Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.257
Filter
1.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38969499

ABSTRACT

The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons. Neurons tended to spike in the same phase of the hip-flexor (HF) activity cycle during swimming and scratching, though one preferred opposite phases. During both swimming and scratching, a larger fraction of multifunctional neurons than specialized neurons were highly rhythmic. One group of multifunctional neurons was active during the HF-on phase and another during the HF-off phase. Thus, HF-extensor alternation may be generated by a subset of multifunctional spinal neurons during both swimming and scratching. Scratch-specialized neurons and flexion reflex-selective neurons may instead trigger their respective motor patterns, by biasing activity of multifunctional neurons. In phase-averaged membrane potentials of multifunctional neurons, trough phases were more highly correlated between swimming and scratching than peak phases, suggesting that rhythmic inhibition plays a greater role than rhythmic excitation. We also provide the first intracellular recording of a turtle swim-specialized neuron: tonically excited during swimming but inactive during scratching and flexion reflex. It displayed an excitatory postsynaptic potential following each swim-evoking electrical stimulus and thus may be an intermediary between reticulospinal axons and the swimming CPG they activate.


Subject(s)
Reflex , Spinal Cord , Swimming , Turtles , Animals , Turtles/physiology , Swimming/physiology , Spinal Cord/physiology , Reflex/physiology , Neurons/physiology , Action Potentials/physiology , Motor Neurons/physiology
2.
J Vis Exp ; (209)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39072649

ABSTRACT

Neuromodulation can provide diagnostic, modulatory, and therapeutic applications. While extensive work has been conducted in the brain, modulation of the spinal cord remains relatively unexplored. The inherently delicate and mobile spinal cord tissue imposes constraints that make the precise implantation of neural probes challenging. Despite recent advances in neuromodulation devices, particularly flexible bioelectronics, opportunities to expand their use in the spinal cord have been limited by the surgical complexities of device implantation. Here, we provide a series of surgical protocols tailored specifically for the implantation of a custom-made optoelectronic device that interfaces with the spinal cord in rodents. The steps to place and anchor an optical shank on a specific segment of the spinal cord via two different surgical implantation methods are detailed here. These methods are optimized for a diverse range of devices and applications, which may or may not require direct contact with the spinal cord for optical stimulation. To elucidate the methodology, the vertebral anatomy is referenced first to identify prominent landmarks before making a skin incision. The surgical steps to secure an optical shank over the cervical spine in rodents are demonstrated. Procedures are then outlined for securing the optoelectronic device connected to the optical shank in a subcutaneous space away from the spinal cord, minimizing unnecessary direct contact. Behavioral studies comparing animals receiving the implants to those undergoing sham surgeries indicate that the optical shanks did not adversely affect hindlimb or forelimb function seven days post-implantation. The present work broadens the neuromodulation toolkit for use in future studies aimed at investigating various spinal cord interventions.


Subject(s)
Spinal Cord , Animals , Spinal Cord/surgery , Spinal Cord/physiology , Rats , Mice
3.
Sci Rep ; 14(1): 15871, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982137

ABSTRACT

Although epidural spinal cord and muscle stimulation have each been separately used for restoration of movement after spinal cord injury, their combined use has not been widely explored. Using both approaches in combination could provide more flexible control compared to using either approach alone, but whether responses evoked from such combined stimulation can be easily predicted is unknown. We evaluate whether responses evoked by combined spinal and muscle stimulation can be predicted simply, as the linear summation of responses produced by each type of stimulation individually. Should this be true, it would simplify the prediction of co-stimulation responses and the development of control schemes for spinal cord injury rehabilitation. In healthy anesthetized rats, we measured hindlimb isometric forces in response to spinal and muscle stimulation. Force prediction errors were calculated as the difference between predicted and observed co-stimulation forces. We found that spinal and muscle co-stimulation could be closely predicted as the linear summation of the individual spinal and muscle responses and that the errors were relatively low. We discuss the implications of these results to the use of combined muscle and spinal stimulation for the restoration of movement following spinal cord injury.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Spinal Cord Injuries , Spinal Cord , Animals , Rats , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/rehabilitation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Lower Extremity/physiopathology , Electric Stimulation/methods , Hindlimb , Epidural Space , Rats, Sprague-Dawley , Spinal Cord Stimulation/methods , Female , Electric Stimulation Therapy/methods
4.
J Neurophysiol ; 132(2): 531-543, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38985935

ABSTRACT

Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.


Subject(s)
High-Intensity Interval Training , Hippocampus , Rats, Wistar , Signal Transduction , rho-Associated Kinases , Animals , Male , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Hippocampus/metabolism , Signal Transduction/physiology , Rats , Hypoxia/metabolism , Hypoxia/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Neuronal Plasticity/physiology , rhoA GTP-Binding Protein/metabolism , Spinal Cord/metabolism , Spinal Cord/physiology , rho GTP-Binding Proteins
5.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38866498

ABSTRACT

The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.


Subject(s)
Electromyography , Learning , Motor Neurons , Motor Skills , Muscle, Skeletal , Humans , Male , Female , Motor Neurons/physiology , Learning/physiology , Adult , Motor Skills/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Tremor/physiopathology , Spinal Cord/physiology , Spinal Cord/physiopathology
6.
Neurosci Lett ; 836: 137885, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38914276

ABSTRACT

To investigate the precise mechanism of xenon (Xe), pharmacologically isolated AMPA/KA and NMDA receptor-mediated spontaneous (s) and evoked (e) excitatory postsynaptic currents (s/eEPSCAMPA/KA and s/eEPSCNMDA) were recorded from mechanically isolated single spinal sacral dorsal commissural nucleus (SDCN) neurons attached with glutamatergic nerve endings (boutons) using conventional whole-cell patch-clamp technique. We analysed kinetic properties of both s/eEPSCAMPA/KA and s/eEPSCNMDA by focal single- and/or paired-pulse electrical stimulation to compare them. The s/eEPSCNMDA showed smaller amplitude, slower rise time, and slower 1/e decay time constant (τDecay) than those of s/eEPSCAMPA/KA. We previously examined how Xe modulates s/eEPSCAMPA/KA, therefore, examined the effects on s/eEPSCNMDA in the present study. Xe decreased the frequency and amplitude of sEPSCNMDA, and decreased the amplitude but increased the failure rate and paired-pulse ratio of eEPSCNMDA without affecting their τDecay. It was concluded that Xe might suppress NMDA receptor-mediated synaptic transmission via both presynaptic and postsynaptic mechanisms.


Subject(s)
Excitatory Postsynaptic Potentials , Neurons , Receptors, N-Methyl-D-Aspartate , Xenon , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Xenon/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Rats , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/physiology , Synapses/drug effects , Synapses/physiology , Rats, Sprague-Dawley , Patch-Clamp Techniques , Receptors, AMPA/metabolism , Receptors, AMPA/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Male
7.
Nature ; 630(8018): 926-934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898273

ABSTRACT

Krause corpuscles, which were discovered in the 1850s, are specialized sensory structures found within the genitalia and other mucocutaneous tissues1-4. The physiological properties and functions of Krause corpuscles have remained unclear since their discovery. Here we report the anatomical and physiological properties of Krause corpuscles of the mouse clitoris and penis and their roles in sexual behaviour. We observed a high density of Krause corpuscles in the clitoris compared with the penis. Using mouse genetic tools, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of both the clitoris and penis and project to a unique sensory terminal region of the spinal cord. In vivo electrophysiology and calcium imaging experiments showed that both Krause corpuscle afferent types are A-fibre rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light-touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Functionally, selective optogenetic activation of Krause corpuscle afferent terminals evoked penile erection in male mice and vaginal contraction in female mice, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males and reduced sexual receptivity of females. Thus, Krause corpuscles of the clitoris and penis are highly sensitive mechanical vibration detectors that mediate sexually dimorphic mating behaviours.


Subject(s)
Clitoris , Mechanoreceptors , Penis , Sexual Behavior, Animal , Touch , Vibration , Animals , Female , Male , Mice , Clitoris/innervation , Clitoris/physiology , Ejaculation/physiology , Mechanoreceptors/metabolism , Mechanoreceptors/physiology , Optogenetics , Penile Erection/physiology , Penis/innervation , Penis/physiology , Sexual Behavior, Animal/physiology , Spinal Cord/physiology , Spinal Cord/cytology , Touch/physiology , Vagina/physiology , Neurons/physiology
8.
J Neurophysiol ; 132(1): 240-258, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38865217

ABSTRACT

Muscle force is modulated by sequential recruitment and firing rates of motor units (MUs). However, discrepancies exist in the literature regarding the relationship between MU firing rates and their recruitment, presenting two contrasting firing-recruitment schemes. The first firing scheme, known as "onion skin," exhibits low-threshold MUs firing faster than high-threshold MUs, forming separate layers akin to an onion. This contradicts the other firing scheme, known as "reverse onion skin" or "afterhyperpolarization (AHP)," with low-threshold MUs firing slower than high-threshold MUs. To study this apparent dichotomy, we used a high-fidelity computational model that prioritizes physiological fidelity and heterogeneity, allowing versatility in the recruitment of different motoneuron types. Our simulations indicate that these two schemes are not mutually exclusive but rather coexist. The likelihood of observing each scheme depends on factors such as the motoneuron pool activation level, synaptic input activation rates, and MU type. The onion skin scheme does not universally govern the encoding rates of MUs but tends to emerge in unsaturated motoneurons (cells firing < their fusion frequency that generates peak force), whereas the AHP scheme prevails in saturated MUs (cells firing at their fusion frequency), which is highly probable for slow (S)-type MUs. When unsaturated, fast fatigable (FF)-type MUs always show the onion skin scheme, whereas S-type MUs do not show either one. Fast fatigue-resistant (FR)-type MUs are generally similar but show weaker onion skin behaviors than FF-type MUs. Our results offer an explanation for the longstanding dichotomy regarding MU firing patterns, shedding light on the factors influencing the firing-recruitment schemes.NEW & NOTEWORTHY The literature reports two contrasting schemes, namely the onion skin and the afterhyperpolarization (AHP) regarding the relationship between motor units (MUs) firing rates and recruitment order. Previous studies have examined these schemes phenomenologically, imposing one scheme on the firing-recruitment relationship. Here, we used a high-fidelity computational model that prioritizes biological fidelity and heterogeneity to investigate motoneuron firing schemes without bias toward either scheme. Our objective findings offer an explanation for the longstanding dichotomy on MU firing patterns.


Subject(s)
Models, Neurological , Motor Neurons , Motor Neurons/physiology , Action Potentials/physiology , Recruitment, Neurophysiological/physiology , Humans , Spinal Cord/physiology , Animals , Computer Simulation , Muscle, Skeletal/physiology
9.
Pflugers Arch ; 476(8): 1171-1186, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822875

ABSTRACT

Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment.


Subject(s)
Posterior Horn Cells , Animals , Posterior Horn Cells/physiology , Humans , Action Potentials/physiology , Pain/physiopathology , Spinal Cord/physiology
10.
J Neuroeng Rehabil ; 21(1): 103, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890742

ABSTRACT

Humans use their arms in complex ways that often demand two-handed coordination. Neurological conditions limit this impressive feature of the human motor system. Understanding how neuromodulatory techniques may alter neural mechanisms of bimanual coordination is a vital step towards designing efficient rehabilitation interventions. By non-invasively activating the spinal cord, transcutaneous spinal cord stimulation (tSCS) promotes recovery of motor function after spinal cord injury. A multitude of research studies have attempted to capture the underlying neural mechanisms of these effects using a variety of electrophysiological tools, but the influence of tSCS on cortical rhythms recorded via electroencephalography remains poorly understood, especially during bimanual actions. We recruited 12 neurologically intact participants to investigate the effect of cervical tSCS on sensorimotor cortical oscillations. We examined changes in the movement kinematics during the application of tSCS as well as the cortical activation level and interhemispheric connectivity during the execution of unimanual and bimanual arm reaching movements that represent activities of daily life. Behavioral assessment of the movements showed improvement of movement time and error during a bimanual common-goal movement when tSCS was delivered, but no difference was found in the performance of unimanual and bimanual dual-goal movements with the application of tSCS. In the alpha band, spectral power was modulated with tSCS in the direction of synchronization in the primary motor cortex during unimanual and bimanual dual-goal movements and in the somatosensory cortex during unimanual movements. In the beta band, tSCS significantly increased spectral power in the primary motor and somatosensory cortices during the performance of bimanual common-goal and unimanual movements. A significant increase in interhemispheric connectivity in the primary motor cortex in the alpha band was only observed during unimanual tasks in the presence of tSCS. Our observations provide, for the first time, information regarding the supra-spinal effects of tSCS as a neuromodulatory technique applied to the spinal cord during the execution of bi- and unimanual arm movements. They also corroborate the suppressive effect of tSCS at the cortical level reported in previous studies. These findings may guide the design of improved rehabilitation interventions using tSCS for the recovery of upper-limb function in the future.


Subject(s)
Psychomotor Performance , Spinal Cord Stimulation , Humans , Female , Male , Adult , Spinal Cord Stimulation/methods , Psychomotor Performance/physiology , Electroencephalography , Movement/physiology , Young Adult , Biomechanical Phenomena , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology , Arm/physiology , Sensorimotor Cortex/physiology , Spinal Cord/physiology , Functional Laterality/physiology
11.
J Neurosci ; 44(31)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38918066

ABSTRACT

The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.


Subject(s)
Medulla Oblongata , Neurons , Spinal Cord , Animals , Medulla Oblongata/cytology , Medulla Oblongata/physiology , Mice , Male , Female , Neurons/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Mice, Inbred C57BL , Autonomic Nervous System/physiology , Autonomic Nervous System/cytology
12.
J Physiol ; 602(15): 3715-3736, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924530

ABSTRACT

Persistent inward currents (PICs) and persistent outward currents (POCs) regulate the excitability and firing behaviours of spinal motoneurons (MNs). Given their potential role in MN excitability dysfunction in amyotrophic lateral sclerosis (ALS), PICs have been previously studied in superoxide dismutase 1 (SOD1)-G93A mice (the standard animal model of ALS); however, conflicting results have been reported on how the net PIC changes during disease progression. Also, individual PICs and POCs have never been examined before in symptomatic ALS. To fill this gap, we measured the net and individual PIC and POC components of wild-type (WT) and SOD MNs in current clamp and voltage clamp during disease progression (assessed by neuroscores). We show that SOD MNs of symptomatic mice experience a much larger net PIC, relative to WT cells from age-matched littermates. Specifically, the Na+ and Ca2+ PICs are larger, whereas the lasting SK-mediated (SKL) POC is smaller than WT (Na+ PIC is the largest and SKL POC is the smallest components in SOD MNs). We also show that PIC dysregulation is present at symptom onset, is sustained throughout advanced disease stages and is proportional to SOD MN cell size (largest dysregulation is in the largest SOD cells, the most vulnerable in ALS). Additionally, we show that studying disease progression using neuroscores is more accurate than using SOD mouse age, which could lead to misleading statistics and age-based trends. Collectively, this study contributes novel PIC and POC data, reveals ionic mechanisms contributing to the vulnerability differential among MN types/sizes, and provides insights on the roles PIC and POC mechanisms play in MN excitability dysfunction in ALS. KEY POINTS: Individual persistent inward currents (PICs) and persistent outward currents (POCs) have never been examined before in spinal motoneurons (MNs) of symptomatic amyotrophic lateral sclerosis (ALS) mice. Thus, we contribute novel PIC and POC data to the ALS literature. Male SOD MNs of symptomatic mice have elevated net PIC, with larger Na+ and Ca2+ PICs but reduced SKL POC vs. wild-type littermates. Na+ PIC is the largest and SKL POC is the smallest current in SOD cells. The PIC/POC dysregulation is present at symptom onset. PIC dysregulation is sustained throughout advanced disease, and is proportional to SOD MN size (largest dysregulation is in the largest cells, the most vulnerable in ALS). Thus, we reveal ionic mechanisms contributing to the vulnerability differential among MN types/sizes in ALS. Studying disease progression using SOD mice neuroscores is more accurate than using age, which could distort the statistical differences between SOD and WT PIC/POC data and the trends during disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice, Transgenic , Motor Neurons , Animals , Motor Neurons/physiology , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Mice , Spinal Cord/physiology , Superoxide Dismutase-1/genetics , Male , Female , Mice, Inbred C57BL , Action Potentials
13.
Neural Netw ; 178: 106422, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901095

ABSTRACT

Locomotion and scratching are basic motor functions which are critically important for animal survival. Although the spinal circuits governing forward locomotion have been extensively investigated, the organization of spinal circuits and neural mechanisms regulating backward locomotion and scratching remain unclear. Here, we extend a model by Danner et al. to propose a spinal circuit model with asymmetrical cervical-lumbar layout to investigate these issues. In the model, the left-right alternation within the cervical and lumbar circuits is mediated by V 0D and V 0V commissural interneurons (CINs), respectively. With different control strategies, the model closely reproduces multiple experimental data of quadrupeds in different motor behaviors. Specifically, under the supraspinal drive, walk and trot are expressed in control condition, half-bound is expressed after deletion of V 0V CINs, and bound is expressed after deletion of V0 (V 0D and V 0V) CINs; in addition, unilateral hindlimb scratching occurs in control condition and synchronous bilateral hindlimb scratching appears after deletion of V 0V CINs. Under the combined drive of afferent feedback and perineal stimulation, different coordination patterns between hindlimbs during BBS (backward-biped-spinal) locomotion are generated. The results suggest that (1) the cervical and lumbar circuits in the spinal network are asymmetrically recruited during particular rhythmic limb movements. (2) Multiple motor behaviors share a single spinal network under the reconfiguration of the spinal network by supraspinal inputs or somatosensory feedback. Our model provides new insights into the organization of motor circuits and neural control of rhythmic limb movements.


Subject(s)
Interneurons , Locomotion , Spinal Cord , Locomotion/physiology , Animals , Interneurons/physiology , Spinal Cord/physiology , Models, Neurological , Hindlimb/physiology
14.
Sci Rep ; 14(1): 12961, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839823

ABSTRACT

A variation of the longitudinal relaxation time T 1 in brain regions that differ in their main fiber direction has been occasionally reported, however, with inconsistent results. Goal of the present study was to clarify such inconsistencies, and the origin of potential T 1 orientation dependence, by applying direct sample rotation and comparing the results from different approaches to measure T 1 . A section of fixed porcine spinal cord white matter was investigated at 3 T with variation of the fiber-to-field angle θ FB . The experiments included one-dimensional inversion-recovery, MP2RAGE, and variable flip-angle T 1 measurements at 22 °C and 36 °C as well as magnetization-transfer (MT) and diffusion-weighted acquisitions. Depending on the technique, different degrees of T 1 anisotropy (between 2 and 10%) were observed as well as different dependencies on θ FB (monotonic variation or T 1 maximum at 30-40°). More pronounced anisotropy was obtained with techniques that are more sensitive to MT effects. Furthermore, strong correlations of θ FB -dependent MT saturation and T 1 were found. A comprehensive analysis based on the binary spin-bath model for MT revealed an interplay of several orientation-dependent parameters, including the transverse relaxation times of the macromolecular and the water pool as well as the longitudinal relaxation time of the macromolecular pool.


Subject(s)
Spinal Cord , Water , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Swine , Anisotropy , Spinal Cord/physiology , Protons , Rotation
15.
Neuromodulation ; 27(6): 1008-1019, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38752944

ABSTRACT

INTRODUCTION: Spinal neurostimulation is a therapy for otherwise intractable chronic pain. Spinal neurostimulation includes stimulation of the spinal cord (SCS), dorsal root ganglion (DRGS), and dorsal root entry zone (DREZS). New paresthesia-free neurostimulation paradigms may rely on different mechanisms of action from those of conventional tonic neurostimulation. The aim of this systematic review is to assess the existing knowledge on the effect of spinal neurostimulation on somatosensory processing in patients with chronic pain. We therefore reviewed the existing literature on the effect of various spinal neurostimulation paradigms on the supraspinal somatosensory evoked response (SER). MATERIALS AND METHODS: Multiple scientific data bases were searched for studies that assessed the effect of spinal neurostimulation on the supraspinal SER, evoked by painful or nonpainful peripheral stimuli in patients with chronic pain. We found 205 studies, of which 24 were included. Demographic data, study design, and study outcome were extracted. RESULTS: Of the 24 included studies, 23 used electroencephalography to assess the SER; one study used magnetoencephalography. Fifteen studies evaluated tonic SCS; six studies (also) evaluated paresthesia-free paradigms; three studies evaluated the effect of tonic DRGS or DREZS. Sixteen studies used nonpainful stimuli to elicit the SER, 14 observed a decreased SER amplitude. Ten studies used painful stimuli to elicit the SER, yielding mixed results. DISCUSSION: The included studies suggest that both paresthesia-based and paresthesia-free spinal neurostimulation paradigms can decrease (part of) the SER elicited by a nonpainful peripheral stimulus. The observed SER amplitude reduction likely is the effect of various spinal and supraspinal mechanisms of spinal neurostimulation that also contribute to pain relief. CONCLUSIONS: Spinal neurostimulation modulates the processing of a peripherally applied nonpainful stimulus. For painful stimuli, the results are not conclusive. It is not yet clear whether paresthesia-free neurostimulation affects the SER differently from paresthesia-based neurostimulation.


Subject(s)
Evoked Potentials, Somatosensory , Spinal Cord Stimulation , Humans , Evoked Potentials, Somatosensory/physiology , Spinal Cord Stimulation/methods , Spinal Cord/physiology , Chronic Pain/therapy , Chronic Pain/physiopathology
16.
J Neurosurg Spine ; 41(2): 292-304, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38728765

ABSTRACT

OBJECTIVE: The goal of this study was to assess the safety of mapping spinal cord locomotor networks using penetrating stimulation microelectrodes in Yucatan minipigs (YMPs) as a clinically translational animal model. METHODS: Eleven YMPs were trained to walk up and down a straight line. Motion capture was performed, and electromyographic (EMG) activity of hindlimb muscles was recorded during overground walking. The YMPs underwent a laminectomy and durotomy to expose the lumbar spinal cord. Using an ultrasound-guided stereotaxic frame, microelectrodes were inserted into the spinal cord in 8 animals. Pial cuts were made to prevent tissue dimpling before microelectrode insertion. Different locations within the lumbar enlargement were electrically stimulated to map the locomotor networks. The remaining 3 YMPs served as sham controls, receiving the laminectomy, durotomy, and pial cuts but not microelectrode insertion. The Porcine Thoracic Injury Behavioral Scale (PTIBS) and hindlimb reflex assessment results were recorded for 4 weeks postoperatively. Overground gait kinematics and hindlimb EMG activity were recorded again at weeks 3 and 4 postoperatively and compared with preoperative measures. The animals were euthanized at the end of week 4, and the lumbar spinal cords were extracted and preserved for immunohistochemical analysis. RESULTS: All YMPs showed transient deficits in hindlimb function postoperatively. Except for 1 YMP in the experimental group, all animals regained normal ambulation and balance (PTIBS score 10) at the end of weeks 3 and 4. One animal in the experimental group showed gait and balance deficits by week 4 (PTIBS score 4). This animal was excluded from the kinematics and EMG analyses. Overground gait kinematic measures and EMG activity showed no significant (p > 0.05) differences between preoperative and postoperative values, and between the experimental and sham groups. Less than 5% of electrode tracks were visible in the tissue analysis of the animals in the experimental group. There was no statistically significant difference in damage caused by pial cuts between the experimental and sham groups. Tissue damage due to the pial cuts was more frequently observed in immunohistochemical analyses than microelectrode tracks. CONCLUSIONS: These findings suggest that mapping spinal locomotor networks in porcine models can be performed safely, without lasting damage to the spinal cord.


Subject(s)
Electromyography , Microelectrodes , Spinal Cord , Swine, Miniature , Animals , Swine , Spinal Cord/surgery , Spinal Cord/physiology , Spinal Cord Injuries/physiopathology , Hindlimb , Gait/physiology , Female , Electric Stimulation/methods , Models, Animal , Biomechanical Phenomena/physiology
17.
J Neurosci ; 44(30)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38777599

ABSTRACT

Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.


Subject(s)
Postural Balance , Zebrafish , Animals , Postural Balance/physiology , Male , Larva , Spinal Cord/physiology , Spinal Cord/growth & development , Female , Swimming/physiology , Vestibular Nuclei/physiology , Neurons/physiology
18.
J Physiol ; 602(12): 2961-2983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38758005

ABSTRACT

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Muscle, Skeletal , Spinal Cord , Motor Cortex/physiology , Humans , Male , Female , Middle Aged , Spinal Cord/physiology , Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Spinal Cord Stimulation/methods , Aged , Electric Stimulation/methods
19.
J Neurosci ; 44(26)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38744531

ABSTRACT

The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.


Subject(s)
Paresthesia , Spinal Cord Stimulation , Spinal Cord Stimulation/methods , Humans , Paresthesia/physiopathology , Paresthesia/therapy , Male , Female , Adult , Pain Management/methods , Models, Neurological , Middle Aged , Spinal Cord/physiology , Spinal Cord/physiopathology
20.
Med Eng Phys ; 127: 104170, 2024 05.
Article in English | MEDLINE | ID: mdl-38692767

ABSTRACT

Recently, functional Near-Infrared Spectroscopy (fNIRS) was applied to obtain, non-invasively, the human peri­spinal Neuro-Vascular Response (NVR) under a non-noxious electrical stimulation of a peripheral nerve. This method allowed the measurements of changes in the concentration of oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) from the peri­spinal vascular network. However, there is a lack of clarity about the potential differences in perispinal NVR recorded by the different fNIRS technologies currently available. In this work, the two main noninvasive fNIRS technologies were compared, i.e., LED and LASER-based. The recording of the human peri­spinal NVR induced by non-noxious electrical stimulation of a peripheral nerve was recorded simultaneously at C7 and T10 vertebral levels. The amplitude, rise time, and full width at half maximum duration of the perispinal NVRs were characterized in healthy volunteers and compared between both systems. The main difference was that the LED-based system shows about one order of magnitude higher values of amplitude than the LASER-based system. No statistical differences were found for rise time and for duration parameters (at thoracic level). The comparison of point-to-point wave patterns did not show significant differences between both systems. In conclusion, the peri­spinal NRV response obtained by different fNIRS technologies was reproducible, and only the amplitude showed differences, probably due to the power of the system which should be considered when assessing the human peri­spinal vascular network.


Subject(s)
Lasers , Spectroscopy, Near-Infrared , Spinal Cord , Humans , Spectroscopy, Near-Infrared/methods , Male , Spinal Cord/blood supply , Spinal Cord/diagnostic imaging , Spinal Cord/physiology , Adult , Female , Young Adult , Electric Stimulation , Hemoglobins/analysis , Hemoglobins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL