Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.974
1.
Redox Biol ; 73: 103222, 2024 Jul.
Article En | MEDLINE | ID: mdl-38843767

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Cystathionine beta-Synthase , Disease Models, Animal , Homocystinuria , Liver , Metabolomics , Mice, Transgenic , Proteomics , Sphingolipids , Animals , Mice , Homocystinuria/metabolism , Homocystinuria/genetics , Proteomics/methods , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/deficiency , Cystathionine beta-Synthase/genetics , Liver/metabolism , Metabolomics/methods , Sphingolipids/metabolism , Mitochondria/metabolism , Lipidomics/methods , Proteome/metabolism
2.
PLoS One ; 19(6): e0305042, 2024.
Article En | MEDLINE | ID: mdl-38861512

Multiple sclerosis (MS) and glioblastoma (GBM) are CNS diseases in whose development and progression immune privilege is intimately important, but in a relatively opposite manner. Maintenance and strengthening of immune privilege have been shown to be an important mechanism in glioblastoma immune evasion, while the breakdown of immune privilege leads to MS initiation and exacerbation. We hypothesize that molecular signaling pathways can be oppositely regulated in peripheral blood CD8+ T cells of MS and glioblastoma patients at a transcriptional level. We analyzed publicly available data of the peripheral blood CD8+ T cell MS vs. control (MSvsCTRL) and GBM vs. control (GBMvsCTRL) differentially expressed gene (DEG) contrasts with Qiagen's Ingenuity pathway analysis software (IPA). We have identified sphingolipid signaling pathway which was significantly downregulated in the GBMvsCTRL and upregulated in the MSvsCTRL. As the pathway is important for the CD8+ T lymphocytes CNS infiltration, this result is in line with our previously stated hypothesis. Comparing publicly available lists of differentially expressed serum exosomal miRNAs from MSvsCTRL and GBMvsCTRL contrasts, we have identified that hsa-miR-182-5p has the greatest potential effect on sphingolipid signaling regarding the number of regulated DEGs in the GBMvsCTRL contrast, while not being able to find any relevant potential sphingolipid signaling target transcripts in the MSvsCTRL contrast. We conclude that the sphingolipid signaling pathway is a top oppositely regulated pathway in peripheral blood CD8+ T cells from GBM and MS, and might be crucial for the differences in CNS immune privilege maintenance of investigated diseases, but further experimental research is necessary.


CD8-Positive T-Lymphocytes , Glioblastoma , MicroRNAs , Multiple Sclerosis , Signal Transduction , Sphingolipids , Transcriptome , Humans , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/blood , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Sphingolipids/blood , Sphingolipids/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , MicroRNAs/genetics , MicroRNAs/blood , Gene Expression Profiling , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/blood , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic
3.
Nutrients ; 16(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794739

Excessive lipid deposition affects hepatic homeostasis and contributes to the development of insulin resistance as a crucial factor for the deterioration of simple steatosis to steatohepatitis. So, it is essential to search for an effective agent for a new therapy for hepatic steatosis development before it progresses to the more advanced stages. Our study aimed to evaluate the potential protective effect of α-lipoic acid (α-LA) administration on the intrahepatic metabolism of sphingolipid and insulin signaling transduction in rats with metabolic dysfunction-associated steatotic liver disease (MASLD). The experiment was conducted on male Wistar rats subjected to a standard diet or a high-fat diet (HFD) and an intragastrically α-LA administration for eight weeks. High-performance liquid chromatography (HPLC) was used to determine sphingolipid content. Immunoblotting was used to measure the expression of selected proteins from sphingolipid and insulin signaling pathways. Multiplex assay kit was used to assess the level of the phosphorylated form of proteins from PI3K/Akt/mTOR transduction. The results revealed that α-LA decreased sphinganine, dihydroceramide, and sphingosine levels and increased ceramide level. We also observed an increased the concentration of phosphorylated forms of sphingosine and sphinganine. Changes in the expression of proteins from sphingolipid metabolism were consistent with changes in sphingolipid pools. Treatment with α-LA activated the PI3K/Akt/mTOR pathway, which enhanced the hepatic phosphorylation of Akt and mTOR. Based on these data, we concluded that α-lipoic acid may alleviate glucose intolerance and may have a protective influence on the sphingolipid metabolism under HFD; thus, this antioxidant appears to protect from MASLD development and steatosis deterioration.


Disease Models, Animal , Liver , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Wistar , Signal Transduction , Sphingolipids , TOR Serine-Threonine Kinases , Thioctic Acid , Animals , Thioctic Acid/pharmacology , Male , Proto-Oncogene Proteins c-akt/metabolism , Sphingolipids/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects , Rats , Phosphatidylinositol 3-Kinases/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance , Fatty Liver/metabolism , Fatty Liver/drug therapy
4.
Vision Res ; 221: 108434, 2024 Aug.
Article En | MEDLINE | ID: mdl-38805893

Treatment of glaucoma, the leading cause of irreversible blindness, remains challenging. The apoptotic loss of retinal ganglion cells (RGCs) in glaucoma is the pathological hallmark. Current treatments often remain suboptimal as they aim to halt RGC loss secondary to reduction of intraocular pressure. The pathophysiological targets for exploring direct neuroprotective approaches, therefore are highly relevant. Sphingolipids have emerged as significant target molecules as they are not only the structural components of various cell constituents, but they also serve as signaling molecules that regulate molecular pathways involved in cell survival and death. Investigations have shown that a critical balance among various sphingolipid species, particularly the ceramide and sphingosine-1-phosphate play a role in deciding the fate of the cell. In this review we briefly discuss the metabolic interconversion of sphingolipid species to get an insight into "sphingolipid rheostat", the dynamic balance among metabolites. Further we highlight the role of sphingolipids in the key pathophysiological mechanisms that lead to glaucomatous loss of RGCs. Lastly, we summarize the potential drug candidates that have been investigated for their neuroprotective effects in glaucoma via their effects on sphingolipid axis.


Glaucoma , Neuroprotective Agents , Retinal Ganglion Cells , Sphingolipids , Humans , Glaucoma/drug therapy , Glaucoma/physiopathology , Glaucoma/metabolism , Sphingolipids/metabolism , Retinal Ganglion Cells/physiology , Neuroprotective Agents/pharmacology , Animals , Ceramides/metabolism , Apoptosis/physiology , Intraocular Pressure/physiology
5.
Front Immunol ; 15: 1376629, 2024.
Article En | MEDLINE | ID: mdl-38715613

ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.


Gene Deletion , Homeostasis , Membrane Proteins , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sphingolipids/metabolism , Spleen/immunology , Spleen/metabolism
6.
Aging (Albany NY) ; 16(9): 8031-8043, 2024 May 06.
Article En | MEDLINE | ID: mdl-38713159

BACKGROUND: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in prostate cancer research, essential for advancing our understanding and management of this disease. METHODS: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and LASSO regression techniques, implemented in R software. Validation of key gene expression levels was performed via PCR assays. RESULTS: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism (SRSR) was constructed, comprising five genes: "FUS," "MARK3," "CHTOP," "ILF3," and "ARIH2." This model effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed through PCR analysis. CONCLUSION: This study contributes to our understanding of the role of sphingolipid metabolism in prostate cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification and patient outcomes in clinical settings.


Prostatic Neoplasms , Single-Cell Analysis , Sphingolipids , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Male , Prognosis , Sphingolipids/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Transcriptome , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Gene Regulatory Networks
7.
Cell Commun Signal ; 22(1): 251, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698424

Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.


Immunotherapy , Neoplasms , Signal Transduction , Sphingolipids , Tumor Necrosis Factor-alpha , Humans , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Sphingolipids/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction/drug effects , Animals , Drug Resistance, Neoplasm/drug effects , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
8.
J Oleo Sci ; 73(5): 695-708, 2024.
Article En | MEDLINE | ID: mdl-38692892

This study was to investigate the effects of Smilax China L. saponins (SCS) on non-alcoholic fatty liver disease (NAFLD). Rats were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD, followed by SCS treatment for 8 weeks. The effect of SCS on liver injury was observed by H&E staining and the regulative mechanism of SCS on lipid formation was exposed by detecting Oil red O, insulin resistance (IR), and fatty acids synthesis (FAS). Furthermore, transcriptomics and metabolomics were performed to analyze the potential targets. The experimental results indicated that SCS exerted a positive curative effect in alleviating HFD-induced overweight, hepatic injury, steatosis, and lipid formation and accumulation in rats, and the preliminary mechanism studies showed that SCS could alleviate IR, inhibit FAS expression, and reduce Acetyl-CoA levels. Besides, the integrative analysis of transcriptomics and metabolomics exposed the targets of SCS to regulate lipid production likely being the sphingolipid metabolism and glycerophospholipid metabolism pathways. This study demonstrates that SCS significantly ameliorates lipid metabolic disturbance in rats with NAFLD by relieving insulin resistance, inhibiting the FAS enzymes, and regulating the sphingolipid and glycerophospholipid metabolism pathways.


Diet, High-Fat , Insulin Resistance , Lipid Metabolism , Metabolomics , Non-alcoholic Fatty Liver Disease , Saponins , Smilax , Transcriptome , Animals , Smilax/chemistry , Saponins/pharmacology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Male , Metabolomics/methods , Diet, High-Fat/adverse effects , Transcriptome/drug effects , Lipid Metabolism/drug effects , Rats , Rats, Sprague-Dawley , Sphingolipids/metabolism , Glycerophospholipids/metabolism , Liver/metabolism , Liver/drug effects , Disease Models, Animal
9.
Front Immunol ; 15: 1401294, 2024.
Article En | MEDLINE | ID: mdl-38720899

Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.


Sphingolipids , Animals , Humans , Sphingolipids/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Phagocytosis , Phagocytes/immunology , Phagocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Cell Membrane/metabolism , Protein Binding
10.
BMC Psychiatry ; 24(1): 355, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741058

BACKGROUND: Sleep disturbances are a common occurrence in patients with schizophrenia, yet the underlying pathogenesis remain poorly understood. Here, we performed a targeted metabolomics-based approach to explore the potential biological mechanisms contributing to sleep disturbances in schizophrenia. METHODS: Plasma samples from 59 drug-naïve patients with schizophrenia and 36 healthy controls were subjected to liquid chromatography-mass spectrometry (LC-MS) targeted metabolomics analysis, allowing for the quantification and profiling of 271 metabolites. Sleep quality and clinical symptoms were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Symptom Scale (PANSS), respectively. Partial correlation analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) model were used to identify metabolites specifically associated with sleep disturbances in drug-naïve schizophrenia. RESULTS: 16 characteristic metabolites were observed significantly associated with sleep disturbances in drug-naïve patients with schizophrenia. Furthermore, the glycerophospholipid metabolism (Impact: 0.138, p<0.001), the butanoate metabolism (Impact: 0.032, p=0.008), and the sphingolipid metabolism (Impact: 0.270, p=0.104) were identified as metabolic pathways associated with sleep disturbances in drug-naïve patients with schizophrenia. CONCLUSIONS: Our study identified 16 characteristic metabolites (mainly lipids) and 3 metabolic pathways related to sleep disturbances in drug-naïve schizophrenia. The detection of these distinct metabolites provide valuable insights into the underlying biological mechanisms associated with sleep disturbances in schizophrenia.


Metabolomics , Schizophrenia , Sleep Wake Disorders , Humans , Schizophrenia/blood , Schizophrenia/complications , Metabolomics/methods , Female , Male , Adult , Sleep Wake Disorders/blood , Sleep Wake Disorders/metabolism , Chromatography, Liquid , Mass Spectrometry , Sphingolipids/blood , Sphingolipids/metabolism , Case-Control Studies , Young Adult , Glycerophospholipids/blood
11.
Commun Biol ; 7(1): 622, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783005

Recent studies have highlighted the significance of cellular metabolism in the initiation of clonal expansion and effector differentiation of T cells. Upon exposure to antigens, naïve CD4+ T cells undergo metabolic reprogramming to meet their metabolic requirements. However, only few studies have simultaneously evaluated the changes in protein and metabolite levels during T cell differentiation. Our research seeks to fill the gap by conducting a comprehensive analysis of changes in levels of metabolites, including sugars, amino acids, intermediates of the TCA cycle, fatty acids, and lipids. By integrating metabolomics and proteomics data, we discovered that the quantity and composition of cellular lipids underwent significant changes in different effector Th cell subsets. Especially, we found that the sphingolipid biosynthesis pathway was commonly activated in Th1, Th2, Th17, and iTreg cells and that inhibition of this pathway led to the suppression of Th17 and iTreg cells differentiation. Additionally, we discovered that Th17 and iTreg cells enhance glycosphingolipid metabolism, and inhibition of this pathway also results in the suppression of Th17 and iTreg cell generation. These findings demonstrate that the utility of our combined metabolomics and proteomics analysis in furthering the understanding of metabolic transition during Th cell differentiation.


Cell Differentiation , Metabolomics , Proteomics , Sphingolipids , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Proteomics/methods , Animals , Metabolomics/methods , Mice , Mice, Inbred C57BL
12.
Cell Host Microbe ; 32(6): 1025-1036.e5, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38795710

The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.


Bacteroides thetaiotaomicron , Colon , Gastrointestinal Microbiome , Lipidomics , Animals , Mice , Bacteroides thetaiotaomicron/metabolism , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Lipids/analysis , Tandem Mass Spectrometry , Chromatography, Liquid , Lipid Metabolism , Germ-Free Life , Specific Pathogen-Free Organisms , Phosphatidic Acids/metabolism , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sphingolipids/metabolism , Mice, Inbred C57BL , Female
13.
Anal Chim Acta ; 1305: 342527, 2024 May 29.
Article En | MEDLINE | ID: mdl-38677835

The lipid based ESCRT-independent mechanism, which contributes to MVB formation, is one of the crucial procedures in exosome biogenesis. n-SMase is a key lipid metabolism enzyme in this mechanism and can induce the hydrolysis of sphingomyelins (SMs) to ceramides (Cers), thereby promoting the formation of ILVs inside MVBs. Therefore, the regulation of n-SMase can realize the alteration in exosome release. According to the fact that cancer-associated cells have a tendency to release more exosomes than healthy cells, lipid extracts in exosomes from healthy volunteers, HCC and ICC patients were analyzed by a novel pseudotargeted lipidomics method focused on sphingolipids (SLs) to explore whether cancer-related features regulate the release of exosomes through the above pathway. Multivariate analysis based on the SLs expression could distinguish three groups well indicated that the SLs expression among the three groups were different. In cancer groups, two species of critical Cers were up-regulated, denoted as Cer (d18:1_16:0) and Cer (d18:1_18:0), while 55 kinds of SLs were down-regulated, including 40 species of SMs, such as SM (d18:1_16:0), SM (d18:1_18:1) and SM (d18:1_24:0). Meanwhile, several species of SM/Cer exhibited significant down-regulation. This substantial enhancement of the SMs hydrolysis to Cers process during exosome biogenesis suggested that cancer-related features may potentially promote an increase in exosome release through ESCRT-independent mechanism. Moreover, differential SLs have a capability of becoming potential biomarkers for disease diagnosis and classification with an AUC value of 0.9884 or 0.9806 for the comparison between healthy group and HCC or ICC groups, respectively. In addition, an association analysis conducted on the cell lines showed that changes in the SM/Cer contents in cells and their exosomes were negatively correlated with the levels of released exosomes, implied the regulation of exosome release levels can be achieved by modulating n-SMase and subsequent SL expression.


Exosomes , Lipidomics , Sphingolipids , Humans , Exosomes/metabolism , Exosomes/chemistry , Sphingolipids/metabolism , Sphingolipids/analysis , Lipidomics/methods , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Male , Female , Neoplasms/metabolism , Middle Aged
14.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38657065

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental , Serine C-Palmitoyltransferase , Sphingolipids , Th17 Cells , Animals , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/cytology , Mice , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Reactive Oxygen Species/metabolism , Glycolysis , Mice, Knockout , Colitis/metabolism , Colitis/pathology , Mice, Inbred C57BL
15.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640251

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Neoplasms , Sphingosine , T-Lymphocytes, Regulatory , Programmed Cell Death 1 Receptor/metabolism , Serine/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Tumor Microenvironment
16.
Chem Biol Interact ; 395: 111005, 2024 May 25.
Article En | MEDLINE | ID: mdl-38615975

Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.


Chickens , Fumonisins , Liver , Sphingolipids , Trichothecenes , Zearalenone , Animals , Chickens/metabolism , Trichothecenes/toxicity , Fumonisins/toxicity , Liver/metabolism , Liver/drug effects , Zearalenone/toxicity , Sphingolipids/metabolism , Sphingolipids/analysis , Chromatography, High Pressure Liquid , Animal Feed/analysis , Tandem Mass Spectrometry
17.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Article En | MEDLINE | ID: mdl-38587042

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neovascularization, Pathologic , Sphingolipids , Tumor-Associated Macrophages , Humans , Sphingolipids/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tumor-Associated Macrophages/metabolism , Signal Transduction , Single-Cell Analysis , Mice , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Sequence Analysis, RNA , Tumor Microenvironment , Angiogenesis
18.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article En | MEDLINE | ID: mdl-38474268

The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.


Bone Diseases , Sphingolipids , Humans , Sphingolipids/metabolism , Signal Transduction , Ceramides , Sphingomyelins , Sphingosine/metabolism , Bone and Bones/metabolism
19.
J Agric Food Chem ; 72(10): 5247-5257, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38425052

Bioactivity screening revealed that the antifungal activities of EtOAc extracts from coculture broths of Trametes versicolor SY630 with either Vanderbylia robiniophila SY341 or Ganoderma gibbosum SY1001 were significantly improved compared to that of monocultures. Activity-guided isolation led to the discovery of five aromatic compounds (1-5) from the coculture broth of T. versicolor SY630 and V. robiniophila SY341 and two sphingolipids (6 and 7) from the coculture broth of T. versicolor SY630 and G. gibbosum SY1001. Tramevandins A-C (1-3) and 17-ene-1-deoxyPS (6) are new compounds, while 1-deoxyPS (7) is a new natural product. Notably, compound 2 represents a novel scaffold, wherein the highly modified p-terphenyl bears a benzyl substituent. The absolute configurations of those new compounds were elucidated by X-ray diffraction, ECD calculations, and analysis of physicochemical constants. Compounds 1, 2, and 5-7 exhibited different degrees of antimicrobial activity, and the antifungal activities of compounds 6 and 7 against Candida albicans and Cryptococcus neoformans are comparable to those of fluconazole, nystatin, and sphingosine, respectively. Transcriptome analysis, propidium iodide staining, ergosterol quantification, and feeding assays showed that the isolated sphingolipids can extensively downregulate the late biosynthetic pathway of ergosterol in C. albicans, representing a promising mechanism to combat antibiotic-resistant fungi.


Agaricales , Antifungal Agents , Antifungal Agents/chemistry , Trametes , Coculture Techniques , Candida albicans , Ergosterol , Sphingolipids/metabolism , Microbial Sensitivity Tests
20.
J Cell Sci ; 137(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38488070

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.


Neoplasms , Sphingolipids , Humans , Sphingolipids/metabolism , Click Chemistry , Biological Transport
...