Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
1.
J Biomed Mater Res B Appl Biomater ; 112(7): e35439, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923766

ABSTRACT

Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.


Subject(s)
Berberine , Organ of Corti , Tissue Scaffolds , Animals , Organ of Corti/drug effects , Mice , Berberine/pharmacology , Berberine/chemistry , Tissue Scaffolds/chemistry , Organoids/metabolism , Organoids/drug effects , Printing, Three-Dimensional , Alginates/chemistry , Alginates/pharmacology , Gelatin/chemistry , Gelatin/pharmacology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Tissue Engineering , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology , Hearing Loss, Sensorineural , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism
2.
PLoS Biol ; 22(6): e3002665, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935589

ABSTRACT

Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.


Subject(s)
Hair Cells, Auditory, Inner , Neurotrophin 3 , Synapses , Animals , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Synapses/metabolism , Synapses/physiology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Mice , Auditory Threshold , Evoked Potentials, Auditory/physiology , Reflex, Startle/physiology , Auditory Perception/physiology , Spiral Ganglion/metabolism , Female , Male , Hearing Loss, Hidden
3.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791192

ABSTRACT

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Subject(s)
Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
4.
Sci Rep ; 14(1): 10910, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740884

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Subject(s)
Kanamycin , Mice, Inbred C57BL , Ototoxicity , Signal Transduction , Spiral Ganglion , Transforming Growth Factor beta , Animals , Kanamycin/toxicity , Signal Transduction/drug effects , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , Transforming Growth Factor beta/metabolism , Mice , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Furosemide/pharmacology , Male
5.
Cell Rep ; 43(4): 114025, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38564333

ABSTRACT

Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.


Subject(s)
Cochlea , Hearing , Post-Synaptic Density , Receptors, AMPA , Receptors, G-Protein-Coupled , Spiral Ganglion , Animals , Receptors, AMPA/metabolism , Mice , Spiral Ganglion/metabolism , Hearing/physiology , Cochlea/metabolism , Post-Synaptic Density/metabolism , Mice, Knockout , Hair Cells, Auditory, Inner/metabolism , Mice, Inbred C57BL , Synapses/metabolism
6.
Hum Mol Genet ; 33(10): 905-918, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38449065

ABSTRACT

Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.


Subject(s)
Apoptosis Inducing Factor , Disease Models, Animal , Hearing Loss , Animals , Humans , Male , Mice , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Knock-In Techniques , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Atrophy/metabolism , Mutation , Protein Transport , Spiral Ganglion/metabolism , Spiral Ganglion/pathology
7.
Chin Med J (Engl) ; 137(6): 651-656, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-37407223

ABSTRACT

ABSTRACT: Cochlear spiral ganglion neurons (SGNs) are bipolar ganglion cells and are the first neurons in the auditory transduction pathway. They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing. Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate, making treatment of sensorineural hearing loss (SNHL) arising from SGN injury difficult. When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors (NTFs), aging, and presence of other factors, SGNs can be irreversibly damaged, resulting in SNHL. It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells. In this paper, we summarized the present knowledge regarding injury, protection, and regeneration of SGNs.


Subject(s)
Hearing Loss, Sensorineural , Spiral Ganglion , Humans , Spiral Ganglion/metabolism , Neurons , Cochlea , Hair Cells, Auditory/metabolism
8.
Mol Biotechnol ; 66(2): 321-331, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37145220

ABSTRACT

To observe the expression changes of P2 protein in cochlear spiral ganglion cells before and after noise injury, and to explore the relationship between the changes of purinergic receptors in spiral ganglion cells and noise-induced hearing loss, so that the signal transduction of purinergic receptors can be used to treat SNHL The target point provides a theoretical basis. The experimental animals were randomly divided into normal and experimental groups. The experimental group was given 120 dB white noise continuous exposure for 10 days and 3 h a day. The auditory brainstem response was measured before and after the noise exposure. After the noise exposure, the two groups of animals were collected. Do immunofluorescence staining, western blot, fluorescence real-time quantitative PCR to observe the expression of P2 protein. The average hearing threshold of the animals in the experimental group increased to 38.75 ± 6.44 dB SPL after 7 days of noise exposure, and the high-frequency hearing loss was lower and severe; the average hearing threshold increased to 54.38 ± 6.80 dB SPL after 10 days of noise exposure, and the hearing loss at 4 k Hz was relatively high. Light; Frozen sections of cochlear spiral ganglion cells and staining of isolated spiral ganglion cells found that P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 proteins were all expressed in cochlear spiral ganglion cells before noise exposure. Among them, P2X3 expression increased and P2X4, the down-regulation of P2Y2 expression was statistically significant (P < 0.05); Western blot and real-time quantitative PCR detection results showed that the expression of P2X3 was significantly increased after noise exposure than before noise exposure (P < 0.05), and P2X4 and P2Y2 were expressed after noise exposure The amount was significantly lower than before noise exposure (P < 0.05). (Figure. 4). After noise exposure, the expression of P2 protein is upregulated or downregulated. By affecting the Ca2+ cycle, the transmission of sound signals to the auditory center is blocked, which provides a theoretical basis for the signal transduction of purinergic receptors to become a target for the treatment of SNHL.


Subject(s)
Hearing Loss, Noise-Induced , Spiral Ganglion , Guinea Pigs , Animals , Spiral Ganglion/metabolism , Cochlea/metabolism , Noise/adverse effects , Hearing Loss, Noise-Induced/metabolism , Receptors, Purinergic/metabolism
9.
Neurosci Res ; 200: 8-19, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37926219

ABSTRACT

Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Animals , Spiral Ganglion/metabolism , Gerbillinae , Ouabain/pharmacology , Cochlea , Neurons , Deafness/chemically induced , Deafness/metabolism , Denervation
10.
Sci Rep ; 13(1): 16741, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798459

ABSTRACT

Pathological conditions in cochlea, such as ototoxicity, acoustic trauma, and age-related cochlear degeneration, induce cell death in the organ of Corti and degeneration of the spiral ganglion neurons (SGNs). Although macrophages play an essential role after cochlear injury, its role in the SGNs is limitedly understood. We analyzed the status of macrophage activation and neuronal damage in the spiral ganglion after kanamycin-induced unilateral hearing loss in mice. The number of ionized calcium-binding adapter molecule 1 (Iba1)-positive macrophages increased 3 days after unilateral kanamycin injection. Macrophages showed larger cell bodies, suggesting activation status. Interestingly, the number of activating transcription factor 3 (ATF3)-positive-neurons, an indicator of early neuronal damage, also increased at the same timing. In the later stages, the number of macrophages decreased, and the cell bodies became smaller, although the number of neuronal deaths increased. To understand their role in neuronal damage, macrophages were depleted via intraperitoneal injection of clodronate liposome 24 h after kanamycin injection. Macrophage depletion decreased the number of ATF3-positive neurons at day 3 and neuronal death at day 28 in the spiral ganglion following kanamycin injection. Our results suggest that suppression of inflammation by clodronate at early timing can protect spiral ganglion damage following cochlear insult.


Subject(s)
Hearing Loss, Unilateral , Spiral Ganglion , Mice , Animals , Spiral Ganglion/metabolism , Kanamycin/toxicity , Hearing Loss, Unilateral/pathology , Clodronic Acid/metabolism , Hair Cells, Auditory/metabolism , Cochlea , Neurons , Macrophages
11.
PLoS One ; 18(10): e0292676, 2023.
Article in English | MEDLINE | ID: mdl-37883357

ABSTRACT

Sound information is transmitted from the cochlea to the brain mainly by type I spiral ganglion neurons (SGNs), which consist of different subtypes with distinct physiological properties and selective expression of molecular markers. It remains unclear how these SGN subtypes distribute along the tonotopic axis, and whether the distribution pattern changes during aging that might underlie age-related hearing loss (ARHL). We investigated these questions using immunohistochemistry in three age groups of CBA/CaJ mice of either sex, including 2-5 months (young), 17-19 months (middle-age), and 28-32 months (old). Mouse cochleae were cryo-sectioned and triple-stained using antibodies against Tuj1, calretinin (CR) and calbindin (CB), which are reportedly expressed in all type I, subtype Ia, and subtype Ib SGNs, respectively. Labeled SGNs were classified into four groups based on the expression pattern of stained markers, including CR+ (subtype Ia), CB+ (subtype Ib), CR+CB+ (dual-labeled Ia/Ib), and CR-CB- (subtype Ic) neurons. The distribution of these SGN groups was analyzed in the apex, middle, and base regions of the cochleae. It showed that the prevalence of subtype Ia, Ib and dual-labeled Ia/Ib SGNs are high in the apex and low in the base. In contrast, the distribution pattern is reversed in Ic SGNs. Such frequency-dependent distribution is largely maintained during aging except for a preferential reduction of Ic SGNs, especially in the base. These findings corroborate the prior study based on RNAscope that SGN subtypes show differential vulnerability during aging. It suggests that sound processing of different frequencies involves distinct combinations of SGN subtypes, and the age-dependent loss of Ic SGNs in the base may especially impact high-frequency hearing during ARHL.


Subject(s)
Cochlea , Spiral Ganglion , Animals , Mice , Spiral Ganglion/metabolism , Mice, Inbred CBA , Cochlea/physiology , Neurons/metabolism , Aging
12.
Eur J Histochem ; 67(3)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37548252

ABSTRACT

Lots of adrenergic receptors (ARs) are widely present across the auditory pathways and are positioned to affect auditory and vestibular functions. However, noradrenergic regulation in the cochlea has not been well characterized. In this study, a rat model of noise-induced hearing loss was developed to investigate the expression of α2A-adrenergic receptor (AR) after acoustic trauma, then, we investigated the expression of α2A-AR in the developing rat cochlea using immunofluorescence, qRT-PCR, and Western blotting. We found that the expression of α2A-AR significantly increased in rats exposed to noise compared with controls. Immunofluorescence analysis demonstrated that α2A-AR is localized on hair cells (HCs), spiral ganglion neurons (SGNs), and the stria vascularis (SV) in the postnatal developing cochlea from post-natal day (P) 0 to P28. Furthermore, we observed α2A-AR mRNA reached a maximum level at P14 and P28 when compared with P0, while no significant differences in α2A-AR protein levels at the various stages when compared with P0. This study provides direct evidence for the expression of α2A-AR in HCs, SGNs, and the SV of the cochlea, indicating that norepinephrine might play a vital role in hearing function within the cochlea through α2A-AR.


Subject(s)
Cochlea , Receptors, Adrenergic, alpha-2 , Spiral Ganglion , Animals , Rats , Cochlea/metabolism , Norepinephrine , Rats, Sprague-Dawley , Spiral Ganglion/metabolism , Receptors, Adrenergic, alpha-2/metabolism
13.
EMBO Rep ; 24(9): e56702, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37477166

ABSTRACT

Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.


Subject(s)
Hair Cells, Auditory, Inner , Neuropeptides , Rats , Animals , Hearing/physiology , Synapses/physiology , Cochlea , Spiral Ganglion/metabolism , Cytoskeletal Proteins/metabolism
14.
Hear Res ; 436: 108813, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37329862

ABSTRACT

Loss of spiral ganglion neurons (SGNs) in the cochlea causes hearing loss. Understanding the mechanisms of cell fate transition accelerates efforts that employ directed differentiation and lineage conversion to repopulate lost SGNs. Proposed strategies to regenerate SGNs rely on altering cell fate by activating transcriptional regulatory networks, but repressing networks for alternative cell lineages is also essential. Epigenomic changes during cell fate transitions suggest that CHD4 represses gene expression by altering the chromatin status. Despite limited direct investigations, human genetic studies implicate CHD4 function in the inner ear. The possibility of CHD4 in suppressing alternative cell fates to promote inner ear regeneration is discussed.


Subject(s)
Ear, Inner , Hearing Loss, Sensorineural , Humans , Cell Differentiation/physiology , Neurons/metabolism , Hearing Loss, Sensorineural/metabolism , Spiral Ganglion/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism
15.
Carbohydr Polym ; 311: 120749, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37028876

ABSTRACT

The damage or degeneration of spiral ganglion neurons (SGNs) can impair the auditory signals transduction from hair cells to the central auditory system, and cause significant hearing loss. Herein, a new form of bioactive hydrogel incorporating topological graphene oxide (GO) and TEMPO-oxidized bacterial cellulose (GO/TOBC hydrogel) was developed to provide a favorable microenvironment for SGN neurite outgrowth. As the network structure of lamellar interspersed fiber cross-linked by GO/TOBC hydrogels well simulated the structure and morphology of ECM, with the controllable hydrophilic property and appropriate Young's modulus well met those requirements of SGNs microenvironment, the GO/TOBC hybrid matrix exhibited great potential to promote the growth of SGNs. The quantitative real-time PCR result confirmed that the GO/TOBC hydrogel can significantly accelerate the development of growth cones and filopodia, by increasing the mRNA expression levels of diap3, fscn2, and integrin ß1. These results suggest that GO/TOBC hydrogel scaffolds have the potential to be used to construct biomimetic nerve grafts for repairing or replacing nerve defects.


Subject(s)
Cellulose, Oxidized , Spiral Ganglion , Spiral Ganglion/metabolism , Hydrogels/chemistry , Neurons/metabolism
16.
Neurosci Lett ; 806: 137244, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37055006

ABSTRACT

Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.


Subject(s)
Cochlear Nucleus , Ear, Inner , Animals , Mice , Cochlear Nucleus/metabolism , Ear, Inner/metabolism , Mice, Knockout , Neurons/metabolism , Spiral Ganglion/metabolism , Transcription Factors/metabolism
17.
Brain Res ; 1806: 148301, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36868509

ABSTRACT

In the present study we investigated the localization of glucocorticoid receptors (GCR) in the human inner ear using immunohistochemistry. Celloidin-embedded cochlear sections of patients with normal hearing (n = 5), patients diagnosed with MD (n = 5), and noise induced hearing loss (n = 5) were immunostained using GCR rabbit affinity-purified polyclonal antibodies and secondary fluorescent or HRP labeled antibodies. Digital fluorescent images were acquired using a light sheet laser confocal microscope. In celloidin-embedded sections GCR-IF was present in the cell nuclei of hair cells and supporting cells of the organ of Corti. GCR-IF was detected in cell nuclei of the Reisner's membrane. GCR-IF was seen in cell nuclei of the stria vascularis and the spiral ligament. GCR-IF was found in the spiral ganglia cell nuclei, however, spiral ganglia neurons showed no GCR-IF. Although GCRs were found in most cell nuclei of the cochlea, the intensity of IF was differential among the different cell types being more intense in supporting cells than in sensory hair cells. The differential expression of GCR receptors found in the human cochlea may help to understand the site of action of glucocorticoids in different ear diseases.


Subject(s)
Ear, Inner , Receptors, Glucocorticoid , Animals , Rabbits , Humans , Receptors, Glucocorticoid/metabolism , Collodion/metabolism , Cochlea/metabolism , Ear, Inner/metabolism , Spiral Ganglion/metabolism
18.
Neurosci Lett ; 803: 137178, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36914046

ABSTRACT

Otof, which encodes otoferlin, knockout mice are considered model mice for auditory neuropathy spectrum disorder, which is characterized by an absent auditory brainstem response (ABR) despite preserved distortion product otoacoustic emission (DPOAE). Although otoferlin-deficient mice lack neurotransmitter release at the inner hair cell (IHC) synapse, it remains unclear how the Otof mutation affects spiral ganglions. Thus, we used Otof-mutant mice carrying the Otoftm1a(KOMP)Wtsi allele (Otoftm1a) and analyzed spiral ganglion neurons (SGNs) in Otoftm1a/tm1a mice by immunolabeling type Ⅰ SGNs (SGN-Ⅰ) and type II SGNs (SGN-II). We also examined apoptotic cells in SGNs. Four-week-old Otoftm1a/tm1a mice had an absent ABR but normal DPOAEs. The number of SGNs was significantly lower in Otoftm1a/tm1a mice on postnatal day 7 (P7), P14, and P28 compared with that of wild-type mice. Moreover, significantly more apoptotic SGNs were observed in Otoftm1a/tm1a mice than in wild-type mice on P7, P14, and P28. SGN-IIs were not significantly reduced in Otoftm1a/tm1a mice on P7, P14, and P28. No apoptotic SGN-IIs were observed under our experimental conditions. In summary, Otoftm1a/tm1a mice showed a reduction in SGNs accompanied by apoptosis of SGN-Ⅰs even before the onset of hearing. We speculate that the reduction in SGNs with apoptosis is a secondary defect caused by a lack of otoferlin in IHCs. Appropriate glutamatergic synaptic inputs may be important for the survival of SGNs.


Subject(s)
Neurons , Spiral Ganglion , Animals , Mice , Spiral Ganglion/metabolism , Neurons/metabolism , Apoptosis/physiology , Synaptic Transmission/physiology , Mice, Knockout , Membrane Proteins/genetics , Membrane Proteins/metabolism
19.
Brain Stimul ; 16(2): 466-483, 2023.
Article in English | MEDLINE | ID: mdl-36702442

ABSTRACT

Optogenetic control of neural activity enables innovative approaches to improve functional restoration of diseased sensory and motor systems. For clinical translation to succeed, optogenetic stimulation needs to closely match the coding properties of the targeted neuronal population and employ optimally operating emitters. This requires the customization of channelrhodopsins, emitters and coding strategies. Here, we provide a framework to parametrize optogenetic neural control and apply it to the auditory pathway that requires high temporal fidelity of stimulation. We used a viral gene transfer of ultrafast targeting-optimized Chronos into spiral ganglion neurons (SGNs) of the cochlea of mice. We characterized the light-evoked response by in vivo recordings from individual SGNs and neurons of the anteroventral cochlear nucleus (AVCN) that detect coincident SGN inputs. Our recordings from single SGNs demonstrated that their spike probability can be graded by adjusting the duration of light pulses at constant intensity, which optimally serves efficient laser diode operation. We identified an effective pulse width of 1.6 ms to maximize encoding in SGNs at the maximal light intensity employed here (∼35 mW). Alternatively, SGNs were activated at lower energy thresholds using short light pulses (<1 ms). An upper boundary of optical stimulation rates was identified at 316 Hz, inducing a robust spike rate adaptation that required a few tens of milliseconds to recover. We developed a semi-stochastic stimulation paradigm to rapidly (within minutes) estimate the input/output function from light to SGN firing and approximate the time constant of neuronal integration in the AVCN. By that, our data pave the way to design the sound coding strategies of future optical cochlear implants.


Subject(s)
Auditory Pathways , Optogenetics , Mice , Animals , Auditory Pathways/physiology , Hearing , Cochlea/physiology , Cochlea/surgery , Spiral Ganglion/metabolism
20.
Dev Dyn ; 252(1): 124-144, 2023 01.
Article in English | MEDLINE | ID: mdl-36284453

ABSTRACT

BACKGROUND: Proper connectivity between type I spiral ganglion neurons (SGNs) and inner hair cells (IHCs) in the cochlea is necessary for conveying sound information to the brain in mammals. Previous studies have shown that type I SGNs are heterogeneous in form, function and synaptic location on IHCs, but factors controlling their patterns of connectivity are not well understood. RESULTS: During development, cochlear supporting cells and SGNs express Semaphorin-3A (SEMA3A), a known axon guidance factor. Mice homozygous for a point mutation that attenuates normal SEMA3A repulsive activity (Sema3aK108N ) show cochleae with grossly normal patterns of IHC innervation. However, genetic sparse labeling and three-dimensional reconstructions of individual SGNs show that cochleae from Sema3aK108N mice lacked the normal synaptic distribution of type I SGNs. Additionally, Sema3aK108N cochleae show a disrupted distribution of GLUA2 postsynaptic patches around the IHCs. The addition of SEMA3A-Fc to postnatal cochleae led to increases in SGN branching, similar to the effects of inhibiting glutamate receptors. Ca2+ imaging studies show that SEMA3A-Fc decreases SGN activity. CONCLUSIONS: Contrary to the canonical view of SEMA3A as a guidance ligand, our results suggest SEMA3A may regulate SGN excitability in the cochlea, which may influence the morphology and synaptic arrangement of type I SGNs.


Subject(s)
Hair Cells, Auditory , Semaphorin-3A , Animals , Mice , Cochlea/metabolism , Neurons/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Spiral Ganglion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...