, PKUPH model and Brock model were 0.68 (95% CI: 0.62-0.74), 0.64 (95% CI: 0.58-0.70) and 0.57 (95% CI: 0.49-0.65), respectively. CONCLUSIONS: The RF model performed best, and its predictive performance was better than that of the three published models, which may provide a new noninvasive method for the risk assessment of PNs.


Subject(s)
Lung Neoplasms , Machine Learning , Multiple Pulmonary Nodules , Aged , Female , Humans , Male , Middle Aged , Decision Trees , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Predictive Value of Tests , Retrospective Studies , ROC Curve , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Support Vector Machine , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...