Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.591
1.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755530

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


ADAM Proteins , Membrane Proteins , Microglia , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-fos , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/drug therapy , Mice , Microglia/metabolism , Microglia/drug effects , ADAM Proteins/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , MAP Kinase Signaling System/drug effects , Inflammation/pathology , Inflammation/drug therapy , Cell Movement/drug effects , Humans , Antigens, CD
2.
Cells ; 13(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38786039

Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.


Spinal Cord Injuries , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/complications , Humans , Animals , Stem Cells , Stem Cell Transplantation , Mesenchymal Stem Cells
3.
J Colloid Interface Sci ; 668: 646-657, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38696992

Severe spinal cord injury (SCI) leads to dysregulated neuroinflammation and cell apoptosis, resulting in axonal die-back and the loss of neuroelectric signal transmission. While biocompatible hydrogels are commonly used in SCI repair, they lack the capacity to support neuroelectric transmission. To overcome this limitation, we developed an injectable silk fibroin/ionic liquid (SFMA@IL) conductive hydrogel to assist neuroelectric signal transmission after SCI in this study. The hydrogel can form rapidly in situ under ultraviolet (UV) light. The mechanical supporting and neuro-regenerating properties are provided by silk fibroin (SF), while the conductive capability is provided by the designed ionic liquid (IL). SFMA@IL showed attractive features for SCI repair, such as anti-swelling, conductivity, and injectability. In vivo, SFMA@IL hydrogel used in rats with complete transection injuries was found to remodel the microenvironment, reduce inflammation, and facilitate neuro-fiber outgrowth. The hydrogel also led to a notable decrease in cell apoptosis and the achievement of scar-free wound healing, which saved 45.6 ± 10.8 % of spinal cord tissue in SFMA@IL grafting. Electrophysiological studies in rats with complete transection SCI confirmed SFMA@IL's ability to support sensory neuroelectric transmission, providing strong evidence for its signal transmission function. These findings provide new insights for the development of effective SCI treatments.


Electric Conductivity , Fibroins , Hydrogels , Rats, Sprague-Dawley , Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Animals , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Fibroins/chemistry , Fibroins/pharmacology , Injections , Apoptosis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Particle Size
4.
Neurochem Int ; 177: 105759, 2024 Jul.
Article En | MEDLINE | ID: mdl-38735393

BACKGROUND: Exosomes generated from adipose-derived mesenchymal stem cells (Exos), and in particular hypoxia-pretreated ADSCs (HExos), possess therapeutic properties that promote spinal cord repair following spinal cord injury (SCI). Nevertheless, the regulatory mechanisms through which HExos exert their effects remain unclear. METHODS: Here, next-generation sequencing (NGS) was utilized to examine abnormal circRNA expression comparing HExos to Exos. Bioinformatics analysis and RNA pulldown assays together with luciferase reporter assays were applied to determine interactions among miRNAs, mRNAs and circRNAs. ELISA and immunofluorescence staining were used to examine inflammatory cytokine levels, apoptosis and ROS deposition in LPS-treated HT-22 cells, respectively. The therapeutic effects of Exos and HExos on a mouse model of SCI were analyzed by immunohistochemistry and immunofluorescence staining. RESULTS: Our findings confirmed that HExos have more significant therapeutic influences on decreasing ROS and inflammatory cytokine levels post-SCI than Exos. NGS revealed that circ-Wdfy3 expression levels were significantly higher in HExos than Exos. Downregulation of circ-Wdfy3 led to a decrease in HExo-induced therapeutic effects on spinal cord repair post-SCI, indicating that circ-Wdfy3 has a critical role in the regulation of HExo-mediated protection against SCI. Our bioinformatics, RNA pulldown and luciferase reporter data demonstrated that GPX4 and miR-423-3p were downstream targets of circ-Wdfy3. GPX4 downregulation or miR-423-3p overexpression reversed the protective effects of circ-Wdfy3 on LPS-treated HT-22 cells. Furthermore, overexpression of circ-Wdfy3 led to an in increase in the Exo-induced therapeutic effects on spinal cord repair post-SCI through the inhibition of ferroptosis. CONCLUSIONS: circ-WDfy3-overexpressing Exos promote spinal cord repair post-SCI through mediation of ferroptosis via the miR-138-5p/GPX4 pathway.


Exosomes , Ferroptosis , RNA, Circular , Spinal Cord Injuries , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy , Exosomes/metabolism , Animals , Ferroptosis/physiology , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/biosynthesis , Mice , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Male , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Biomed Pharmacother ; 175: 116734, 2024 Jun.
Article En | MEDLINE | ID: mdl-38754264

Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.


Arachidonate 15-Lipoxygenase , Down-Regulation , Ferroptosis , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries , alpha-Tocopherol , Animals , Ferroptosis/drug effects , alpha-Tocopherol/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Recovery of Function/drug effects , Down-Regulation/drug effects , Rats , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Lipid Peroxidation/drug effects , Male , Reactive Oxygen Species/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/genetics , Disease Models, Animal , Molecular Docking Simulation
6.
Bioorg Chem ; 148: 107458, 2024 Jul.
Article En | MEDLINE | ID: mdl-38788362

Ferroptosis is a novel style of cell death, and studies have shown that ferroptosis is strongly associated with spinal cord injury (SCI). A large number of ferroptosis inhibitors have been reported, but so far no ferroptosis inhibitor has been used clinically. Therefore there is an urgent need to discover a better inhibitor of ferroptosis. In this study, 24 novel sulfonamide phenothiazine ferroptosis inhibitors were designed and synthesized, followed by structure-activity relationship studies on these compounds. Among them, compound 23b exhibited the best activity in Erastin-induced PC12 cells (EC50 = 0.001 µM) and demonstrated a low hERG inhibition activity (IC50 > 30 µM). Additionally, compound 23b was identified as a ROS scavenger and showed promising therapeutic effects in an SD rat model of SCI. Importantly, 23b did not display significant toxicity in both in vivo and in vitro experiments and show good pharmacokinetic properties. These findings suggest that compound 23b, a novel ferroptosis inhibitor, holds potential as a therapeutic agent for spinal cord injury and warrants further investigation.


Drug Design , Ferroptosis , Phenothiazines , Rats, Sprague-Dawley , Spinal Cord Injuries , Sulfonamides , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Rats , Structure-Activity Relationship , Ferroptosis/drug effects , Phenothiazines/pharmacology , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Phenothiazines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , PC12 Cells , Molecular Structure , Dose-Response Relationship, Drug , Humans , Male
7.
PLoS One ; 19(5): e0303235, 2024.
Article En | MEDLINE | ID: mdl-38728287

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Autophagy , Galectin 3 , Machine Learning , Neurons , Animals , Rats , Galectin 3/metabolism , Galectin 3/genetics , Glutamic Acid/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neurons/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
8.
Discov Med ; 36(183): 714-720, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665020

BACKGROUND: Spinal cord injury (SCI) is usually caused by external direct or indirect factors, and with a high morbidity and mortality rate. The aim of this study was to observe the effects of Dexmedetomidine (DEX) combined with Esketamine (ESK) on pain behavior and potential analgesic mechanisms in rats with SCI. The goal was to provide a reliable multimodal analgesic medication regimen for SCI. METHODS: Thirty rats were divided into five groups with six rats in each group: Sham group, SCI group, DEX group, ESK group, and DEX+ESK group. The SCI model in rats was constructed, and the motor function of hind limbs of rats was measured using Basso Beattie Bresnahan (BBB) locomotor rating scale and inclined plate test. The levels of interleukin 18 (IL-18), interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) in the spinal cord were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of substance P (SP), neurokinin-1 receptor (NK-1R), B cell lymphoma-2 (Bcl-2), and Bcl2-associated X protein (Bax) in the rats' spinal cord were measured by Western blot assay. The viability of spinal astrocytes was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS: After 7 days, the BBB scores were significantly higher in the DEX, ESK, and DEX+ESK groups compared to the SCI group (p < 0.01). Additionally, the DEX+ESK group had significantly higher scores than both the DEX and ESK groups (p < 0.01). The maximum angle of the DEX (p < 0.05), ESK (p < 0.05), and DEX+ESK groups (p < 0.01) were higher than the SCI group, and the maximum angle of DEX+ESK group was higher than DEX and ESK groups (p < 0.05). The levels of IL-18, IL-1ß, and TNF-α in the DEX, ESK, and DEX+ESK groups were lower than the SCI group (p < 0.01), while the DEX+ESK group had significantly lower IL-18, IL-1ß, and TNF-α levels than the DEX and ESK groups (p < 0.01). The levels of SP (p < 0.01) and NK-1R (p < 0.05) were lower in the DEX, ESK, and DEX+ESK groups compared to the SCI group, and the levels of SP and NK-1R were lower in the DEX+ESK group compared to the DEX and ESK groups (p < 0.01). The DEX and ESK groups suppressed the activity of spinal astrocytes (p < 0.01), however, the DEX+ESK group had larger effects on spinal astrocytes than the ESK group (p < 0.05). CONCLUSIONS: Treatment using DEX combined with ESK improves the motor function, inhibits inflammation and astrocyte activity, and exerts analgesic effects on rats with SCI. These findings can serve as a reference for the selection of multi-modal analgesics.


Dexmedetomidine , Ketamine , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Rats , Ketamine/pharmacology , Ketamine/therapeutic use , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Substance P/metabolism , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , Receptors, Neurokinin-1/metabolism , Interleukin-1beta/metabolism
9.
J Neuroinflammation ; 21(1): 88, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600569

BACKGROUND: Mechanical softening of the glial scar region regulates axonal regeneration to impede neurological recovery in central nervous system (CNS) injury. Microglia, a crucial cellular component of the glial scar, facilitate neuronal survival and neurological recovery after spinal cord injury (SCI). However, the critical mechanical characterization of injured spinal cord that harmonizes neuroprotective function of microglia remains poorly understood. METHODS: Spinal cord tissue stiffness was assessed using atomic force microscopy (AFM) in a mouse model of crush injury. Pharmacological depletion of microglia using PLX5622 was used to explore the effect of microglia on mechanical characterization. Conditional knockout of Fascin-1 in microglia (Fascin-1 CKO) alone or in combination with inhibition of myosin activity was performed to delve into relevant mechanisms of microglia regulating mechanical signal. Immunofluorescence staining was performed to evaluate the related protein levels, inflammatory cells, and neuron survival after SCI. The Basso mouse scale score was calculated to assess functional recovery. RESULTS: Spinal cord tissue significantly softens after SCI. Microglia depletion or Fascin-1 knockout in microglia limits tissue softening and alters mechanical characterization, which leads to increased tissue pathology and impaired functional recovery. Mechanistically, Fascin-1 inhibits myosin activation to promote microglial migration and control mechanical characterization after SCI. CONCLUSIONS: We reveal that Fascin-1 limits myosin activity to regulate mechanical characterization after SCI, and this mechanical signal should be considered in future approaches for the treatment of CNS diseases.


Microfilament Proteins , Microglia , Spinal Cord Injuries , Animals , Mice , Carrier Proteins , Gliosis/metabolism , Microfilament Proteins/metabolism , Microglia/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/pathology
10.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 182-186, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650136

Microglia activation is an early mediator of neuroinflammation and a major contributor to spinal damage and motor dysfunction. This study was designed to investigate the role of small nucleolar RNA host gene 1 (SNHG1) on the apoptosis and inflammatory response of microglial cell BV-2 and its underlying molecular mechanism. The C5 lamina contusion-induced mouse model of spinal cord injury (SCI) was constructed. Mouse microglia BV2 was stimulated by lipopolysaccharide (LPS) to establish the in vitro model of SCI. The quantitative reverse transcription polymerase chain reaction method was used to quantify RNA expression levels. Enzyme-linked immunosorbent assays were used to quantify concentrations of inflammatory cytokines. Protein levels were assessed by western blotting, and apoptosis was assessed by flow cytometry. Dual luciferase reporter gene assay and RNA pull-down assay were conducted to investigate the binding relationships between molecules. Upregulation of SNHG1 and downregulation of miR-195-5p were observed in the spinal cords of SCI mouse model. LPS treatment led to elevation of SNHG1 expression in BV2 cells, as well as accelerated apoptosis and inflammation. Evident mitigation of LPS-induced BV2 cell damage was observed after SNHG1 knockdown. MiR-195-5p was identified as a target of SNHG1. Inhibition of miR-195-5p restored the impact of SNHG1 knockdown on cell damage of LPS-treated BV2 cells. Furthermore, miR-195-5p can target activating transcription factor-6 (ATF6). In summary, SNHG1 knockdown ameliorates LPS-induced microglial apoptosis and inflammatory response via the miR-195-5p/ATF6 axis, providing a novel direction for SCI treatment.


Apoptosis , Inflammation , Lipopolysaccharides , MicroRNAs , Microglia , Spinal Cord Injuries , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Apoptosis/drug effects , Apoptosis/genetics , Mice , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Silencing , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Male
11.
Immun Inflamm Dis ; 12(4): e1256, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652010

BACKGROUND: Spinal cord injury (SCI) is a traumatic neurological disorder with limited therapeutic options. Tumor protein p53-inducible nuclear protein 2 (TP53INP2) is involved in the occurrence and development of various diseases, and it may play a role during SCI via affecting inflammation and neuronal apoptosis. This study investigated the associated roles and mechanisms of TP53INP2 in SCI. METHODS: Mouse and lipopolysaccharide (LPS)-induced SCI BV-2 cell models were constructed to explore the role of TP53INP2 in SCI and the associated mechanisms. Histopathological evaluation of spinal cord tissue was detected by hematoxylin and eosin staining. The Basso, Beattie, and Bresnahan score was used to measure the motor function of the mice, while the spinal cord water content was used to assess spinal cord edema. The expression of TP53INP2 was measured using RT-qPCR. In addition, inflammatory factors in the spinal cord tissue of SCI mice and LPS-treated BV-2 cells were measured using enzyme-linked immunosorbent assay. Apoptosis and related protein expression levels were detected by flow cytometry and western blot analysis, respectively. RESULTS: TP53INP2 levels increased in SCI mice and LPS-treated BV-2 cells. The results of in vivo and in vitro experiments showed that TP53INP2 knockdown inhibited the inflammatory response and neuronal apoptosis in mouse spinal cord tissue or LPS-induced BV-2 cells. CONCLUSIONS: After spinal cord injury, TP53INP2 was upregulated, and TP53INP2 knockdown inhibited the inflammatory response and apoptosis.


Apoptosis , Inflammation , Spinal Cord Injuries , Animals , Male , Mice , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Inflammation/immunology , Lipopolysaccharides , Mice, Inbred C57BL , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/genetics
12.
Acta Biomater ; 180: 308-322, 2024 May.
Article En | MEDLINE | ID: mdl-38615813

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Extracellular Matrix , Glial Cell Line-Derived Neurotrophic Factor , Neurogenesis , Rats, Sprague-Dawley , Recovery of Function , Remyelination , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Neurogenesis/drug effects , Remyelination/drug effects , Extracellular Matrix/metabolism , Recovery of Function/drug effects , Rats , Female , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
13.
Biofabrication ; 16(3)2024 May 09.
Article En | MEDLINE | ID: mdl-38565133

Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.


Axons , Cell Differentiation , Neural Stem Cells , Neurons , Spinal Cord Injuries , Tissue Scaffolds , Animals , Neural Stem Cells/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Axons/drug effects , Axons/physiology , Axons/metabolism , Cell Differentiation/drug effects , Neurons/cytology , Neurons/drug effects , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley , Hydrogels/chemistry , Hydrogels/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/analogs & derivatives , Cells, Cultured , Nerve Regeneration/drug effects , Nanofibers/chemistry , Rats , Female
14.
Clinics (Sao Paulo) ; 79: 100359, 2024.
Article En | MEDLINE | ID: mdl-38657346

OBJECTIVE: The aim of this study was to evaluate the GSH effect on functional and histological recovery after experimental spinal cord injury in rats. METHODS: Forty Wistar rats were subjected to spinal cord injury through the Multicenter Animal Spinal Cord Injury Study (MASCIS) Impactor system. The rats were sorted and divided into four groups, as follows: Group 1 ‒ Laminectomy and spinal cord injury; Group 2 ‒ Laminectomy, spinal cord injury and Saline Solution (SS) 0.9%; Group 3 ‒ Laminectomy, spinal cord injury, and GSH; and Group 4 ‒ lLaminectomy without spinal cord injury. GSH and SS were administered intraperitoneally. Groups 1 and 4 received no intervention. RESULTS: The rats were evaluated for locomotor function recovery at seven different times by the Basso, Beattie, and Bresnahan (BBB) scale on days 2, 7, 14, 21, 28, 35, and 42 after the spinal cord injury. On day 42, the rats were sacrificed to analyze the histological findings of the injured spinal cord. In the group submitted to GSH, our experimental study revealed better functional scores on the BBB scale, horizontal ladder scale, and cranial and caudal axon count. The differences found were statistically significant in BBB scores and axonal count analysis. CONCLUSION: This study demonstrated that using glutathione in experimental spinal trauma can lead to better functional recovery and improved axonal regeneration rate in Wistar rats submitted to experimental spinal cord injury.


Disease Models, Animal , Glutathione , Rats, Wistar , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Time Factors , Laminectomy , Male , Spinal Cord/pathology , Spinal Cord/physiopathology , Random Allocation , Rats , Axons/pathology , Locomotion/physiology , Reproducibility of Results , Motor Activity/physiology , Treatment Outcome
15.
Cell Stem Cell ; 31(5): 772-787.e11, 2024 May 02.
Article En | MEDLINE | ID: mdl-38565140

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.


Carrier Proteins , Cytokines , Extracellular Matrix , Organoids , Spinal Cord Injuries , Spinal Cord , Animals , Organoids/metabolism , Organoids/cytology , Spinal Cord/metabolism , Extracellular Matrix/metabolism , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Rabbits , Cell Differentiation , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Tenascin/metabolism , Cell Proliferation , Animals, Newborn , Nerve Regeneration/physiology
16.
J Cell Mol Med ; 28(9): e18287, 2024 May.
Article En | MEDLINE | ID: mdl-38685675

Single immobilization theory cannot fully account for the extensive bone loss observed after spinal cord injury (SCI). Bone marrow mesenchymal stem cells (BMSCs) are crucial in bone homeostasis because they possess self-renewal capabilities and various types of differentiation potential. This study aimed to explore the molecular mechanism of long non-coding RNA H19 in osteoporosis after SCI and provide new research directions for existing prevention strategies. We used small interfering RNA to knockdown H19 expression and regulated miR-29b-2p expression using miR-29b-3p mimetics and inhibitors. Western blotting, real-time fluorescence quantitative PCR, Alizarin red staining, alkaline phosphatase staining and double-luciferase reporter gene assays were used to assess gene expression, osteogenic ability and binding sites. lncRNA H19 was upregulated in BMSCs from the osteoporosis group, whereas miR-29b-3p was downregulated. We identified the binding sites between miR-29b-3p and lncRNAs H19 and DKK1. H19 knockdown promoted BMSCs' osteogenic differentiation, whereas miR-29b-3p inhibition attenuated this effect. We discovered potential binding sites for miR-29b-3p in lncRNAs H19 and DKK1. Our findings suggest that long non-coding RNA H19 mediates BMSCs' osteogenic differentiation in osteoporosis after SCI through the miR-29b-3p/DKK1 axis and by directly inhibiting the ß-catenin signalling pathway.


Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Osteogenesis , RNA, Long Noncoding , Animals , Humans , Male , Rats , Cell Differentiation , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
17.
Exp Neurol ; 377: 114784, 2024 Jul.
Article En | MEDLINE | ID: mdl-38642665

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.


Exosomes , Macrophages , Mice, Inbred C57BL , Microglia , Spinal Cord Injuries , Animals , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Exosomes/metabolism , Exosomes/transplantation , Mice , Macrophages/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Cell Polarity/drug effects , Cell Polarity/physiology , Female , Neuroprotection/physiology , Signal Transduction/drug effects , Chemokines/metabolism
18.
Exp Neurol ; 377: 114785, 2024 Jul.
Article En | MEDLINE | ID: mdl-38670250

Spinal cord injury (SCI) results from various mechanisms that damage the nervous tissue and the blood-brain barrier, leading to sensory and motor function loss below the injury site. Unfortunately, current therapeutic approaches for SCI have limited efficacy in improving patients outcomes. Galectin-3, a protein whose expression increases after SCI, influences the neuroinflammatory response by favoring pro-inflammatory M1 macrophages and microglia, while inhibiting pro-regenerative M2 macrophages and microglia, which are crucial for inflammation resolution and tissue regeneration. Previous studies with Galectin-3 knock-out mice demonstrated enhanced motor recovery after SCI. The M1/M2 balance is strongly influenced by the predominant lymphocytic profiles (Th1, Th2, T Reg, Th17) and cytokines and chemokines released at the lesion site. The present study aimed to investigate how the absence of galectin-3 impacts the adaptive immune system cell population dynamics in various lymphoid spaces following a low thoracic spinal cord compression injury (T9-T10) using a 30 g vascular clip for one minute. It also aimed to assess its influence on the functional outcome in wild-type (WT)and Galectin-3 knock-out (GALNEG) mice. Histological analysis with hematoxylin-eosin and Luxol Fast Blue staining revealed that WT and GALNEG animals exhibit similar spinal cord morphology. The absence of galectin-3 does not affect the common neuroanatomy shared between the groups prompting us to analyze outcomes between both groups. Following our crush model, both groups lost motor and sensory functions below the lesion level. During a 42-day period, GALNEG mice demonstrated superior locomotor recovery in the Basso Mouse Scale (BMS) gait analysis and enhanced motor coordination performance in the ladder rung walk test (LRW) compared to WT mice. GALNEG mice also exhibited better sensory recovery, and their electrophysiological parameters suggested a higher number of functional axons with faster nerve conduction. Seven days after injury, flow cytometry of thymus, spleen, and blood revealed an increased number of T Reg and Th2 cells, accompanied by a decrease in Th1 and Th17 cells in GALNEG mice. Immunohistochemistry conducted on the same day exhibited an increased number of Th2 and T Reg cells around the GALNEG's spinal cord lesion site. At 42-day dpi immunohistochemistry analyses displayed reduced astrogliosis and greater axon preservation in GALNEG's spinal cord seem as a reduction of GFAP immunostaining and an increase in NFH immunostaining, respectively. In conclusion, GALNEG mice exhibited better functional recovery attributed to the milder pro-inflammatory influence, compensated by a higher quantity of T Reg and Th2 cells. These findings suggest that galectin-3 plays a crucial role in the immune response after spinal cord injury and could be a potential target for clinical therapeutic interventions.


Galectin 3 , Mice, Inbred C57BL , Mice, Knockout , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Recovery of Function/physiology , Galectin 3/metabolism , Galectin 3/genetics , Mice , Lymphocytes/metabolism , Female , Male
19.
Neuroscience ; 547: 1-16, 2024 May 24.
Article En | MEDLINE | ID: mdl-38570063

After spinal cord injury (SCI), the accumulation of myelin debris can serve as proinflammatory agents, hindering axon regrowth and exacerbating damage. While astrocytes have been implicated in the phagocytosis of myelin debris, the impact of this process on the phenotypic transformation of astrocytes and their characteristics following SCI in rats is not well understood. Here, we demonstrated that the conditioned medium of myelin debris can trigger apoptosis in rat primary astrocytes in vitro. Using a compressional SCI model in rats, we observed that astrocytes can engulf myelin debris through ATP-binding cassette transporter sub-family A member 1 (ABCA1), and these engulfed cells tend to transform into A1 astrocytes, as indicated by C3 expression. At 4 days post-injury (dpi), astrocytes rapidly transitioned into A1 astrocytes and maintained this phenotype from 4 to 28 dpi, while A2 astrocytes, characterized by S100, were only detected at 14 and 28 dpi. Reactive astrocytes, identified by Nestin, emerged at 4 and 7 dpi, whereas scar-forming astrocytes, marked by N-cadherin, were evident at 14 and 28 dpi. This study illustrates the distribution patterns of astrocyte subtypes and the potential interplay between astrocytes and myelin debris after SCI in rats. We emphasize that myelin debris can induce astrocyte apoptosis in vitro and promote the transformation of astrocytes into A1 astrocytes in vivo. These two classification methods are not mutually exclusive, but rather complementary.


Astrocytes , Myelin Sheath , Phenotype , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Myelin Sheath/pathology , Myelin Sheath/metabolism , Apoptosis/physiology , Cells, Cultured , Phagocytosis/physiology , Rats , Disease Models, Animal , Female , Culture Media, Conditioned/pharmacology
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167141, 2024 Jun.
Article En | MEDLINE | ID: mdl-38565385

Spinal cord injury (SCI) induces severe neuroinflammation, and subsequently neurological dysfunction. Activated microglia are critical for modulation of neuroinflammation. Protein tyrosine phosphatase receptor type O (PTPRO), a member of protein tyrosine phosphatases (PTPs), exerts a pro-inflammatory role in multiple human diseases; however, its role in SCI remains unclarified. Here, a T7 spinal cord compression injury model was established in Sprague-Dawley (SD) rats, and PTPRO expression was upregulated in injured spinal cord and microglia after SCI. Microglia M1 and M2 polarization in vitro were induced using LPS/IFN-γ and IL-4, respectively. PTPRO expression was elevated in M1-polarized microglia, and PTPRO downregulation mediated by PTPRO shRNA (shPTPRO) decreased CD86+ cell proportion, iNOS, TNF-α, IL-1ß, and IL-6 levels, and p65 phosphorylation. PTPRO was downregulated in M2 microglia, and PTPRO upregulation by PTPRO overexpression plasmid (OE-PTPRO) reduced CD206+ cell percentage, Arg-1, IL-10, and TGF-ß1 levels and STAT6 phosphorylation. Mechanistically, the transcription factor SOX4 elevated PTPRO expression and its promoter activity. SOX4 overexpression enhanced M1 polarization and p65 phosphorylation, while its knockdown promoted M2 polarization and STAT6 phosphorylation. PTPRO might mediate the function of SOX4 in BV2 microglia polarization. Furthermore, lentivirus-mediated downregulation of PTPRO following SCI improved locomotor functional recovery, demonstrated by elevated BBB scores, incline angle, consistent hindlimb coordination, and reduced lesion area and neuronal apoptosis. PTPRO downregulation promoted microglia M2 polarization, NF-κB inactivation and STAT6 activation after injury. In conclusion, PTPRO inhibition improves spinal cord injury through facilitating M2 microglia polarization via the NF-κB/STAT6 signaling pathway, which is probably controlled by SOX4.


Microglia , NF-kappa B , Rats, Sprague-Dawley , STAT6 Transcription Factor , Signal Transduction , Spinal Cord Injuries , Animals , Male , Rats , Cell Polarity/drug effects , Disease Models, Animal , Microglia/metabolism , Microglia/pathology , NF-kappa B/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics , Signal Transduction/drug effects , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics
...