Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.216
Filter
1.
PLoS Comput Biol ; 20(7): e1012237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950067

ABSTRACT

AIM: After spinal cord injuries (SCIs), patients may develop either detrusor-sphincter dyssynergia (DSD) or urinary incontinence, depending on the level of the spinal injury. DSD and incontinence reflect the loss of coordinated neural control among the detrusor muscle, which increases bladder pressure to facilitate urination, and urethral sphincters and pelvic floor muscles, which control the bladder outlet to restrict or permit bladder emptying. Transcutaneous magnetic stimulation (TMS) applied to the spinal cord after SCI reduced DSD and incontinence. We defined, within a mathematical model, the minimum neuronal elements necessary to replicate neurogenic dysfunction of the bladder after a SCI and incorporated into this model the minimum additional neurophysiological features sufficient to replicate the improvements in bladder function associated with lumbar TMS of the spine in patients with SCI. METHODS: We created a computational model of the neural circuit of micturition based on Hodgkin-Huxley equations that replicated normal bladder function. We added interneurons and increased network complexity to reproduce dysfunctional micturition after SCI, and we increased the density and complexity of interactions of both inhibitory and excitatory lumbar spinal interneurons responsive to TMS to provide a more diverse set of spinal responses to intrinsic and extrinsic activation of spinal interneurons that remains after SCI. RESULTS: The model reproduced the re-emergence of a spinal voiding reflex after SCI. When we investigated the effect of monophasic and biphasic TMS at two frequencies applied at or below T10, the model replicated the improved coordination between detrusor and external urethral sphincter activity that has been observed clinically: low-frequency TMS (1 Hz) within the model normalized control of voiding after SCI, whereas high-frequency TMS (30 Hz) enhanced urine storage. CONCLUSION: Neuroplasticity and increased complexity of interactions among lumbar interneurons, beyond what is necessary to simulate normal bladder function, must be present in order to replicate the effects of SCI on control of micturition, and both neuronal and network modifications of lumbar interneurons are essential to understand the mechanisms whereby TMS reduced bladder dysfunction after SCI.


Subject(s)
Spinal Cord Injuries , Urination , Spinal Cord Injuries/physiopathology , Humans , Urination/physiology , Models, Neurological , Spinal Cord Stimulation/methods , Urinary Bladder/physiopathology , Urinary Bladder/innervation , Computer Simulation , Computational Biology , Spinal Cord/physiopathology
2.
Spinal Cord Ser Cases ; 10(1): 44, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977671

ABSTRACT

STUDY DESIGN: prospective case series of Yucatan miniature pig spinal cord contusion injury model with comparison to human cases of spinal cord injury (SCI). OBJECTIVES: to describe magnetic resonance imaging (MRI) measures of spinal cord lesion severity along with estimates of lateral corticospinal tracts spared neural tissue in both a less severe and more severe contusion SCI model, as well as to describe their corresponding behavioral outcome changes. SETTING: University laboratory setting. METHODS: Following a more severe and less severe SCI, each pig underwent spinal cord MRI to measure lesion characteristics, along with locomotor and urodynamics outcomes testing. RESULTS: In the pig with more severe SCI, locomotor and urodynamic outcomes were poor, and both the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts were large. Conversely, in the pig with less severe SCI, locomotor and urodynamic outcomes were favorable, with the spinal cord lesion volume and damage estimates to the lateral corticospinal tracts being less pronounced. For two human cases matched on estimates of damage to the lateral corticospinal tract regions, the clinical presentations were similar to the pig outcomes, with more limited mobility and more limited bladder functional independence in the more severe case. CONCLUSIONS: Our initial findings contribute valuable insights to the emergent field of MRI-based evaluation of spinal cord lesions in pig models, offering a promising avenue for understanding and potentially improving outcomes in spinal cord injuries.


Subject(s)
Disease Models, Animal , Magnetic Resonance Imaging , Spinal Cord Injuries , Swine, Miniature , Animals , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Swine , Magnetic Resonance Imaging/methods , Humans , Female , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Male , Behavior, Animal/physiology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord/physiopathology , Recovery of Function/physiology , Prospective Studies , Locomotion/physiology
3.
Sci Rep ; 14(1): 15871, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982137

ABSTRACT

Although epidural spinal cord and muscle stimulation have each been separately used for restoration of movement after spinal cord injury, their combined use has not been widely explored. Using both approaches in combination could provide more flexible control compared to using either approach alone, but whether responses evoked from such combined stimulation can be easily predicted is unknown. We evaluate whether responses evoked by combined spinal and muscle stimulation can be predicted simply, as the linear summation of responses produced by each type of stimulation individually. Should this be true, it would simplify the prediction of co-stimulation responses and the development of control schemes for spinal cord injury rehabilitation. In healthy anesthetized rats, we measured hindlimb isometric forces in response to spinal and muscle stimulation. Force prediction errors were calculated as the difference between predicted and observed co-stimulation forces. We found that spinal and muscle co-stimulation could be closely predicted as the linear summation of the individual spinal and muscle responses and that the errors were relatively low. We discuss the implications of these results to the use of combined muscle and spinal stimulation for the restoration of movement following spinal cord injury.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Spinal Cord Injuries , Spinal Cord , Animals , Rats , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Spinal Cord Injuries/rehabilitation , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Lower Extremity/physiopathology , Electric Stimulation/methods , Hindlimb , Epidural Space , Rats, Sprague-Dawley , Spinal Cord Stimulation/methods , Female , Electric Stimulation Therapy/methods
4.
Sci Rep ; 14(1): 12717, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830910

ABSTRACT

Chiari type 1 malformation is a neurological disorder characterized by an obstruction of the cerebrospinal fluid (CSF) circulation between the brain (intracranial) and spinal cord (spinal) compartments. Actions such as coughing might evoke spinal cord complications in patients with Chiari type 1 malformation, but the underlying mechanisms are not well understood. More insight into the impact of the obstruction on local and overall CSF dynamics can help reveal these mechanisms. Therefore, our previously developed computational fluid dynamics framework was used to establish a subject-specific model of the intracranial and upper spinal CSF space of a healthy control. In this model, we emulated a single cough and introduced porous zones to model a posterior (OBS-1), mild (OBS-2), and severe posterior-anterior (OBS-3) obstruction. OBS-1 and OBS-2 induced minor changes to the overall CSF pressures, while OBS-3 caused significantly larger changes with a decoupling between the intracranial and spinal compartment. Coughing led to a peak in overall CSF pressure. During this peak, pressure differences between the lateral ventricles and the spinal compartment were locally amplified for all degrees of obstruction. These results emphasize the effects of coughing and indicate that severe levels of obstruction lead to distinct changes in intracranial pressure.


Subject(s)
Arnold-Chiari Malformation , Cerebrospinal Fluid , Cough , Hydrodynamics , Arnold-Chiari Malformation/cerebrospinal fluid , Arnold-Chiari Malformation/physiopathology , Arnold-Chiari Malformation/complications , Cough/physiopathology , Humans , Computer Simulation , Cerebrospinal Fluid Pressure/physiology , Spinal Cord/physiopathology , Female
5.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38866498

ABSTRACT

The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to understand the neural mechanisms underlying the short-term acquisition of a new force-matching task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous (FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/pre ratio of motor units' coherence within delta, alpha, and beta bands. Force-matching improvements were accompanied by increased mean discharge rate and decreased COVISI for both muscles. Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI), with no delta or beta bands changes. These reductions correlated significantly with increased coupling between force/neural drive and target oscillations. These results suggest that short-term force-matching skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural components unrelated to the specific task.


Subject(s)
Electromyography , Learning , Motor Neurons , Motor Skills , Muscle, Skeletal , Humans , Male , Female , Motor Neurons/physiology , Learning/physiology , Adult , Motor Skills/physiology , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/physiopathology , Tremor/physiopathology , Spinal Cord/physiology , Spinal Cord/physiopathology
6.
Neurosci Biobehav Rev ; 163: 105749, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838876

ABSTRACT

The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.


Subject(s)
Sex Characteristics , Animals , Humans , Female , Male , Spinal Cord/physiopathology , Spinal Cord/metabolism , Pain/physiopathology , Pain/metabolism , Calcitonin Gene-Related Peptide/metabolism , Hyperalgesia/physiopathology , Microglia/metabolism , Microglia/physiology , Prolactin/metabolism
7.
J Neurosci ; 44(26)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38744531

ABSTRACT

The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.


Subject(s)
Paresthesia , Spinal Cord Stimulation , Spinal Cord Stimulation/methods , Humans , Paresthesia/physiopathology , Paresthesia/therapy , Male , Female , Adult , Pain Management/methods , Models, Neurological , Middle Aged , Spinal Cord/physiology , Spinal Cord/physiopathology
8.
Article in English | MEDLINE | ID: mdl-38780270

ABSTRACT

Spinal cord injury is associated with spinal vascular disruptions that result in spinal ischemia and tissue hypoxia. This study evaluated the therapeutic efficacy of normobaric hyperoxia on spinal cord oxygenation and circulatory function at the acute stage of cervical spinal cord injury. Adult male Sprague Dawley rats underwent dorsal cervical laminectomy or cervical spinal cord contusion. At 1-2 days after spinal surgery, spinal cord oxygenation was monitored in anesthetized and spontaneously breathing rats through optical recording of oxygen sensor foils placed on the cervical spinal cord and pulse oximetry. The arterial blood pressure, heart rate, blood gases, and peripheral oxyhemoglobin saturation were also measured under hyperoxic (50% O2) and normoxic (21% O2) conditions. The results showed that contused animals had significantly lower spinal cord oxygenation levels than uninjured animals during normoxia. Peripheral oxyhemoglobin saturation, arterial oxygen partial pressure, and mean arterial blood pressure are significantly reduced following cervical spinal cord contusion. Notably, spinal oxygenation of contused rats could be improved to a level comparable to uninjured animals under hyperoxia. Furthermore, acute hyperoxia elevated blood pressure, arterial oxygen partial pressure, and peripheral oxyhemoglobin saturation. These results suggest that normobaric hyperoxia can significantly improve spinal cord oxygenation and circulatory function in the acute phase after cervical spinal cord injury. We propose that adjuvant normobaric hyperoxia combined with other hemodynamic optimization strategies may prevent secondary damage after spinal cord injury and improve functional recovery.


Subject(s)
Hyperoxia , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/metabolism , Male , Hyperoxia/physiopathology , Hyperoxia/blood , Rats , Oxygen/blood , Oxygen/metabolism , Spinal Cord/metabolism , Spinal Cord/blood supply , Spinal Cord/physiopathology , Cervical Cord/injuries , Cervical Cord/metabolism , Blood Pressure/physiology , Oxyhemoglobins/metabolism , Heart Rate/physiology
9.
J Neurosurg Spine ; 41(2): 159-166, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38701531

ABSTRACT

OBJECTIVE: The authors present a finite element analysis (FEA) evaluating the mechanical impact of C1-2 hypermobility on the spinal cord. METHODS: The Code_Aster program was used to perform an FEA to determine the mechanical impact of C1-2 hypermobility on the spinal cord. Normative values of Young's modulus were applied to the various components of the model, including bone, ligaments, and gray and white matter. Two models were created: 25° and 50° of C1-on-C2 rotation, and 2.5 and 5 mm of C1-on-C2 lateral translation. Maximum von Mises stress (VMS) throughout the cervicomedullary junction was calculated and analyzed. RESULTS: The FEA model of 2.5 mm lateral translation of C1 on C2 revealed maximum VMS for gray and white matter of 0.041 and 0.097 MPa, respectively. In the 5-mm translation model, the maximum VMS for gray and white matter was 0.069 and 0.162 MPa. The FEA model of 25° of C1-on-C2 rotation revealed maximum VMS for gray and white matter of 0.052 and 0.123 MPa. In the 50° rotation model, the maximum VMS for gray and white matter was 0.113 and 0.264 MPa. CONCLUSIONS: This FEA revealed significant spinal cord stress during pathological rotation (50°) and lateral translation (5 mm) consistent with values found during severe spinal cord compression and in patients with myelopathy. While this finite element model requires oversimplification of the atlantoaxial joint, the study provides biomechanical evidence that hypermobility within the C1-2 joint leads to pathological spinal cord stress.


Subject(s)
Finite Element Analysis , Joint Instability , Spinal Cord , Humans , Spinal Cord/physiopathology , Joint Instability/physiopathology , Atlanto-Axial Joint/physiopathology , Biomechanical Phenomena/physiology , Cervical Vertebrae/physiopathology , Stress, Mechanical , White Matter/physiopathology , White Matter/diagnostic imaging , Rotation , Elastic Modulus
10.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715127

ABSTRACT

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Subject(s)
Amino Acid Transport System y+ , Neuralgia , Neuroinflammatory Diseases , Animals , Female , Mice , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/deficiency , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Biomarkers/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/drug therapy , Gliosis/physiopathology , Glutamic Acid/metabolism , Hyperalgesia/drug therapy , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/physiopathology , Neuralgia/prevention & control , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/prevention & control , Phenotype , Reproducibility of Results , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sciatic Neuropathy/complications , Sciatic Neuropathy/physiopathology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/physiopathology , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use
11.
Acta Neurol Belg ; 124(4): 1323-1333, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38656476

ABSTRACT

INTRODUCTION: Conus medullaris infarction (CMI) is a rare vascular phenomenon that has been scarcely reported in the literature. While previous studies have described the clinical and radiological features of CMI, little attention has been paid to its associated neurophysiological findings. METHODS: We present a case of idiopathic CMI and its neurophysiological findings, then present our findings from a systematic review of other reports of CMI with neurophysiological features found via PubMed search. RESULTS: Nine articles describing ten cases of CMI with associated neurophysiological data were found, in addition to our case. Out of all 11 cases, 7 cases (64%) had absent F-waves on the first nerve conduction study (NCS) performed as early as 4 h after onset, 5 of whom demonstrated reappearance of F-waves on subsequent follow-up NCS. Seven patients (64%) had diminished compound muscle action potentials (CMAPs), which was usually detectable on NCS performed between day 8 and day 18 of onset. None of them showed recovery of CMAPs in follow-up studies. Four patients (36%) had absent H-reflexes and two patients (18%) had sensory abnormalities. Electromyography (EMG) was reported in seven patients (64%), showing reduced recruitment as early as day 1 of onset, and denervation potentials as early as 4 weeks after onset. CONCLUSION: Absent F-waves and diminished CMAPs are the most common NCS abnormalities in CMI. Absent F-waves are detectable very early but tend to recover on subsequent NCS, while diminished CMAPs are detectable later but do not seem to resolve. Further research to determine the utility of neurophysiological studies in CMI diagnosis and prognostication is needed.


Subject(s)
Neural Conduction , Humans , Electromyography , Infarction/physiopathology , Infarction/diagnostic imaging , Neural Conduction/physiology , Spinal Cord/diagnostic imaging , Spinal Cord/physiopathology
12.
Int J Urol ; 31(7): 819-824, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634346

ABSTRACT

OBJECTIVES: This study evaluated patients with occult spinal dysraphism who underwent spinal cord untethering. METHODS: Twenty-four patients who visited us between 1983 and 2000 were followed-up for a mean duration of 31 years. We studied their lower urinary tract function, skin stigmata, fertility, and work participation. RESULTS: Questionnaires sent in 2022 revealed that 5 patients had normal voiding (Group A) and 19 patients had abnormal voiding (Group B). Groups A and B underwent spinal cord untethering at a mean age of 5.7 and 13.0 years, respectively, showing a significant statistical difference (p = 0.036). After spinal cord untethering, the number of patients with detrusor normoactivity increased from 0 to 5, i.e., 3 of 6 with detrusor overactivity (50%), 1 of 2 not examined, and 1 of 5 not known. Patients with detrusor underactivity also increased from 11 to 19. Severity of incontinence in the International Consultation on Incontinence Questionnaire-Short Form resulted in a mean value of 2.4 in Group A, which was significantly superior to the mean value of 9.1 in Group B (p = 0.004). Fourteen patients (58.3%) were married and had 21 healthy children. A majority of patients have had full-time jobs. A variety of skin stigmata were present in the lumbosacral region, and changes in vesico-urethral configurations were observed during a video-urodynamic study. CONCLUSIONS: Our study identified that the early timing of spinal cord untethering performed in neonates or infants and detrusor overactivity prior to untethering surgery are important factors in achieving normal bladder function.


Subject(s)
Fertility , Humans , Female , Male , Follow-Up Studies , Adolescent , Child , Adult , Child, Preschool , Surveys and Questionnaires , Young Adult , Spina Bifida Occulta/complications , Infant , Urinary Incontinence/etiology , Urinary Incontinence/physiopathology , Urinary Bladder, Overactive/physiopathology , Spinal Dysraphism/complications , Spinal Dysraphism/physiopathology , Spinal Dysraphism/surgery , Spinal Cord/physiopathology
13.
Sci Rep ; 14(1): 9654, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38670988

ABSTRACT

Several neurologic diseases including spinal cord injury, Parkinson's disease or multiple sclerosis are accompanied by disturbances of the lower urinary tract functions. Clinical data indicates that chronic spinal cord stimulation can improve not only motor function but also ability to store urine and control micturition. Decoding the spinal mechanisms that regulate the functioning of detrusor (Detr) and external urethral sphincter (EUS) muscles is essential for effective neuromodulation therapy in patients with disturbances of micturition. In the present work we performed a mapping of Detr and EUS activity by applying epidural electrical stimulation (EES) at different levels of the spinal cord in decerebrated cat model. The study was performed in 5 adult male cats, evoked potentials were generated by EES aiming to recruit various spinal pathways responsible for LUT and hindlimbs control. Recruitment of Detr occurred mainly with stimulation of the lower thoracic and upper lumbar spinal cord (T13-L1 spinal segments). Responses in the EUS, in general, occurred with stimulation of all the studied sites of the spinal cord, however, a pronounced specificity was noted for the lower lumbar/upper sacral sections (L7-S1 spinal segments). These features were confirmed by comparing the normalized values of the slope angles used to approximate the recruitment curve data by the linear regression method. Thus, these findings are in accordance with our previous data obtained in rats and could be used for development of novel site-specific neuromodulation therapeutic approaches.


Subject(s)
Spinal Cord , Animals , Cats , Male , Spinal Cord/physiopathology , Electric Stimulation/methods , Spinal Cord Stimulation/methods , Urinary Bladder/physiopathology , Decerebrate State/physiopathology , Urinary Tract/physiopathology , Urethra/physiopathology , Urination/physiology , Epidural Space
14.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636564

ABSTRACT

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Subject(s)
Disease Models, Animal , Freund's Adjuvant , Hyperalgesia , Microglia , Neurons , Spinal Cord , Vulvodynia , Animals , Spinal Cord/metabolism , Spinal Cord/physiopathology , Mice , Hyperalgesia/physiopathology , Hyperalgesia/metabolism , Vulvodynia/physiopathology , Vulvodynia/metabolism , Female , Microglia/metabolism , Neurons/metabolism , Neuroinflammatory Diseases/physiopathology , Gabapentin/pharmacology , Amitriptyline/pharmacology , Depression/physiopathology , Depression/metabolism , Mice, Inbred C57BL
15.
Clinics (Sao Paulo) ; 79: 100359, 2024.
Article in English | MEDLINE | ID: mdl-38657346

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the GSH effect on functional and histological recovery after experimental spinal cord injury in rats. METHODS: Forty Wistar rats were subjected to spinal cord injury through the Multicenter Animal Spinal Cord Injury Study (MASCIS) Impactor system. The rats were sorted and divided into four groups, as follows: Group 1 ‒ Laminectomy and spinal cord injury; Group 2 ‒ Laminectomy, spinal cord injury and Saline Solution (SS) 0.9%; Group 3 ‒ Laminectomy, spinal cord injury, and GSH; and Group 4 ‒ lLaminectomy without spinal cord injury. GSH and SS were administered intraperitoneally. Groups 1 and 4 received no intervention. RESULTS: The rats were evaluated for locomotor function recovery at seven different times by the Basso, Beattie, and Bresnahan (BBB) scale on days 2, 7, 14, 21, 28, 35, and 42 after the spinal cord injury. On day 42, the rats were sacrificed to analyze the histological findings of the injured spinal cord. In the group submitted to GSH, our experimental study revealed better functional scores on the BBB scale, horizontal ladder scale, and cranial and caudal axon count. The differences found were statistically significant in BBB scores and axonal count analysis. CONCLUSION: This study demonstrated that using glutathione in experimental spinal trauma can lead to better functional recovery and improved axonal regeneration rate in Wistar rats submitted to experimental spinal cord injury.


Subject(s)
Disease Models, Animal , Glutathione , Rats, Wistar , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Time Factors , Laminectomy , Male , Spinal Cord/pathology , Spinal Cord/physiopathology , Random Allocation , Rats , Axons/pathology , Locomotion/physiology , Reproducibility of Results , Motor Activity/physiology , Treatment Outcome
16.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674065

ABSTRACT

Transcutaneous multisegmental spinal cord stimulation (tSCS) has shown superior efficacy in modulating spinal locomotor circuits compared to single-site stimulation in individuals with spinal cord injury (SCI). Building on these findings, we hypothesized that administering a single session of tSCS at multiple spinal segments may yield greater enhancements in muscle strength and gait function during stimulation compared to tSCS at only one or two segments. In our study, tSCS was applied at single segments (C5, L1, and Coc1), two segments (C5-L1, C5-Coc1, and L1-Coc1), or multisegments (C5-L1-Coc1) in a randomized order. We evaluated the 6-m walking test (6MWT) and maximum voluntary contraction (MVC) and assessed the Hmax/Mmax ratio during stimulation in ten individuals with incomplete motor SCI. Our findings indicate that multisegmental tSCS improved walking time and reduced spinal cord excitability, as measured by the Hmax/Mmax ratio, similar to some single or two-site tSCS interventions. However, only multisegmental tSCS resulted in increased tibialis anterior (TA) muscle strength. These results suggest that multisegmental tSCS holds promise for enhancing walking capacity, increasing muscle strength, and altering spinal cord excitability in individuals with incomplete SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Walking , Humans , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Walking/physiology , Male , Female , Adult , Middle Aged , Spinal Cord Stimulation/methods , Muscle Strength , Spinal Cord/physiopathology , Muscle, Skeletal/physiopathology , Gait/physiology
17.
Neuroscience ; 549: 84-91, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38460904

ABSTRACT

We aimed to evaluate the role of the spinal lymphatic system in spinal cord injury and whether it has an impact on recovery after spinal cord injury. Flow cytometry was used to evaluate the changes in the number of microvesicles after spinal cord injury. Evans blue extravasation was used to evaluate the function of the lymphatic system. Evans blue extravasation and immunofluorescence were used to evaluate the permeability of blood spinal cord barrier. The spinal cord edema was evaluated by dry and wet weight.Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was used to evaluate apoptosis after spinal cord injury. Nuclear factor-kappa B pathway was detected by Western blot. Behavioral tests were used to evaluate limb function. Microvesicles released after spinal cord injury can enter the thoracic duct and then enter the blood through the lymph around the spine. After ligation of the thoracic duct, it can aggravate the neuropathological manifestations and limb function after spinal cord injury. The potential mechanism may involve nuclear factor-kappa B pathway.


Subject(s)
Recovery of Function , Spinal Cord Injuries , Spinal Cord , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Animals , Recovery of Function/physiology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/physiopathology , NF-kappa B/metabolism , Male , Apoptosis/physiology , Rats, Sprague-Dawley , Disease Models, Animal , Lymphatic System/physiopathology , Lymphatic System/pathology , Edema/pathology , Thoracic Duct/physiopathology , Female , Cell-Derived Microparticles/metabolism
18.
Pain ; 165(8): 1824-1839, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38452223

ABSTRACT

ABSTRACT: Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 µg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. Patch-clamp recordings also demonstrated enhanced excitatory synaptic transmission (miniature excitatory postsynaptic currents [EPSCs]) in spinal nociceptive neurons following let-7b perfusion or optogenetic activation of axonal terminals. The elevation in spinal calcium signaling and EPSCs was dependent on the presence of toll-like receptor-7 (TLR7) and transient receptor potential ion channel subtype A1 (TRPA1). In addition, endogenous let-7b is enriched in spinal cord synaptosome, and peripheral inflammation increased let-7b in doral root ganglion/dorsal root ganglia neurons, spinal cord tissue, and the cerebrospinal fluid. Notably, let-7b antagomir inhibited inflammatory pain and inflammation-induced synaptic plasticity (EPSC increase), suggesting an endogenous role of let-7b in regulating pain and synaptic transmission. Furthermore, intrathecal injection of let-7b, at a higher dose (10 µg), induced persistent mechanical allodynia for >2 weeks, which was abolished in Tlr7-/- mice. The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.


Subject(s)
MicroRNAs , Microglia , Spinal Cord , Synaptic Transmission , Animals , Male , Mice , Excitatory Postsynaptic Potentials/physiology , Ganglia, Spinal/metabolism , Hyperalgesia/physiopathology , Hyperalgesia/metabolism , Membrane Glycoproteins , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Nociceptors/metabolism , Nociceptors/physiology , Signal Transduction/physiology , Spinal Cord/metabolism , Spinal Cord/physiopathology , Synaptic Transmission/physiology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics
19.
Spine J ; 24(7): 1302-1312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38432298

ABSTRACT

BACKGROUND CONTENT: Spinal cord compression is a source of pathology routinely seen in clinical practice. However, there remain unanswered questions surrounding both the understanding of pathogenesis and the best method of treatment. This arises from limited real-life testing of the mechanical properties of the spinal cord, either through cadaveric human specimens or animal testing, both of which suffer from methodological, as well as ethical, issues. PURPOSE: To conduct a review of the literature on the mechanical properties of the spinal cord. STUDY DESIGN/SETTING: A systematic review of the literature on the mechanical properties of the spinal cord is undertaken. PATIENT SAMPLE: All literature reporting the testing of the mechanical properties of the spinal cord. OUTCOME MEASURES: Reported physiological mechanical properties of the spinal cord. METHODS: The methodological quality of the studies has been assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE's risk of bias tool. This paper details the methodologies and results of the reported testing. RESULTS: We show that (1) the research quality of previous work does not follow published guidelines on animal treatment or risk of bias, (2) no standard protocol has been employed for sample preparation or mechanical testing, (3) this leads to a wide distribution of results for the tested mechanical properties, not applicable to the living human or animal, and (4) animal testing is not a good proxy for human application. CONCLUSIONS: The findings summarize the sum of current knowledge inherent to the mechanical properties of the spinal cord and may contribute to the development of a physical model which is applicable to the living human for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from spinal cord compression.


Subject(s)
Spinal Cord Compression , Spinal Cord , Animals , Humans , Biomechanical Phenomena , Spinal Cord/physiology , Spinal Cord/physiopathology , Spinal Cord Compression/therapy , Guidelines as Topic
20.
Sheng Li Xue Bao ; 75(2): 231-240, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37089097

ABSTRACT

Persistent neurogenesis exists in the subventricular zone (SVZ) of the ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in the adult mammalian brain. Adult endogenous neurogenesis not only plays an important role in the normal brain function, but also has important significance in the repair and treatment of brain injury or brain diseases. This article reviews the process of adult endogenous neurogenesis and its application in the repair of traumatic brain injury (TBI) or ischemic stroke, and discusses the strategies of activating adult endogenous neurogenesis to repair brain injury and its practical significance in promoting functional recovery after brain injury.


Subject(s)
Brain Hemorrhage, Traumatic , Brain , Ischemic Stroke , Neurogenesis , Adult , Animals , Humans , Brain/physiology , Brain/physiopathology , Hippocampus/physiology , Hippocampus/physiopathology , Mammals/physiology , Neurogenesis/physiology , Brain Hemorrhage, Traumatic/physiopathology , Brain Hemorrhage, Traumatic/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/therapy , Recovery of Function , Spinal Cord/physiology , Spinal Cord/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL