Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 940
Filter
1.
PeerJ ; 12: e17726, 2024.
Article in English | MEDLINE | ID: mdl-39011375

ABSTRACT

Background: A balanced supply of nitrogen is essential for spinach, supporting both optimal growth and appropriate nitrate (NO3 -) levels for improved storage quality. Thus, choosing the correct nitrogen fertilizer type and application rate is key for successful spinach cultivation. This study investigated the effects of different nitrogen (N) fertilizer type and application rates on the growth, nitrate content, and storage quality of spinach plants. Methods: Four fertilizer types were applied at five N doses (25, 50, 200, and 400 mg N kg-1) to plants grown in plastic pots at a greenhouse. The fertilizer types used in the experiment were ammonium sulphate (AS), slow-release ammonium sulphate (SRAS), calcium nitrate (CN), and yeast residue (YR). Spinach parameters like Soil Plant Analysis Development (SPAD) values (chlorophyll content), plant height, and fresh weight were measured. Nitrate content in leaves was analyzed after storage periods simulating post-harvest handling (0, 5, and 10 days). Results: The application of nitrogen fertilizer significantly influenced spinach growth parameters and nitrate content. The YRx400 treatment yielded the largest leaves (10.3 ± 0.5 cm long, 5.3 ± 0.2 cm wide). SPAD values increased with higher N doses for AS, SRAS, and CN fertilizers, with AS×400 (58.1 ± 0.8) and SRAS×400 (62.0 ± 5.8) reaching the highest values. YR treatments showed a moderate SPAD increase. Fresh weight response depended on fertilizer type, N dose, and storage period. While fresh weight increased in all fertilizers till 200 mg kg-1 dose, a decrease was observed at the highest dose for AS and CN. SRAS exhibited a more gradual increase in fresh weight with increasing nitrogen dose, without the negative impact seen at the highest dose in AS and CN. Nitrate content in spinach leaves varied by fertilizer type, dose, and storage day. CNx400 resulted in the highest NO3 - content (4,395 mg kg-1) at harvest (Day 0), exceeding the European Union's safety limit. This level decreased over 10 days of storage but remained above the limit for CN on Days 0 and 5. SRAS and YR fertilizers generally had lower NO3 - concentrations throughout the experiment. Storage at +4 °C significantly affected NO3 - content. While levels remained relatively stable during the first 5 days, a substantial decrease was observed by Day 10 for all fertilizers and doses, providing insights into the spinach's nitrate content over a 10-day storage period. Conclusion: For rapid early growth and potentially higher yields, AS may be suitable at moderate doses (200 mg kg-1). SRAS offers a more balanced approach, promoting sustained growth while potentially reducing NO3 - accumulation compared to AS. Yeast residue, with its slow nitrogen release and consistently low NO3 - levels, could be a viable option for organic spinach production.


Subject(s)
Fertilizers , Nitrates , Nitrogen , Spinacia oleracea , Fertilizers/analysis , Spinacia oleracea/growth & development , Spinacia oleracea/chemistry , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Nitrates/administration & dosage , Nitrates/pharmacology , Nitrates/analysis , Nitrates/metabolism , Nitrogen/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/growth & development
2.
Sci Rep ; 14(1): 15062, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956110

ABSTRACT

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Subject(s)
Charcoal , Photosynthesis , Plant Leaves , Salt Stress , Spinacia oleracea , Zinc Oxide , Zinc , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Spinacia oleracea/growth & development , Charcoal/pharmacology , Charcoal/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Photosynthesis/drug effects , Zinc/pharmacology , Zinc/metabolism , Nutrients/metabolism , Chlorophyll/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Antioxidants/metabolism , Soil/chemistry , Oxidative Stress/drug effects , Salinity
3.
BMC Genomics ; 25(1): 567, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840073

ABSTRACT

BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Spinacia oleracea , Spinacia oleracea/genetics , Spinacia oleracea/metabolism , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Chromosomes, Plant/genetics , Evolution, Molecular
4.
J Photochem Photobiol B ; 257: 112959, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943712

ABSTRACT

The spectral composition of some light-emitting diodes (LEDs) reportedly results in higher crop yield, prevents wilting, and reduces thermal damage to plants. The use of LEDs for postharvest storage and shelf-life extension has been limited, but the potential of this technology will allow for greater applications in horticulture and the food industry. In this experiment, 'Winterbor' kale (Brassica oleracea) and 'Melody' spinach (Spinacia oleracea) plants were measured for the light compensation point and stomatal response under 14 different wavelengths of light ranging from 405 to 661 nm. Data collected from these measurements were used to select two different wavelengths of LEDs and determine the proper irradiance levels for an LED irradiance storage test on spinach and kale. Treatments comprising blue, red, and amber lights were effective at increasing the stomatal opening, while the green light resulted in reduced stomatal opening. For spinach, the light response curve showed that light compensation points at 500 nm and 560 nm were 65.3 and 64.7 µmol m-2 s-1, respectively. For kale, the light compensation points at 500 nm and 560 nm were 50.8 and 44.1 µmol m-2 s-1, respectively. For the storage test experiment at room temperature, kale and spinach were stored under four different treatments: dark treatment (control), standard white fluorescent light, 500 nm, and 560 nm LED wavelengths. For spinach, the moisture content was 70.1% at 560 nm and 53.7% for dark, moisture losses of 41.5% under the 560-nm treatment and 52.0% for the dark treatment. The fresh basis moisture content was 74.6% at 560 nm and 59.3% in the dark. Moisture loss under the 560 nm treatment was 39.6% while the dark treatment had a 54.0% moisture loss. A visual assessment scale was monitored, 560 nm resulted in the top visual quality for kale compared to the other treatments with the lowest visual quality under the dark treatment at day 4. For spinach, the visual quality for 560 nm treatment was statistically the standard white fluorescent light and 500 nm, with poor-quality product occurring by day 4 and the lowest-quality product occurring at day 5. The LED treatments improved the shelf life of spinach and kale, likely as a result of stomatal aperture closure, photosynthetic rate near the light compensation point and stability of the atmospheric moisture content. This study provides valuable information on the extension of the shelf life of leafy greens during storage. Reducing fresh produce waste in grocery stores will increase revenue, thereby benefiting the Canadian economy while providing social and environmental benefits that entail increased food security and reduced food waste.


Subject(s)
Brassica , Light , Plant Stomata , Spinacia oleracea , Spinacia oleracea/radiation effects , Spinacia oleracea/physiology , Spinacia oleracea/metabolism , Brassica/radiation effects , Brassica/physiology , Plant Stomata/radiation effects , Plant Stomata/physiology , Food Storage
5.
Adv Mater ; 36(30): e2401192, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848578

ABSTRACT

Decarbonizing food production and mitigating agriculture's environmental impact require new technologies for precise delivery of fertilizers and pesticides to plants. The cuticle, a waxy barrier that protects the surface of leaves, causes 60%-90% runoff of fertilizers and pesticides, leading to the wastage of intensive resources, soil depletion, and water bodies pollution. Solutions to mitigate runoff include adding chemicals (e.g., surfactants) to decrease surface tension and enhance cuticles' permeability but have low efficacy. In this study, vapor-induced synergistic differentiation (VISDi) is used to nanomanufacture echinate pollen-like, high payload content (≈50 wt%) microcapsules decorated with robust spines that mechanically disrupt the cuticle and adhere to the leaf. VISDi induces a core-shell structure in the spines, enabling the release of agrochemicals from the microparticles' body into the leaf. As proof of concept, precise and highthroughput delivery of iron fertilizer in Fe-deficient spinach plants is demonstrated. Spray of spiny microparticles improves leaf adhesion by mechanical interlocking, reduces wash-off by an ≈12.5 fold, and enhances chlorophyll content by ≈7.3 times compared to the application of spherical counterparts. Together, these results show that spiny microparticles can mitigate agricultural runoff and provide a high-throughput tool for precise plant drug delivery.


Subject(s)
Capsules , Fertilizers , Micronutrients , Plant Leaves , Pollen , Capsules/chemistry , Pollen/chemistry , Micronutrients/chemistry , Fertilizers/analysis , Plant Leaves/metabolism , Plant Leaves/chemistry , Spinacia oleracea/metabolism
6.
PLoS One ; 19(6): e0302135, 2024.
Article in English | MEDLINE | ID: mdl-38861530

ABSTRACT

Soilless agriculture is acknowledged worldwide because it uses organic leftovers as a means of supporting intensive and efficient plant production. However, the quality of potting media deteriorates because of lower nutrient content and excessive shrinkage of most organic materials. A current study was undertaken to identify the optimal blend of locally available organic materials with desirable qualities for use as potting media. Therefore, different ingredients, viz., Pinus roxburghii needles, sugarcane bagasse, and farmyard manure were used alone or in combination as potting media to test their suitability by growing spinach as a test crop. Results showed that an increase in Pinus roxburghii needles and sugarcane bagasse decreased medium pH and electrical conductivity. Higher pH and electrical conductivity were recorded for the treatments having a higher farmyard manure ratio (≥50%) in combination. Except for pine needles 100%, pH and electrical conductivity were in the recommended range. The growth attributes include, leaves plant-1, shoot length, fresh- and dry shoot weight along with plant macronutrients (nitrogen, phosphorous, and potassium) and micronutrients (iron, copper, manganese, and zinc) content were higher in treatment pine needles 50%+farmyard manure 50% followed by pine needles 25%+farmyard manure 50%+sugarcane bagasse 25%. Moreover, the particular treatment of pine needles 50%+farmyard manure 50% exhibited the highest concentrations of macro- (nitrogen, phosphorus, and potassium) as well as micronutrients (iron, copper, manganese, and zinc) in the potting media following the harvest. This study highlights the potential of utilizing agro-industrial litter/waste as a soilless growing medium for spinach production under greenhouse conditions. When employed in appropriate proportions, this approach not only addresses disposal concerns but also proves effective for sustainable cultivation. Further research is needed to investigate the use of these wastes as potting media by mixing various particle-size ingredients.


Subject(s)
Manure , Pinus , Saccharum , Manure/analysis , Saccharum/growth & development , Saccharum/chemistry , Pinus/growth & development , Cellulose , Vegetables/growth & development , Vegetables/chemistry , Spinacia oleracea/growth & development , Spinacia oleracea/metabolism , Hydrogen-Ion Concentration , Electric Conductivity , Agriculture/methods , Plant Leaves/growth & development , Plant Leaves/chemistry , Soil/chemistry , Nitrogen/analysis
7.
Chemosphere ; 361: 142487, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821129

ABSTRACT

This study unveils the detoxification potential of insecticide-tolerant plant beneficial bacteria (PBB), i.e., Ciceribacter azotifigens SF1 and Serratia marcescens SRB1, in spinach treated with fipronil (FIP), profenofos (PF) and chlorantraniliprole (CLP) insecticides. Increasing insecticide doses (25-400 µg kg-1 soil) significantly curtailed germination attributes and growth of spinach cultivated at both bench-scale and in greenhouse experiments. Profenofos at 400 µg kg-1 exhibited maximum inhibitory effects and reduced germination by 55%; root and shoot length by 78% and 81%, respectively; dry matter accumulation in roots and shoots by 79% and 62%, respectively; leaf number by 87% and leaf area by 56%. Insecticide application caused morphological distortion in root tips/surfaces, increased levels of oxidative stress, and cell death in spinach. Application of insecticide-tolerant SF1 and SRB1 strains relieved insecticide pressure resulting in overall improvement in growth and physiology of spinach grown under insecticide stress. Ciceribacter azotifigens improved germination rate (10%); root biomass (53%); shoot biomass (25%); leaf area (10%); Chl-a (45%), Chl-b (36%) and carotenoid (48%) contents of spinach at 25 µg CLP kg-1 soil. PBB inoculation reinvigorated the stressed spinach and modulated the synthesis of phytochemicals, proline, malondialdehyde (MDA), superoxide anions (O2•-), and hydrogen peroxide (H2O2). Scanning electron microscopy (SEM) revealed recovery in root tip morphology and stomatal openings on abaxial leaf surfaces of PBB-inoculated spinach grown with insecticides. Ciceribacter azotifigens inoculation significantly increased intrinsic water use efficiency, transpiration rate, vapor pressure deficit, intracellular CO2 concentration, photosynthetic rate, and stomatal conductance in spinach exposed to 25 µg FIP kg-1. Also, C. azotifigens and S. marcescens modulated the antioxidant defense systems of insecticide-treated spinach. Bacterial strains were strongly colonized to root surfaces of insecticide-stressed spinach seedlings as revealed under SEM. The identification of insecticide-tolerant PBBs such as C. azotifigens and S. marcescens hold the potential for alleviating abiotic stress to spinach, thereby fostering enhanced and safe production within polluted agroecosystems.


Subject(s)
Antioxidants , Insecticides , Plant Leaves , Plant Roots , Serratia marcescens , Soil Pollutants , Spinacia oleracea , Spinacia oleracea/drug effects , Spinacia oleracea/physiology , Spinacia oleracea/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Plant Roots/drug effects , Plant Roots/microbiology , Plant Leaves/drug effects , Serratia marcescens/physiology , Serratia marcescens/drug effects , Serratia marcescens/metabolism , Antioxidants/metabolism , Insecticides/toxicity , Pesticides/metabolism , Pesticides/toxicity , Biodegradation, Environmental , Oxidative Stress/drug effects , Bacillaceae/metabolism , Bacillaceae/physiology , Photosynthesis/drug effects , Soil Microbiology , Soil/chemistry , Germination/drug effects
8.
Plant Physiol Biochem ; 211: 108713, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739963

ABSTRACT

The spinach (S. oleracea L.) was used as a model plant to investigate As toxicity on physio-biochemical processes, exploring the potential mitigation effect of curcumin (Cur) applied exogenously at three concentrations (1, 10, and 20 µM Cur). The employment of Cur significantly mitigated As-induced stress in spinach photosynthetic performance (Fv/Fm, Fo/Fm, and Fv/Fo). Moreover, the co-incubation of Cur with As improved physiological processes mainly associated with plant water systems affected by As stress by recovering the leaf's relative water content (RWC) and osmotic potential (ψπ) nearly to the control level and increasing the transpiration rate (E; 39-59%), stomatal conductivity (gs; 86-116%), and carbon assimilation rate (A; 84-121%) compared to As stressed plants. The beneficial effect of Cur in coping with As-induced stress was also assessed at the plant's oxidative level by reducing oxidative stress biomarkers (H2O2 and MDA) and increasing non-enzymatic antioxidant capacity. Untargeted metabolomics analysis was adopted to investigate the main processes affected by As and Cur application. A multifactorial ANOVA discrimination model (AMOPLS-DA) and canonical correlation analysis (rCCA) were employed to identify relevant metabolic changes and biomarkers associated with Cur and As treatments. The results highlighted that Cur significantly determined the accumulation of glucosinolates, phenolic compounds, and an increase in glutathione redox cycle activities, suggesting an overall elicitation of plant secondary metabolisms. Specifically, the correlation analysis reported a strong and positive correlation between (+)-dihydrokaempferol, L-phenylalanine (precursor of phenolic compounds), and serotonin-related metabolites with antioxidant activities (ABTS and DPPH), suggesting the involvement of Cur application in promoting a cross-talk between ROS signaling and phytohormones, especially melatonin and serotonin, working coordinately to alleviate As-induced oxidative stress. The modulation of plant metabolism was also observed at the level of amino acids, fatty acids, and secondary metabolites synthesis, including N-containing compounds, terpenes, and phenylpropanoids to cooperate with As-induced stress response.


Subject(s)
Curcumin , Metabolomics , Photosynthesis , Spinacia oleracea , Curcumin/pharmacology , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Photosynthesis/drug effects , Antioxidants/metabolism , Oxidative Stress/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Stress, Physiological/drug effects
9.
Biochim Biophys Acta Bioenerg ; 1865(3): 149044, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38588942

ABSTRACT

Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.


Subject(s)
Chlorophyll , Photosystem II Protein Complex , Synechococcus , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Synechococcus/metabolism , Chlorophyll/metabolism , Chlorophyll/chemistry , Light , Electron Transport , Spinacia oleracea/metabolism
10.
Biochemistry ; 63(9): 1214-1224, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38679935

ABSTRACT

A central goal of photoprotective energy dissipation processes is the regulation of singlet oxygen (1O2*) and reactive oxygen species in the photosynthetic apparatus. Despite the involvement of 1O2* in photodamage and cell signaling, few studies directly correlate 1O2* formation to nonphotochemical quenching (NPQ) or lack thereof. Here, we combine spin-trapping electron paramagnetic resonance (EPR) and time-resolved fluorescence spectroscopies to track in real time the involvement of 1O2* during photoprotection in plant thylakoid membranes. The EPR spin-trapping method for detection of 1O2* was first optimized for photosensitization in dye-based chemical systems and then used to establish methods for monitoring the temporal dynamics of 1O2* in chlorophyll-containing photosynthetic membranes. We find that the apparent 1O2* concentration in membranes changes throughout a 1 h period of continuous illumination. During an initial response to high light intensity, the concentration of 1O2* decreased in parallel with a decrease in the chlorophyll fluorescence lifetime via NPQ. Treatment of membranes with nigericin, an uncoupler of the transmembrane proton gradient, delayed the activation of NPQ and the associated quenching of 1O2* during high light. Upon saturation of NPQ, the concentration of 1O2* increased in both untreated and nigericin-treated membranes, reflecting the utility of excess energy dissipation in mitigating photooxidative stress in the short term (i.e., the initial ∼10 min of high light).


Subject(s)
Photosynthesis , Singlet Oxygen , Thylakoids , Electron Spin Resonance Spectroscopy/methods , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Thylakoids/metabolism , Thylakoids/chemistry , Spin Trapping/methods , Chlorophyll/metabolism , Chlorophyll/chemistry , Spinacia oleracea/metabolism , Spinacia oleracea/chemistry , Light
11.
Plant J ; 118(6): 1907-1921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491869

ABSTRACT

The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Spinacia oleracea , Flowers/genetics , Flowers/physiology , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Spinacia oleracea/genetics , Spinacia oleracea/physiology , Spinacia oleracea/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
12.
J Biol Chem ; 300(4): 107167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490436

ABSTRACT

The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 µM TeA-induced cell necrosis in larger plants and treatment with 10 µM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Herbicides , Proton-Translocating ATPases , Spinacia oleracea , Tenuazonic Acid , Arabidopsis/growth & development , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/enzymology , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Tenuazonic Acid/metabolism , Tenuazonic Acid/pharmacology , Cell Membrane/metabolism , Cell Membrane/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Herbicides/pharmacology , Herbicides/chemistry , Spinacia oleracea/drug effects , Spinacia oleracea/growth & development , Spinacia oleracea/metabolism
13.
Plant Physiol Biochem ; 207: 108350, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199026

ABSTRACT

Salt stress is a recognized annihilating abiotic stress that has a significant impact on agricultural and horticulture crop productivity. Plant development faces three distinct dangers as a result of salt stress: oxidative stress, osmotic stress, and ionic toxicity. It has been shown that plants can forecast diurnal patterns using the circadian clock; moreover, they can manage their defensive mechanism for the detoxification of reactive oxygen species (ROS). Circadian rhythmicity in gene expression assembles transcription and translation feedback networks to govern plant shape, physiology, cellular and molecular activities. Both external and internal variables influence the systemic rhythm via input routes. The Malav Jyoti (MJ) and Delhi Green (DG) genotypes of spinach (Spinacia oleracea) were grown in the plant growth chamber. The chamber had an optimized temperature of 25 °C and humidity of 65% containing light emitting diode (LED) having Red: Blue: white (one side) and White fluorescent (other side) under salinity stress. The samples were collected on the basis of 4 h intervals of circadian hours (0 h, 4 h, 8 h and 12 h) during Day-10 and Day-20 of salt treatments. Under salt stress, the circadian and light-emitting diode-based strategy had a substantial influence on spinach's anti-oxidative responses, stomatal movement, CO2 assimilation, PS-I and II efficiency, phytochrome pigment efficiency, and photosynthesis. Based on the findings of the free radical scavenging enzyme tests, the photoperiodic hours for the proteome analysis were set to 11 am and 3 pm on Day-20. When compared to white fluorescent, this study found that LED has the capacity to influence the entrainment cues of the circadian clock in the cultivation of salt-sensitive spinach genotypes. According to our findings, changing the cellular scavenging mechanism and chloroplast proteome has increased the survival rate of spinach genotypes under LED when compared to white fluorescent.


Subject(s)
Proteome , Spinacia oleracea , Spinacia oleracea/genetics , Spinacia oleracea/metabolism , Proteome/metabolism , Chloroplasts/metabolism , Stress, Physiological , Salt Stress , Plants/metabolism , Phytochemicals/metabolism , Salinity
14.
PLoS One ; 18(12): e0294349, 2023.
Article in English | MEDLINE | ID: mdl-38096260

ABSTRACT

Chemcial fertilizer as the main strategy for improving the vegetable yields was excessively applied in recent years which led to progressively serious soil problems such as the soil acidification. According the situation, five different biofertilizer treatments [no fertilizer (CK), inoculations of Bacillus subtilis (Bs, T1), combination of Bs and Bacillus mucilaginosus (Bs+Bm, T2), Bs and Bacillus amyloliquefaciens (Bs+Ba, T3), and Bm+Ba (T4)] were conducted to investigate the effect of the growth, leaf physiological indices, and chlorophyll fluorescence of spinach seedlings in the growth chamber. The growth and physiological indices of the spinach seedlings attained a maximum under the T2 treatments. Under the T2 treatment, the ABS/RC (Absorption flux per RC), TR0/RC (Trapping flux per RC), and ET0/RC (Electron transport flux per RC) was significantly increased, while the DI0/RC [Dissipated energy flux per RC (at t = 0)] was decreased. The OJIP curve was improved under of the inoculations of fertilizers, and the increasing range was the largest under the T2 treatment. The leaf light response curve (LC) was also significantly increased under the T2 treatment. The plant growth characteristics [leaf length (LL), leaf weight (LW), plant height (PH)] were positively correlated with the J-I-P test chlorophyll fluorescence parameters [PIABS (Performance index for energy conservation from exciton to the reduction of intersystem electron acceptors), φP0 (Maximum quantum yield of primary photochemistry), φE0 (Quantum yield of electron transport), ψ0 (The probability that a trapped exciton moved an electron in electron transport chain further than QA-), TR0/RC, and ET0/RC] while negatively correlated with φD0 (Quantum yield of energy dissipation) and DI0/RC. The leaf physiological characteristics [SP (soluble protein concentrations), SC (soluble carbohydrate concentrations), Chl a (chlorophyll a), Chl b (chlorophyll b), Chl a+b, Chl a/b, and WP (water potential)] were positively correlated with the J-I-P test chlorophyll fluorescence parameters (PIABS, φP0, φE0, ψ0, ABS/RC, TR0/RC, and ET0/RC) while negatively correlated with φD0 and DI0/RC. These results indicated that the combination of Bs+Bm inoculations promoted the growth of the spinach and improved the adaptability of the vegetable to acid soil while Ba inoculation didn't have any effects to plants.


Subject(s)
Photosynthesis , Seedlings , Chlorophyll/metabolism , Chlorophyll A , Fluorescence , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Seedlings/metabolism , Soil , Spinacia oleracea/metabolism , Fertilizers
15.
Physiol Plant ; 175(5): e13996, 2023.
Article in English | MEDLINE | ID: mdl-37882272

ABSTRACT

Modification in the light environment can induce several changes even within a short time. In this article, light intensity and spectrum-dependent changes in photosynthetic and metabolic processes were investigated in spinach leaves. Short-term exposure of the youngest fully developed leaves provided an elevated CO2 assimilation capacity under red light compared with blue or white light, although the electron transport rate was lower. The stomatal opening was mainly stimulated by blue light. These spectrum-induced changes also depended on light intensity. When white light was used to activate the photosynthesis, the white light showed a similar light response to blue light regarding the electron transport processes and red light in terms of stomatal opening. In contrast, concerning CO2 assimilation characteristics, the white light resembled blue light at low and red light at high light intensities. These results indicate that the photosynthetic processes strongly interact with the light intensity and spectral composition. Furthermore, changes in spectral composition modified the primary metabolic processes as well. Red light induced the sugar accumulation, while more organic acids that belong to the respiration pathway were produced under blue and white lights. These changes occurred even within a short (30 min) time frame. These results also draw attention to the importance of the light environment used during the measurements of the photosynthetic activity of plants and/or sample collections.


Subject(s)
Carbon Dioxide , Spinacia oleracea , Spinacia oleracea/metabolism , Carbon Dioxide/metabolism , Photosynthesis , Light , Electron Transport , Plant Leaves/metabolism
16.
Chemosphere ; 345: 140495, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865204

ABSTRACT

Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg-1) and treated with selected strain of Bacillus sp. and Cu-O nanoparticle (CuONPs). Data related to plant's growth, physiological parameters, and biochemical tests was collected and analyzed using an appropriate statistical test. It was observed that under chromium stress, all plant's growth parameters were significantly enhanced in response to co-application of CuONPs and Bacillus sp. Similarly, higher levels of catalase, superoxide dismutase, malondialdehyde, and hydrogen peroxide were also observed. However, contents of anthocyanin, carotenoid, total chlorophyll, chlorophyll a & b, were lowered under chromium stress, which were raised in response to the combined application of CuONPs and Bacillus sp. Moreover, this co-application has significant positive effect on total soluble protein, free amino acid, and total phenolics. From this study, it was evident that combined application of Bacillus sp. and CuONP alleviated metal-induced toxicity in spinach plants. The findings from current study may provide new insights for agronomic research for the utilization of bacterial-assisted nano-phytoremediation of contaminated sites.


Subject(s)
Bacillus , Nanoparticles , Soil Pollutants , Humans , Chromium/toxicity , Chromium/metabolism , Copper/toxicity , Copper/metabolism , Spinacia oleracea/metabolism , Soil/chemistry , Chlorophyll A/metabolism , Bacillus/metabolism , Biodegradation, Environmental , Nanoparticles/toxicity , Soil Pollutants/toxicity , Soil Pollutants/metabolism
17.
Plant Physiol Biochem ; 201: 107884, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37451005

ABSTRACT

Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.


Subject(s)
Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Zinc/metabolism , Fertilizers/analysis , Spinacia oleracea/metabolism , Gum Arabic , Soil/chemistry
18.
Photosynth Res ; 157(2-3): 103-118, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37314664

ABSTRACT

The galloping rise in global population in recent years and the accompanying increase in food and energy demands has created land use crisis between food and energy production, and eventual loss of agricultural lands to the more lucrative photovoltaics (PV) energy production. This experiment was carried out to investigate the effect of organic photovoltaics (OPV) and red-foil (RF) transmittance on growth, yield, photosynthesis and SPAD value of spinach under greenhouse and field conditions. Three OPV levels (P0: control; P1: transmittance peak of 0.11 in blue light (BL) and 0.64 in red light (RL); P2: transmittance peak of 0.09 in BL and 0.11 in RL) and two spinach genotypes (bufflehead, eland) were combined in a 3 × 2 factorial arrangement in a completely randomized design with 4 replications in the greenhouse, while two RF levels (RF0: control; RF1: transmittance peak of 0.01 in BL and 0.89 in RL) and two spinach genotypes were combined in a 2 × 2 factorial in randomized complete block design with four replications in the field. Data were collected on growth, yield, photosynthesis and chlorophyll content. Analysis of variance (ANOVA) showed significant reduction in shoot weight and total biomass of spinach grown under very low light intensities as a function of the transmittance properties of the OPV cell used (P2). P1 competed comparably (p > 0.05) with control in most growth and yield traits measured. In addition, shoot to root distribution was higher in P1 than control. RF reduced shoot and total biomass production of spinach in the field due to its inability to transmit other spectra of light. OPV-RF transmittance did not affect plant height (PH), leaf number (LN), and SPAD value but leaf area (LA) was highest in P2. Photochemical energy conversion was higher in P1, P2 and RF1 in contrast to control due to lower levels of non-photochemical energy losses through the Y(NO) and Y(NPQ) pathways. Photo-irradiance curves showed that plants grown under reduced light (P2) did not efficiently manage excess light when exposed to high light intensities. Bufflehead genotype showed superior growth and yield traits than eland across OPV and RF levels. It is therefore recommended that OPV cells with transmittance properties greater than or equal to 11% in BL and 64% in RL be used in APV systems for improved photochemical and land use efficiency.


Subject(s)
Spinacia oleracea , Chlorophyll/metabolism , Genotype , Photosynthesis/physiology , Plant Leaves/physiology , Spinacia oleracea/metabolism
19.
J Food Sci ; 88(6): 2385-2396, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37122139

ABSTRACT

Phytol is a diterpene alcohol found abundantly in nature as the phytyl side chain of chlorophylls. Free form of phytol and its metabolites have been attracting attention because they have a potential to improve the lipid and glucose metabolism. On the other hand, phytol is unfavorable for those who suffering from Refsum's disease. However, there is little information on the phytol contents in leafy vegetables rich in chlorophylls. This study indicated that raw spinach leaves contain phytol of 0.4-1.5 mg/100 g fresh weight. Furthermore, crude enzyme extracted from the leaves showed the enzyme activities involved in dephytylation of chlorophyll derivatives and they were high at mild alkaline pH and around 45°C, and lowered at 55°C or above. Under the optimum pH and temperature for such enzymes determined in the model reaction using the crude enzyme, phytol content in the smoothie made from raw spinach leaves increased with an increase of chlorophyllide, another reaction product. Comparison between the increased amounts of phytol and chlorophyllide showed that the enzymatic dephytylation of chlorophylls was critically responsible for the increase of phytol in the smoothie. PRACTICAL APPLICATION: Phytol, which is released by the enzymes related to chlorophyll metabolism in plants, has been investigated because of its potential abilities to improve the lipid metabolism and blood glucose level. In contrast to such health benefits, they are known to be toxic for patients suffering from Refsum's disease. This research for the first time reports the phytol content in raw spinach leaves and that phytol can be increased in the smoothie made from spinach leaves by the action of endogenous enzymes on chlorophyll derivatives under a certain condition. These results help control phytol content in the smoothies.


Subject(s)
Chlorophyllides , Refsum Disease , Humans , Chlorophyllides/metabolism , Spinacia oleracea/metabolism , Refsum Disease/metabolism , Phytol/metabolism , Chlorophyll
20.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1336-1346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37129194

ABSTRACT

The aim of the previous research was to evaluate the effects of Brazilian spinach pellet (BSP) supplementation and dietary ratios on rumen characteristics, methane estimation, and milk production in dairy cows. Four crossbred Thai dairy cattle, with Holstein Friesian (HF) cows with a body weight of 442 ± 50 kg were assessed in a 2 × 2 factorial in a 4 × 4 Latin square design to obtain diets; factor A was the roughage (R) to concentrate (C) ratio at 40:60 and 30:70, and factor B was level of BSP supplantation at 2% and 6% of dry matter (basis) intake (DMI). R:C ratio and supplementation of BSP had no interaction effect on DMI and nutrient digestibility. On DM, organic matter (OM), crude protein (CP), and acid detergent fiber (ADF) intake, the R:C ratio increased (p < 0.05). The digestibility of OM improved (p < 0.05) when cows were fed a R:C ratio of 30:70. On pH, ammonia-nitrogen, protozoal population, and blood urea-nitrogen, there were no interactions between the R:C ratio and BSP supplementation. Increasing the BSP supplementation to 6% (p < 0.01) decreased the protozoal population. The R:C ratio of 30:70 increased total volatile fatty acid (VFA) and propionate (C3) concentrations while decreasing the acetate (C2) to C3 ratio and methane (CH4 ) estimation (p < 0.01). The average concentration of total VFA has increased by 114.46 mmol/L for 6% of BSP supplementation. Increased BSP supplementation increased the C3 concentration while decreasing the C2:C3 ratio and CH4 emissions (p < 0.05). The R:C ratio and BSP supplementation had no interaction effect on milk yield, 3.5% fat-corrected milk (FCM), or milk composition. The R:C ratio of 30:70 increased milk yield (p < 0.05) to the highest level of 12.18 kg/day. In conclusion, the diet containing a R:C ratio of 30:70 increased feed intake, milk yield, BUN, total VFA, and C3 concentration, and decreased the C2:C3 ratio and CH4 emission. BSP supplementation at 6% could increase TVFA and C3 concentrations while decreasing the protozoal population and CH4 estimation.


Subject(s)
Milk , Spinacia oleracea , Female , Cattle , Animals , Milk/chemistry , Spinacia oleracea/metabolism , Lactation , Rumen/metabolism , Brazil , Digestion , Silage/analysis , Diet/veterinary , Fatty Acids, Volatile/metabolism , Dietary Supplements , Methane , Nitrogen/metabolism , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL